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Preface

Although the title might suggest it differently, this monograph is about a
certain method for establishing singular limits rather than about a clear-
cut class of singularly perturbed problems. Using this particular method
I will address in a unified way such diverse topics as the micro-scale jus-
tification of the Lagrange-d’Alembert principle and the limit behavior of
strong constraining potentials in classical mechanics on the one hand, and
the adiabatic theorem of quantum mechanics on the other hand. I am
confident that all these topics are paradigms of a larger class of singularly
perturbed conservative mechanical systems which allow for the application
of the method to be presented. Reflecting this, I have tried to apply the
method to each case as directly as possible and refrained from studying an
abstract super-class of problems which would leave the paradigms as mere
examples. I believe that this “variations-on-a-theme-style” of my presen-
tation is more likely to make the method a working tool in the area than
a “transformation-to-an-archetype-style” would be.

This monograph grew out of the attempt to understand the high fre-
quency vibrations in classical molecular dynamics modeling. These non-
linear vibrations are the major obstruction for an efficient and reliable nu-
merical long term simulation. In the fall of 1994, I came up with the idea
of studying the singular limit of these vibrations by means of the method
of weak convergence which enjoys growing popularity in the study of sin-
gularly perturbed nonlinear partial differential equations. Straightforward
energy arguments led me to a qualitative understanding of the structural
aspects of the limit system. However, additional ideas appeared to be nec-
essary for the explicit construction of the limit dynamics. I finally found
these ideas in the physical concepts of virial theorems and adiabatic invari-
ants. For the single frequency case weak limit analogues and proofs were
discovered soon, and the method was presented in the spring of 1996. In
contrast, the multiple frequency case left two problems open: first, how to
obtain a kind of component-wise virial theorem, and second, how to get rid
of a certain perturbation term obstructing the multidimensional adiabatic-
ity argument. More than a year of struggle later, I discovered quite elegant
solutions to both of these problems: the virial theorem generalizes to a
matrix-commutativity relation† that, after simultaneous diagonalization,

†To be found as Lemma II.7 on p. 38 below.
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II Preface

implies the desired component-wise result. And the mentioned perturba-
tion term vanishes as a consequence of a resonance condition by a strikingly
short argument.‡

In the meantime, I got involved in the study of mixed quantum-classical
models in quantum chemistry. During the fall of 1996, my friend and col-
league Christof Schütte suggested to me to discuss the singular limit of
a finite dimensional analogue of these models by transforming it to the
kind of classical mechanical systems that had already been studied by my
method. However, the kinetic energy of the transformed system turned
out to be of a more general type as considered before, making it necessary
to generalize my results to mechanical systems on Riemannian manifolds.
The Riemannian metric caused additional perturbation terms which, sur-
prisingly enough, vanished like magic because of the already discovered
generalization of the virial theorem.

Encouraged by this success I worked on a direct, untransformed version
of the method of proof for these mixed quantum-classical models. The
motivation was to deal also with the infinite dimensional case involving
partial differential equations. And, indeed, using appropriate concepts from
physics and the right tools from functional analysis, I have not only been
able to address this case but also to give a new proof for the adiabatic
theorem of quantum mechanics.

All this endeavor shaped the paradigmatical point of view which I will
pursue in this monograph. I hope that the method presented here, i.e.,
the blend of weak convergence techniques, virial theorems, and adiabatic
invariants, will find many interesting new applications and will help to
establish, clarify, and unify results about singularly perturbed problems
involving different time scales.

New York, April 1997 Folkmar A. Bornemann

‡To be found as Lemma II.11 on p. 42 below.
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Introduction

Many problems of the applied sciences involve scales in time, or space,
which are orders of magnitude different in size. The smallest scales, also
called micro-scales, are caused, e.g., by dynamical effects or by the materi-
als involved, whereas the largest scales, also called the macro-scales, involve
the scales of observation or measurement. The micro-scales are frequently
not measurable, or at least of no particular interest. Additionally, their
presence poses severe problems for numerical simulations using todays or
even future computing facilities. Thus, for first a deeper understanding of
the underlying model, and second, for developing efficient and reliable nu-
merical simulation methods, there is a strong need for macro-scale models
which approximate the originally given model without involving the micro-
scales.

Looking at many macro-scale models used in the natural sciences, one
realizes that they were obtained phenomenologically, i.e., by analyzing the
measurements, not by deriving them from a micro-scale model. For justi-
fying well-known macro-scale models, or establishing even new ones, tech-
niques for a mathematical model-derivation from the micro- to the macro-
scale have become increasingly important and scientifically instructive in
recent years.

A fundamental mathematical technique used in such a kind of model-
derivation is the identification of a scale-parameter ε � 1 and the subse-
quent study of the limit ε → 0. Frequently, this limit changes, at least
formally, the very nature of the mathematical model: Either some terms
become formally ambiguous, or even non-sense, or, e.g., the order or type
of a differential equation is changed. In these cases, one calls the model sin-
gularly perturbed, and ε the parameter of the singular perturbation. The
analysis of the singular limit ε → 0 has to be either asymptotic or, in a
sense, oblivious to the micro-scale aspects of the solution.

In some models, singular perturbations cause rapid, micro-scale fluctua-
tions in the solution. Therefore, an asymptotic description usually involves
an explicit ansatz for the oscillatory part of the solution. This often requires
much ingenuity and a lot of insight into the problem. Famous examples
are provided by the perturbation theory of integrable Hamiltonian systems,
cf. [6], the WKB method for semiclassical limits in quantum theory, cf. [68],
the more recent technique of nonlinear geometric optics, cf. [67][75], and
the method of multiple-scale-asymptotics, cf. [13][53].

1



� Introduction �Chap� I

On the other hand, macro-scale measurements can be viewed as a kind
of averaging procedure, being oblivious of the rapid fluctuations on micro-
scales. Mimicking this, one considers the limit of certain averages of the
solutions or, equivalently, their weak limits. This method of weak conver-
gence has become increasingly popular in the study of nonlinear partial
differential equations, since one has powerful tools from functional analysis
at hand which allow to establish qualitative, or at least structural, infor-
mation about the limit system, cf. [28]. Even more, proving error bounds
for a formal asymptotic (multiple-scale) analysis can be a hard problem
which is sometimes attacked by the method of weak convergence.

Example 1. Both approaches to a singular limit problem can neatly be
compared being applied to the so-called homogenization problem of elliptic
partial differential equations. There, one studies the limit ε → 0 of the
diffusion problems

− divA(x/ε) graduε(x) = f(x), x ∈ Ω ⊂ R
d , uε|∂Ω = 0,

where the [0, 1]d-periodic diffusion matrix A(·) describes a micro-scale pe-
riodic structure. For f ∈ H−1(Ω), we obtain

uε ⇀ u0 in H1(Ω),

and one might ask whether there is an effective diffusion matrix Aeff(x)
such that

− divAeff(x) gradu0(x) = f(x), x ∈ Ω ⊂ R
d , u0|∂Ω = 0.

It turns out that such an effective diffusion matrix exists and is constant
indeed. However, this matrix is in general not simply given by some aver-
age value of the function A(·). For this problem, a multiple-scale-analysis
was set up by Bensoussan, Lions, and Papanicolaou [13]. The weak
convergence method was pioneered by Murat and Tartar [70][47]. In the
latter reference one can also find a proof of an error bound for the multiple-
scale-expansion by means of the weak convergence method, cf. [47, §1.4].

The particularity of this example is provided by a nonlinear coupling,
in fact a quadratic one, of the micro- and macro-scales, which leads to
nontrivial problems and counter-intuitive results in general. This effect of
nonlinearities can be understood in a rather direct fashion by the method
of weak convergence: nonlinear functionals are not weakly sequentially
continuous in general.1 Describing the deviation from weak continuity,
unexpected terms appear in the weak limit. In analogy to the elliptic
example above, we will use the notion “homogenization,” instead of the
notion “averaging,” if the derivation of a macro-scale model involves such
unexpected, counter-intuitive, or nontrivial terms.

1For instance, in Example 1 above, the flux A(x/ε) graduε(x) is the product of two

weakly converging sequences. Thus, although we have A(x/ε)
∗
⇀ Aaver in L∞(Ω,Rd×d)

and graduε ⇀ gradu0 in L2(Ω,Rd), there is not A(x/ε) graduε(x) ⇀ Aaver gradu0 in
L2(Ω,Rd). This way, one understands why Aaver �= Aeff .
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Purpose of this Monograph. It is our purpose in this monograph to
present a particular method for the explicit homogenization of certain sin-
gularly perturbed conservative mechanical systems. Caused by the singular
perturbation and the conservation properties of the model, the solutions
of these systems will show up rapid micro-scale fluctuations. Our method
will be based on energy principles and weak convergence techniques. Since
nonlinear functionals are not weakly sequentially continuous, as mentioned
above, we have to study simultaneously the weak limits of all those nonlin-
ear quantities of the rapidly oscillating components which are of importance
for the underlying problem.2 Using the physically motivated concepts of
virial theorems, adiabatic invariants, and resonances, we will be able to
establish sufficiently many relations between all these weak limits, allowing
to calculate them explicitly.

Our approach will be paradigmatical rather than aiming at the largest
possible generality. This way, we can show most clearly how concepts and
notions from the physical background of the underlying mathematical prob-
lem enter and help to determine relations between weak limit quantities.

Example 2. This example presents a simplified version of the paradigm
that will be discussed in Chapter II. It is given by the singularly perturbed
Newtonian equations

ε2 ẍε + gradU(xε) = 0,

describing a conservative mechanical system on the configuration space Rm .
If the potential U ≥ 0 has a critical manifold

N = {x ∈ R
m : U(x) = 0} = {x ∈ R

m : gradU(x) = 0},
we call it constraining to N . For fixed initial values xε(0) = x∗ ∈ N and
ẋε(0) = v∗ ∈ R

m , we obtain

xε
∗
⇀ x0 in W 1,∞([0, T ],Rm)

where the limit average motion x0 takes values in the manifold N . There-
fore, näıve intuition would expect that the limit x0 is dynamically described
by the free, geodesic motion on N ,

ẍ0 ⊥ Tx0N.

However, the rapidly oscillating velocities, being only weakly convergent
in general, cause additional, unexpected force terms which yield a limit

2In this restriction to just the smallest required class of nonlinearities our approach
differs from utilizing and studying Young measures [28, §1.E.3][97], or H-measures (mi-
crolocal defect measures) [37][95][96][97] and its scale-dependent variants like semiclas-
sical measures [36] or Wigner measures [65]. These advanced tools encode the weak
limits of all possible quantities obtained from nonlinear substitutions or quadratic pseu-
dodifferential operations, respectively. For the relation of our approach to semiclassical
measures see Appendix D.
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dynamics of the form

ẍ0 + gradUhom(x0) ⊥ Tx0N.

We call this limit system the homogenization of the given singularly per-
turbed system. The nonlinearity responsible for the appearance of the
homogenized potential Uhom is the quadratic approximation of U near to
N . We will construct Uhom explicitly for a large class of potentials U .

Outline of Contents. For pedagogical reasons, in §2 of this introduc-
tory Chapter I we will introduce our method of proof for a very simple,
illustrative special case of Example 2 above. This will help to clarify the
basic structure of the argument. Precedingly, we recall in §1 all those pre-
requisites about weak convergence which will be needed in the first three
chapters of this monograph.

The first major paradigm for the application of our method is subject
of Chapter II. There, we study natural mechanical systems on Riemannian
manifolds, singularly perturbed by a strong constraining potential. We
state and prove a homogenization result which considerably extends what
is known from the only two references concerned with this problem: i.e.,
work by Takens [94] from 1979, and by Keller and Rubinstein [52]
from 1991. We show the necessity of resonance conditions on the one
hand, but verify that genericity or transversality assumptions are sufficient
on the other hand.3 As a special case of this paradigm we discuss the
micro-scale justification of the Lagrange-d’Alembert principle by utilizing
strong constraining potentials. Giving unified proofs for the results known
about this justification, we additionally show the necessity of the conditions
which prior to our work were only known to be sufficient. The chapter
concludes with an explicit example that there is a strange sensitivity of
the homogenization problem on the initial values, if the strong potential
does not satisfy an important regularity assumption. For this effect was
discovered by Takens [94], we call it Takens chaos.

Chapter III continues with a potpourri of applications. We start by
discussing the problem of guiding center motion in plasma physics and
the elimination of fast vibrations in molecular dynamics. The closing ap-
plication consists of a simplified, finite-dimensional version of a model in
quantum chemistry which describes the coupling of a quantum mechanical
system with a classical one. We show that this model can be transformed
to the paradigm of Chapter II.

The corresponding infinite-dimensional coupling model, in its original,
untransformed guise leads to the second major paradigm of this monograph,

3The appearance of resonance-conditions for proving adiabaticity in multi-frequency
systems is a well-known fact in the perturbation theory of integrable Hamiltonian sys-
tems, cf. [6, §5.4.2]. However, the resonance conditions employed there are far to restric-
tive for our purposes, see also Appendix C.
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subject of Chapter IV. There, we relate the singular limit of the coupling
model to the adiabatic theorem of quantum mechanics. By translating our
method of proof to the appropriate concepts of quantum theory, we give
a new proof for this theorem and, finally, discuss the singular limit of the
coupling model. This way, we find ourselves in the curious situation having
addressed adiabaticity in classical and quantum mechanics with essential
the same method of proof, thus adding new meaning to the correspondence
principle of Ehrenfest in the pre-Schrödinger, “old” quantum theory of the
early twenties.

As the proofs in Chapter IV have to deal with operator-valued function
spaces and parameter-dependent unbounded operators they require the ap-
plication of more sophisticated tools from functional analysis than needed
in the preceding chapters. These tools are not easily found and referenced
in the literature, so that we have to provide some proofs for the reasons
of logical completeness. However, for not obstructing the inherent simplic-
ity of the basic argument in Chapter IV, we placed all the more general
functional analytic material in Appendix B.

x1. The Basic Principles of Weak Convergence

Here, we present all those facts from real and functional analysis about
weak* convergence that will be applied in the first three chapters.4 We
group these facts into five basic principles, all well-known or trivial. The
experienced reader who is already familiar with these concepts might wish
to skip this section.

We consider sequences {xε} of functions, indexed by a sequence {ε}
of real numbers which converge to zero, ε → 0. Later on, ε will be the
singular perturbation parameter. All functions x will be defined on some
bounded Lipschitz domain Ω ⊂ Rd , the expression ∂x will stand for any
partial derivative ∂jx, j = 1, . . . , d.

We recall the fact [84, Theorem 6.16] that the function space L∞(Ω) is
the dual of the function space L1(Ω),

L∞(Ω) = (L1(Ω))∗.

Thus, the functional analytic concept of weak*-convergence specifies as
follows.

Definition 1. A sequence {xε} of L∞(Ω) converges weakly* to the limit

x0 ∈ L∞(Ω), notated as xε
∗
⇀ x0, if and only if∫

Ω

xε(t)φ(t) dt →
∫
Ω

x0(t)φ(t) dt as ε→ 0,

for all testfunctions φ ∈ L1(Ω).5

4Additional material needed for Chapter IV can be found in Appendix B.
5We will write, for short, x(φ) =

∫
Ω
x(t)φ(t) dt.
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There is an alternative way of describing this kind of convergence which
clarifies the connection to averaging or filtering concepts.

Lemma 1. A sequence {xε} of L∞(Ω) converges weakly* to a limit x0 ∈
L∞(Ω), if and only if the following two properties hold:

(i) the sequence is bounded in L∞(Ω),

(ii) for every open rectangle I ⊂ Ω the corresponding integral mean value
converges,

1

|I|
∫
I

xε(t) dt → 1

|I|
∫
I

x0(t) dt.

Proof. The linear span of the characteristic functions χI forms a dense
subspace of L1(Ω), cf. [98, §11, Theorem 4] and [98, §20, Theorem 4]. This
proves the “if”-part of the the assertion, since by property (i) the sequence
{xε} represents a sequence of equi-continuous linear forms on L1(Ω).

The “only if” part follows from the uniform boundedness principle of
functional analysis [83, Theorem 2.5].

The weak* convergence in L∞(Ω) helps to ignore rapid fluctuations
in a convenient way. As an example, we recall the well-known Riemann-
Lebesgue lemma [84, Sec. 5.14]: For xε(t) = cos(t/ε) one gets

xε
∗
⇀ 0 in L∞[0, 1]. (I.1)

The first principle, simple but extremely useful, relates the uniform con-
vergence of functions to the weak* convergence of their derivatives.

Principle 1. Let {xε} be a sequence in C1(Ω) such that xε → 0 in C(Ω).
Then, if and only if the sequence {∂xε} is bounded in L∞(Ω), there holds

∂xε
∗
⇀ 0 in L∞(Ω).

Proof. By the uniform boundedness principle [83, Theorem 2.5], a weakly*
convergent sequence must be bounded, proving the necessity of the bound-
edness condition. On the other hand, because C∞

c (Ω) is a dense subspace
of L1(Ω), [63, Lemma 2.19], one can test for the weak* convergence of a
bounded sequence in L∞(Ω) with functions from C∞

c (Ω). Now, since by
Hölder’s inequality uniform convergence in C(Ω) implies weak* convergence
in L∞(Ω), we obtain by partial integration

∂xε(φ) = −xε(∂φ) → 0

for all testfunctions φ ∈ C∞
c (Ω), proving the sufficiency of the boundedness

condition.

For instance, this principle provides quite a simple proof of the Rie-
mann-Lebesgue lemma, Eq. (I.1) above: Since ε sin(t/ε) → 0, uniformly
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in C[0, 1], the uniformly bounded sequence of its derivatives, cos(t/ε), con-

verges weakly* to zero, cos(t/ε)
∗
⇀ 0.

A delicate point about weak* convergence is that nonlinear functionals
are not weakly* sequentially continuous. Given a nonlinear continuous
function f : R → R, there is, in general,

xε
∗
⇀ x0 �⇒ f(xε)

∗
⇀ f(x0).

A famous example is provided by the quadratic function f(x) = x2 and
xε = cos(t/ε). There, by a well-known generalization of the Riemann-
Lebesgue lemma, [23, Lemma I.1.2], we have that in L∞[0, 1]

xε
∗
⇀ 0, but x2ε

∗
⇀

1

2π

∫ 2π

0

cos2 τ dτ =
1

2
�= 0. (I.2)

This lack of weak* sequential continuity is responsible for a lot of unex-
pected results later on. It makes the study of singular perturbation prob-
lems with rapid fluctuations a difficult but fascinating task.

However, if the weak* convergence enters an nonlinear expression only
linearly, passing to the limit is possible. A particular important instance
is provided by our second principle. This principle will be used most often
in our work, and always without referring to it explicitly. Therefore, if we
claim a passage to the weak* limit for a product, the reader is cautioned
to check carefully whether at most one factor is weakly* converging.

Principle 2. Let there be the convergences xε
∗
⇀ x0, weakly* in L∞(Ω),

and yε → y0, uniformly in C(Ω). Then, we obtain

xε · yε ∗
⇀ x0 · y0 in L∞(Ω).

Proof. Take φ ∈ L1(Ω). Then, Lebesgue’s theorem of dominated conver-
gence shows that yεφ→ y0φ strongly in L1(Ω). Therefore, we get

(xε · yε)(φ) = xε(yεφ) → x0(y0φ) = (x0 · y0)(φ),
which proves the asserted weak*-convergence.

The next two principles establish a particularly convenient property of
the weak*-topology: the Heine-Borel property, i.e., closed bounded sets
are compact. Since the underlying topology is essentially induced by a
metric, weak* convergence is almost as easy to handle as convergence in R:
bounded sequences have convergent subsequences.

Principle 3. (Alaoglu Theorem). Let {xε} be a bounded sequence in
the space L∞(Ω). Then, there is a subsequence {ε′} and a function x0 ∈
L∞(Ω), such that

xε′
∗
⇀ x0 in L∞(Ω).
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Proof. The Alaoglu theorem [83, Theorem 3.15] of functional analysis
states that a closed ball in L∞(Ω) is compact with respect to the weak*-
topology. Since the predual space L1(Ω) is separable, cf. [63, Lemma 2.17],
the weak*-topology is metrizable on closed balls [83, Theorem 3.16]. Hence,
bounded sequences have weak*-convergent subsequences.6

The next compactness principle is the classical Arzelà-Ascoli theorem,
slightly extended to include some information on the derivative.7

Principle 4. (An Extended Arzelà-Ascoli Theorem). Let {xε} be a
bounded sequence in the space C0,1(Ω) of uniformly Lipschitz continuous
functions. Then, there is a subsequence {ε′} and a function x0 ∈ C0,1(Ω),
such that

xε′ → x0 in C(Ω), ∂xε′
∗
⇀ ∂x0 in L∞(Ω).

The partial derivatives ∂xε and ∂x0 are classically defined almost every-
where.

Proof. The uniform bound on the Lipschitz constants of xε implies the
equi-continuity of the sequence. Thus, the classical Arzelà-Ascoli theorem
[84, Theorem 11.28] shows that there is a subsequence ε′ and a continuous
function x0 ∈ C(Ω), such that xε′ → x0 in C(Ω).

By Rademacher’s theorem [29, Theorem 3.1.2], a Lipschitz function x is
differentiable almost everywhere. The thus obtained derivatives ∂x belong
to L∞ and equal the weak derivatives of x in the sense of distributions.
This way, one gets (e.g., [29, Theorem 6.2.1] or [38, p. 154]) an isometric
isomorphism

C0,1(Ω) ∼=W 1,∞(Ω).

Hence, the sequences {∂xε} are bounded in L∞(Ω). By Principle 3, we

can choose the subsequence {ε′} in such a way that ∂xε′
∗
⇀ η0 in L∞(Ω).

Now, the very same argument as in the proof of Principle 1 shows that
η0 = ∂x0. In particular, the above isomorphism implies that x0 ∈ C0,1(Ω)
which finishes the proof.

By these compactness results, bounded sequences of functions turn out
to be a mixture of sequences which converge in appropriate topologies. The
fifth and final principle states a simple but very useful criterion for deciding
about the convergence of the given sequence itself.

6Rudin [84, Theorem 11.29] gives a direct proof of this sequential version of the
Alaoglu theorem—i.e., for spaces with a separable predual—which requires little more
than the Arzelà-Ascoli theorem [84, Theorem 11.28]. This sequential version is often
called the Banach-Alaoglu theorem.

7It can be viewed as the Alaoglu theorem for the space C0,1(Ω) ∼= W 1,∞(Ω) together
with the compact Sobolev embedding W 1,∞(Ω) ↪→ C(Ω).
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Principle 5. (“Uniqueness Implies Convergence”). Let {xε} be a
sequence in a sequentially compact Hausdorff spaceX . If every convergent
subsequence of {xε} converges to one and the same element x0 ∈ X , then
the sequence converges itself,

xε → x0.

Proof. Suppose on the contrary that xε does not converge to x0. Then,
there is a neighborhood U(x0) of x0 and a subsequence {ε′} such that

xε′ �∈ U(x0) for all ε′. (*)

Since X is sequentially compact, there is a subsequence {ε′′} of {ε′} such
that {xε′′} converges. By assumption xε′′ → x0, a contradiction to (*).

As has been explicitly stated in the proof of Principle 3, the weak*-
topology of L∞ is metrizable on bounded sets. Thus, the convergence
Principle 5 is applicable to the bounded sequences of Principles 3 and 4.

x2. An Illustration of the Method

Here, we study a simple illustrative model problem which will serve as the
skeleton of the arguments in Chapters II and IV. After having studied this
model problem, the reader will more easily enjoy the inherent simplicity of
our method which tends to be hidden by several technical difficulties later
on. For instance, the technical difficulties in Chapter II are due to the dif-
ferential geometrical setting, in Chapter IV due to the infinite dimensional
spaces and unbounded operators.

We have arranged this illustrative model problem in a way that the four
basic steps of the argument will be clearly visible:

1. weak* compactness based on an energy principle,

2. a weak virial theorem,

3. the adiabatic invariance of the normal actions, and

4. the identification of the limit mechanical system.

Surely, there would be short-cuts for this particularly simple problem
which, however, are worth being sacrificed for a presentation of as many
essential features and notions of the later proofs as possible.

x2.1. The Model Problem

We consider the following singularly perturbed system of Newtonian equa-
tions of motion,

ε2ẍε + gradU(xε) = 0, (I.3)
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describing a mechanical system with Euclidean configuration space M =
Rm . Splitting the coordinates according to x = (y, z) ∈ Rn ×Rr = Rm , we
specify the potential U by the quadratic expression

U(x) = 1
2 〈H(y)z, z〉, H(y) = diag(ω2

1(y), . . . , ω
2
r(y)).

Here, 〈·, ·〉 denotes the Euclidean inner product on Rr ; correspondingly, | · |
will denote Euclidean norms. We assume that the smooth functions ωλ are
uniformly positive,8 i.e., there is a constant ω∗ > 0 such that

ωλ(y) ≥ ω∗, y ∈ R
n , λ = 1, . . . , r.

The nonnegative potential U ≥ 0 is called to be constraining to the critical
submanifold

N = {x ∈M : U(x) = 0} = R
n × {0} ⊂M.

Thus, for obvious reasons, we call y the tangential, and z the normal compo-
nent of x. A component-wise writing of the equations of motion, Eq. (I.3),
yields

(i) ÿjε = − 1
2ε

−2〈∂jH(yε)zε, zε〉, j = 1, . . . , n,

(ii) z̈ε = −ε−2H(yε)zε.
(I.4)

We consider initial values which are independent of ε,

yε(0) = y∗, ẏε(0) = w∗; zε(0) = 0, żε(0) = u∗. (I.5)

Notice, that the particular choice zε(0) = 0 is the only one that results in
an ε-independent bound for the conserved energy Eε of the system; in fact,
making the energy even independent of ε,

Eε =
1
2 |ẏε|2 + 1

2 |żε|2 + ε−2U(yε, zε) =
1
2 |w∗|2 + 1

2 |u∗|2 = E∗. (I.6)

x2.2. Step 1: Equi-Boundedness (Energy Principle)

In this step, energy and compactness arguments allow us to extract appro-
priately converging quantities. Conservation of energy andH being positive
definite immediately imply that the velocities are uniformly bounded,

ẏε = O(1), żε = O(1),

as functions in C[0, T ], given a certain final time 0 < T < ∞. Therefore,
after integration, we also obtain the positional bounds

yε = O(1), zε = O(1).

8This assumption is crucial, cf. Footnote 13 on p. 18 as well as Eqs. (II.6) and (II.10).
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The estimate

1
2ε

−2ω2
∗|zε|2 ≤ 1

2ε
−2〈H(yε)zε, zε〉 = ε−2U(yε, zε) ≤ E∗

implies the uniform bound
zε = O(ε).

Inserting this into the first set (i) of the equations of motion (I.4) reveals
the acceleration bound

ÿε = O(1).

Now, an application of the extended Arzelà-Ascoli theorem, Principle 4,
and the Alaoglu theorem, Principle 3, yields—after the extraction of a
subsequence which we denote by ε→ 0 again—the convergences

yε → y0 in C1([0, T ],Rn), ÿε
∗
⇀ ÿ0 in L∞([0, T ],Rn),

żε
∗
⇀ 0 in L∞([0, T ],Rr ), ε−1zε

∗
⇀ η0 in L∞([0, T ],Rr ).

Multiplying the second set (ii) of the equations of motion (I.4) by ε and
taking weak* limits gives, by recalling Principle 1,

0 = H(y0)η0, i.e., η0 = 0.

Because quadratic functionals are not weakly* sequentially continuous in
general, we cannot expect that the uniformly bounded matrices

Σε = ε−2zε ⊗ zε, Πε = żε ⊗ żε,

likewise converge weakly* to the zero matrix. Instead, after a further ap-
plication of the Alaoglu theorem, Principle 3, and an extraction of subse-
quences, we obtain some limits Σ0 and Π0,

Σε
∗
⇀ Σ0 in L∞([0, T ],Rr×r ), Πε

∗
⇀ Π0 in L∞([0, T ],Rr×r ).

These limit quantities Σ0 and Π0 will play a crucial role in the description
of the limit dynamics of y0. As a first hint, we rewrite the first set (i) of
the equations of motion (I.4) as

ÿjε = − 1
2 tr(∂jH(yε) · Σε).

By taking weak* limits on both sides, we obtain what we call the abstract
limit equation for y0,

ÿj0 = − 1
2 tr(∂jH(y0) · Σ0). (I.7)

The next two steps establish sufficiently many relations between the limits
y0, Σ0, and Π0, so that the force term of the abstract limit equation can
be expressed as a function of the limit y0 alone.
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x2.3. Step 2: The Weak Virial Theorem

First, we establish a relation between Π0 and Σ0. The matrix

Ξε = żε ⊗ zε = O(ε)

converges uniformly to the zero matrix. Therefore, taking weak* limits of
its time derivative,

Ξ̇ε = żε ⊗ żε + z̈ε ⊗ zε = Πε −H(yε)Σε

yields, by Principle 1, the equation

0 = Π0 −H(y0)Σ0. (I.8)

In particular, the diagonal entries of Σ0 and Π0 are related by

Πλλ0 = ω2
λ(y0)Σ

λλ
0 . (I.9)

This result is essentially about the energy distribution in the normal, os-
cillating component zε. The second set (ii) of the equations of motion (I.4)
implies that each normal component zλ (λ = 1, . . . , r) satisfies the equation
of a fast harmonic oscillation whose frequency is slowly perturbed,

z̈λε + ε−2ω2
λ(yε)z

λ
ε = 0. (I.10)

We define the kinetic energy T⊥
ελ and the potential energy U⊥

ελ of the normal
λ-component by

T⊥
ελ = 1

2 |żλε |2 = 1
2Π

λλ
ε , U⊥

ελ = 1
2ε

−2ω2
λ(yε)|zλε |2 = 1

2ω
2
λ(yε)Σ

λλ
ε ,

the total energy is given by E⊥
ελ = T⊥

ελ + U⊥
ελ. The diagonal limit relation

(I.9) implies that, in each component, the weak* limits of the kinetic and
potential energy are equal,

T⊥
ελ

∗
⇀ T⊥

0λ = 1
2ω

2
λ(y0)σλ, U⊥

ελ
∗
⇀ U⊥

0λ = 1
2ω

2
λ(y0)σλ,

abbreviating Σλλ0 = σλ. The limit of the total energy is

E⊥
ελ

∗
⇀ E⊥

0λ = ω2
λ(y0)σλ. (I.11)

The thus obtained equi-partitioning of energy into the kinetic and the po-
tential part bears similarities with the virial theorem of classical mechanics.
For this reason, we call the result (I.8) the weak virial theorem.

x2.4. Step 3: Adiabatic Invariance of the Normal Actions

Now, we establish a relation between Σ0 and y0. The normal actions are
given by the energy-frequency-ratios

θλε =
E⊥
ελ

ωλ(yε)
, λ = 1, . . . , r.
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We will show their adiabatic invariance, i.e., the uniform convergence

θλε → θλ0 = const .

This will be accomplished by calculating the weak* limit of the time deriva-
tive Ė⊥

0λ in a twofold way. On the one hand, by using (I.10), the time
derivative of the energy E⊥

ελ is

Ė⊥
ελ = żλε

(
z̈λε + ε−2ω2

λ(yε)z
λ
ε

)︸ ︷︷ ︸
=0

+ 1
2 ε

−2|zλε |2
d

dt
ω2
λ(yε).

Thus, the time derivatives are bounded functions and a further application
of the extended Arzelà-Ascoli theorem, Principle 4, shows that the normal
energies—and therefore the actions also—are in fact uniformly converging.
Now, the weak limit of the time derivative is given by

Ė⊥
ελ

∗
⇀ Ė⊥

0λ = 1
2σλ

d

dt
ω2
λ(y0).

On the other hand, by a the direct differentiation of the limit (I.11) we
obtain

Ė⊥
0λ = σ̇λ ω

2
λ(y0) + σλ

d

dt
ω2
λ(y0).

A comparison of the two expressions obtained for Ė⊥
0λ implies the differen-

tial equation

σ̇λ = − 1
2σλ

dω2
λ(y0)/dt

ω2
λ(y0)

= −σλ dωλ(y0)/dt
ωλ(y0)

.

Solving this explicitly shows that there are constants θλ0 (λ = 1, . . . , r) such
that

σλ =
θλ0

ωλ(y0)
, i.e., θλ0 =

E⊥
0λ

ωλ(y0)
.

The values of these constants can be calculated at the initial time t = 0,

θλ0 = lim
ε→0

θλε (0) =
|uλ∗ |2

2ωλ(y∗)
.

x2.5. Step 4: Identification of the Limit Mechanical System

Finally, we reconsider the limit force field on the right hand side of the
abstract limit equation (I.7). By the results of the preceding section we
obtain

1
2 tr(∂jH(y0) · Σ0) =

1
2

r∑
λ=1

σλ ∂jω
2
λ(y0) =

r∑
λ=1

θλ0 ∂jωλ(y0) = ∂jUhom(y0).
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Here, we define the homogenized potential Uhom by

Uhom =

r∑
λ=1

θλ0 ωλ.

Notice that Uhom—and therefore y0—does not depend on the chosen sub-
sequences. By Principle 5, this allows us to discard the extraction of sub-
sequences altogether. Summarizing, we have just proven the following the-
orem.9

Theorem 1. Let yhom be the solution of the second order differential equa-
tion

ÿjhom = −∂jUhom(yhom), j = 1, . . . , n,

with initial values yhom(0) = y∗, ẏhom(0) = w∗. Then, for every finite time
interval [0, T ], we obtain the strong convergence

yε → yhom in C1([0, T ],Rn)

and the weak* convergences ε−1zε
∗
⇀ 0 and żε

∗
⇀ 0 in L∞([0, T ],Rr ).

x2.6. Comments on the Notions Introduced and the Result

Let us comment on the notions “weak virial theorem” and “adiabatic in-
variance” as well as on one particularity of the result, Theorem 1.

Weak Virial Theorem. There is a much deeper relation of what we
called the weak virial theorem, Eq. (I.8), to the virial theorem of classi-
cal mechanics than just equi-partitioning of kinetic and potential energies.
We follow the textbook of Abraham and Marsden [1, p. 242ff.] for a
recollection of the classical virial theorem. Given a vector field X on the
configuration spaceM , the associated momentum function P (X) is defined
by

P (X) : TM → R, P (X)(v) = 〈X, v〉.
The virial function is defined by the Poisson bracket

Gε(X) = {P (X), Eε}.

The virial theorem [1, Theorem 3.7.30] states that the time average of the
virial function along a trajectory is zero,

1

T

∫ T

0

Gε(X)(vε) dt → 0 as T → ∞.

9For reasons of comparison, a further proof of this theorem, utilizing asymptotic
techniques, is subject of Appendix C.
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Here, vε = (ẏε, żε) denotes the velocity field of the trajectory under consid-
eration. Now, we consider the following specific normal vector fields and
momentum functions associated with:

Xλμ = zμ
∂

∂zλ
, P (Xλμ)(vε) = zμε ż

λ
ε , λ, μ = 1, . . . , r.

This yields the virial function

Gε(Xλμ)(vε) =
∑
ν

∂P

∂zν
∂Eε
∂żν

− ∂Eε
∂zν

∂P

∂żν
= żλε

∂Eε
∂żμ

− zμε
∂Eε
∂zλ

= żλε ż
μ
ε − ε−2(H(yε)zε)

λ · zμε = (Πε −H(yε)Σε)
λμ .

Thus, the assertion (I.8) can be rewritten in the form

Gε(Xλμ)(vε)
∗
⇀ 0 as ε→ 0.

In fact, this far reaching analogy with the virial theorem of classical me-
chanics motivated the name weak virial theorem.

Adiabatic Invariance. The time interval [0, T ] under consideration is
of the order O(ε−1τε), where τε denotes a typical “period” of a small os-
cillation in the normal direction. Thus, the usage of the notion “adiabatic
invariant” is in accordance with the usual definition given in textbooks on
classical mechanics, as for instance in Arnold, Kozlov, and Neishtadt

[6, Chap. 5.4]. In fact, the perturbation theory of integrable Hamiltonian
systems is directly applicable for the single-frequency case r = 1. To this
end, we rescale time and positions and introduce corresponding momenta

τ = ε−1t, q = ε−1y, η = ε−1z, p = ẏ, π = ż.

Denoting derivatives with respect to the new time τ by a prime, Eq. (I.4)
is just the canonical system

q′ε =
∂Eε
∂pε

, p′ε = −∂Eε
∂qε

, η′ε =
∂Eε
∂πε

, π′
ε = −∂Eε

∂ηε
,

belonging to the energy Eε as defined in Eq. (I.6) which, by suppressing
the index ‘1,’ transforms to

Eε =
1
2 |pε|2 + 1

2π
2
ε +

1
2ω(εqε)η

2
ε = 1

2 |pε|2 + θε ω(εqε).

Now, a result of the perturbation theory of integrable Hamiltonian systems,
[6, Chap. 5.4, Theorem 24 and Example 20], shows that for times τ =
O(ε−1) there is the asymptotics

θε = θ0 +O(ε), εqε = εq0 + O(ε), pε = p0 +O(ε),
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where θ0 is defined by the initial values and q0 and p0 by the canonical
equations of motion belonging to the limit energy function

E0 = 1
2 |p0|2 + θ0 ω(εq0).

These equations of motion are just the homogenized system of Theorem 1.
Transforming back we thus obtain, for times t = O(1), the error estimates10

θε = θ0 +O(ε), yε = yhom +O(ε), ẏε = ẏhom +O(ε).

The Result. Later on, the reader will notice that the analogues of The-
orem 1 in the more complicated situations of Chapter II and Chapter IV
require certain resonance conditions to be imposed on the normal frequen-
cies ωλ. This is due to the following fact: general nonlinear potentials U ,
position dependent eigenspaces of H , and general manifolds M and con-
straintsN introduce perturbations to the simple model of this introduction.
Thus, instead of the harmonic oscillator equation (I.10) we will only get
something like

z̈λε + ε−2ω2
λ(yε)z

λ
ε = O(1).

While the equi-partitioning of the kinetic and potential energy still holds
true then, the adiabatic invariance of the action might suffer from reso-
nances. We illustrate this claim by the simple scalar equation

z̈ε + ε−2ω2zε = cos(ε−1ωt),

with a constant frequency ω > 0. For the initial values z(0) = ż(0) = 0,
we get the solution

zε(t) =
1
2εω

−1t sin(ε−1ωt).

By Eq. (I.2), the kinetic and potential normal energy are equal in the limit,

T⊥
ε (t) = 1

2 |żε(t)|2 = 1
8 t

2 cos2(ε−1ωt) +O(ε)
∗
⇀ T⊥

0 (t) = 1
16 t

2,

U⊥
ε (t) = 1

2ε
−2ω2|zε(t)|2 = 1

8 t
2 sin2(ε−1ωt)

∗
⇀ U⊥

0 (t) = 1
16 t

2.

On the other hand, the limit normal energy,

E⊥
ε (t) =

1
2 |żε(t)|2 + 1

2ε
−2ω2|zε(t)|2 = 1

8 t
2 +O(ε) → E⊥

0 (t) = 1
8 t

2,

is not of the form θ0 ω, θ0 being a constant.

10Even better estimates can be found in Appendix C.



II

Homogenization of Natural Mechanical
Systems with a Strong Constraining Potential

A natural mechanical system [6, p. 10] consists of a smooth Riemannian
configuration manifoldM with metric 〈·, ·〉 and a smooth potential function
W : M → R. The dynamics is described by the Lagrangian

L (x, ẋ) = 1
2 〈ẋ, ẋ〉 −W (x), ẋ ∈ TxM.

We will consider a family of singularly perturbed potentials of the form

Wε(x) = V (x) + ε−2U(x),

where the “strong” potential U is constraining to a smooth critical subman-
ifold N ⊂ M . If we choose initial values with uniformly bounded energy,
the solutions xε of the equations of motion are oscillating on a time-scale of
order O(ε) within a distance of order O(ε) to the submanifold N . The se-
quence of solutions converges uniformly to some function x0 of time taking
values in N .

We will study the problem of a dynamical description for this limit x0,
i.e., whether there is a mechanical system with configuration space N such
that x0 is a solution of the corresponding equations of motion. We call this
problem the homogenization problem for the given mechanical system.

For a large class of constraining potentials this homogenization prob-
lem admits a surprisingly elegant and explicit solution which we will state
in §1. In §2 we will present a proof of the homogenization result based on
the method of weak convergence. Compared to the existing literature,11

this method of proof allows to weaken the imposed resonance conditions
considerably.

The so-called problem of realization of holonomic constraints provides a
special case of the homogenization problem. Here, one studies the question,
whether the limit x0 is just the solution of the equations of motion for the
natural mechanical system with configuration space N and potential V . By
the Lagrange-d’Alembert principle, the limit ε→ 0 would then “realize” the
holonomic (positional) constraint x ∈ N . In §3 we will establish necessary
and sufficient conditions for this to happen, first, on the initial values for

11Short reviews of the existing literature can be found in §§1.10 and 3.3.

17
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general constraining potentials U , and second, on the constraining potential
U for general initial values.

If the constraining potential does not belong to the class introduced
in §1, the limit dynamics can be of a completely different nature. In §4
we will present an explicit example for which the limit dynamics depends
extremely sensitive on how the limit initial values are obtained. We will
argue that in this case there is no solution of the homogenization problem
which is comparably elegant to the result of §1.

x1. The Homogenization Result

Loosely speaking, the homogenization result states the following. Provided
the potential U is “nice” and certain resonance conditions are fulfilled, the
limit x0 describes the dynamics of a natural mechanical system on the
submanifold N . The potential of this system can explicitly be constructed
from U and the given initial values.

The precise statement given in §1.5 requires the introduction of some
notion first. The discussion of the model problem in §I.2 can serve as a
motivation for most of the definitions.

x1.1. Natural Mechanical Systems with a Strong Potential

Let M be a smooth12 m-dimensional Riemannian manifold with metric
〈·, ·〉. For a sequence ε→ 0, we consider a family of mechanical systems on
the configuration space M given by the Lagrangians

Lε(x, ẋ) =
1
2 〈ẋ, ẋ〉 − V (x) − ε−2U(x), ẋ ∈ TxM,

with smooth potentials V and U . We assume that V is bounded from below
and U is non-negative.13 The corresponding singularly perturbed equation
of motion is given by the Euler-Lagrange equation, [1, Prop. 3.7.4],

∇ẋε ẋε + gradV (xε) + ε−2 gradU(xε) = 0, (II.1)

where the covariant derivative ∇ denotes the Levi-Cività connection of the
Riemannian manifold M . The energy, [1, Sect. 3.7],

Eε =
1
2 〈ẋε, ẋε〉+ V (xε) + ε−2U(xε),

is a constant of motion. If we assume that the energy surfaces Eε = const
are compact submanifolds of the tangent bundle TM , the flow of the equa-
tion of motion (II.1) is complete, [1, Prop. 2.1.17]. This means that any
corresponding initial value problem is solvable for all times.

12The term “smooth” will mean “at least four times continuously differentiable”
throughout this chapter.

13For potentials other than this there is no reasonable singular limit. For instance,
U(x) = −x2/2 yields (setting V = 0) an exponentially diverging family xε = ε sinh(t/ε)
of solutions with energy Eε = 1/2, independent of ε.
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Since we study the singular limit behavior of a family of mechanical
problems it is physically reasonable to bound the energy uniformly in ε,
Eε ≤ E∗. In fact, this is a condition on the initial values, which we choose
to be fixed in the positions and converging in the velocities,14

xε(0) = x∗, lim
ε→0

ẋε(0) = v∗ ∈ Tx∗M. (II.2)

The equi-boundedness of the energy directly implies that U(x∗) = 0.
Therefore, energy itself converges as a number in R,

Eε → E0 = 1
2 〈v∗, v∗〉+ V (x∗). (II.3)

x1.2. The Critical Submanifold

The set where the potential U vanishes is of utmost importance for the
limit behavior under study.

Definition 1. Let the potential U be non-negative, U ≥ 0, and let N =
{x ∈ M : U(x) = 0} ⊂ M be a compact,15 smoothly embedded n-dimen-
sional submanifold such that N = {x ∈ M : DU(x) = 0} and the Hessian
H of U , defined as a field of linear operators H : TM |N → TM |N by16

〈H(x)u, v〉 = D2U(x)(u, v), u, v ∈ TxM, x ∈ N,

fulfills the nondegeneracy condition

kerH(x) = TxN, x ∈ N. (II.4)

Then N will be called a nondegenerate critical manifold17 of U and the
potential U will be called constraining to N .

There are two equivalent formulations of the nondegeneracy condition
(II.4) that we will frequently use. As the Hessian H is selfadjoint with
respect to the Riemannian metric, a first equivalent is given by

rangeH(x) = TxN
⊥, x ∈ N. (II.5)

14This particular choice is for simplicity and elegance of the result only. At the expense
of a far more technical result, one could consider converging initial positions as well.

15There is no loss of generality since we deal with compact energy surfaces and finite
time intervals only.

16The Hessian H is invariantly defined on the tangent bundle restricted to base-points
in N only. Note, that the second derivative D2U is not a tensor field but coordinate
dependent in general,

∂2U

∂xi∂xj
=

∂2U

∂x̄k∂x̄l
∂x̄k

∂xi
∂x̄l

∂xj
+
∂U

∂x̄k
∂2x̄k

∂xi∂xj
.

However, the second term of the right hand side vanishes on the critical manifold N .
17This notion was introduced by Bott [20] in his study of parameter-dependent Morse

theory.
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Using the fact that U ≥ 0 and a compactness argument, we obtain as a
second equivalent that there is a constant ω∗ > 0 such that

〈H(x)u, u〉 ≥ ω2
∗〈u, u〉, u ∈ TxN

⊥, x ∈ N. (II.6)

Parts of these conditions can be described conveniently using certain pro-
jections. Let P : TM |N → TN⊥ and Q : TM |N → TN be the bundle
maps defined by letting

P (x) : TxM → TxN
⊥, Q(x) : TxM → TxN, x ∈ N,

the orthogonal projections of TxM onto TxN
⊥ and onto TxN , respectively.

Now, the nondegeneracy conditions imply

PH = H, QH = 0. (II.7)

x1.3. Spectrally Smooth Constraining Potentials

We now introduce the class of constraining potentials U for which the
homogenization problem is solvable. For each x ∈ N the Hessian H(x) is a
selfadjoint linear operator on TxM . Therefore, it is diagonizable. We will
need that the spectrum can be arranged in a contiguous way.

Definition 2. Let U be a potential constraining to the n-dimensional non-
degenerate critical submanifold N . If the Hessian H of U has a smooth
spectral decomposition on N ,

H(x) =

s∑
λ=1

ω2
λ(x)Pλ(x), x ∈ N, (II.8)

the potential U will be called to constrain spectrally smooth to N . Here,
the smooth bundle maps Pλ : TM |N → TN⊥ define by Pλ(x) : TxM →
TxN

⊥ (x ∈ N) orthogonal projections of TxM onto mutually orthogonal
subspaces of TxN

⊥.

The nondegeneracy condition (II.5) implies that P =
∑

λ Pλ. For refer-
ence, we state the orthogonality properties of these projections explicitly,

P 2
λ = Pλ, PλPμ = 0 λ �= μ, P ∗

λ = Pλ, (II.9)

denoting by P ∗
λ the adjoint linear operator with respect to the Riemannian

metric.
The smooth scalar fields ω2

λ : M → R represent all the nonzero eigen-
values of the Hessian; the nondegeneracy condition (II.6) is equivalent to
the uniform lower bound

ωλ(x) ≥ ω∗ > 0, x ∈ N. (II.10)
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Therefore, the square root ωλ of each eigenvalue constitutes a smooth func-
tion. For reasons which will become clear later on, we call these functions
the normal frequencies of H . Without loss of generality we may assume
that they are mutually non-identical on N since otherwise we could com-
bine the corresponding eigenprojections. Moreover, the integers

nλ = trPλ = dim rangePλ ∈ N,
∑

λ nλ = r = m− n,

are constants on N , summing up to the codimension r = m−n of the crit-
ical submanifold N . We call nλ the smooth multiplicity of the y-dependent
family ω2

λ of eigenvalues. Notice, that the multiplicity of ω2
λ(y) at a partic-

ular point y ∈ N might be accidentally greater than nλ. Such points are
called resonance points.

x1.4. Resonance Conditions

The homogenization result we are going to prove relies on imposing certain
resonance conditions on the normal frequencies ωλ. A resonance of order
j ∈ N is given by the relation

γ1ω1 + . . .+ γsωs = 0, |γ1|+ . . .+ |γs| = j, (II.11)

with integer coefficients γλ ∈ Z. The nondegeneracy condition (II.10) im-
plies that there are no resonances of order one. In general, each resonance
relation (II.11) constitutes a hypersurface in the critical submanifold N .

Definition 3. Let k ∈ N be given. Assume that a time-dependent trajec-
tory x on the critical submanifold N crosses all hypersurfaces of resonances
of orders j ≤ k only transversally.18 Then, x will be called non-flatly reso-
nant up to order k.

x1.5. The Statement of the Homogenization Result

We are going to state that the limit dynamics is given by a natural me-
chanical system which involves a certain new potential. This potential can
be constructed from the constraining potential U and the initial values.

Definition 4. Let U be a potential constraining spectrally smooth to the
manifold N . Introducing the constants

θλ0 =
〈Pλ(x∗)v∗, Pλ(x∗)v∗〉

2ωλ(x∗)
, λ = 1, . . . , s, (II.12)

18More precisely, since the resonance sets under consideration might be geometrically
degenerate and not form hypersurfaces, we only assume that

d

dt
(γ1ω1(x(tr)) + . . . γsωs(x(tr))) �= 0

for all impact times tr such that the resonance (II.11) holds at x(tr).
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we set

Uhom(x) =

s∑
λ=1

θλ0 ωλ(x), x ∈ N. (II.13)

The potential Uhom will be called the homogenization of the constraining
potential U with respect to the initial values v∗ ∈ Tx∗M , x∗ ∈ N .

Physically speaking, the constants θλ0 have the dimension of an action
as a ratio of energy and frequency. Later, in §2, our proof will identify
them as the adiabatic invariants of the motion normal to the constraint
manifold N .

Theorem 1. For a sequence ε → 0, consider the family of mechanical
systems given by the Lagrangian

Lε(x, ẋ) =
1
2 〈ẋ, ẋ〉 − V (x) − ε−2U(x), ẋ ∈ TxM.

The potential U is assumed to constrain spectrally smooth to a nondegen-
erate critical submanifold N ⊂M . Let the initial positions be fixed on the
critical submanifold, xε(0) = x∗ ∈ N , and the initial velocities convergent
in Tx∗M , ẋε(0) → v∗ ∈ Tx∗M . Then, for a finite time interval [0, T ], there
exists a unique sequence xε of solutions of the Euler-Lagrange equations
corresponding to Lε.

Let Uhom be the homogenization of U with respect to the limit ini-
tial values (x∗, v∗). We denote by xhom the unique solution of the Euler-
Lagrange equations corresponding to the homogenized Lagrangian

Lhom(x, ẋ) =
1
2 〈ẋ, ẋ〉 − V (x) − Uhom(x), ẋ ∈ TxN,

with initial data xhom(0) = x∗ ∈ N and ẋhom(0) = Q(x∗)v∗ ∈ Tx∗N .
If xhom is non-flatly resonant up to order three, the sequence xε con-

verges uniformly to xhom on [0, T ].

x1.6. Homogenization of a Specific Class of Potentials

In applications, one frequently encounters constraining potentials of the
form

U(x) = 1
2

r∑
j=1

|ψj(x)|2, x ∈M,

with smooth scalar functions ψj : M → R. This way, the critical submani-
fold N is given by the set

N = {x ∈M : U(x) = 0} = {x ∈M : ψ1(x) = . . . = ψr(x) = 0}.

This manifold N has codimension r if and only if the gradient vectors,
gradψj(x), are linearly independent for all x ∈ N , which we will assume
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to be the case. Then, they form a basis field for the normal bundle of N ,

dimTxN
⊥ = r, span{gradψj(x) : j = 1, . . . , r} = TxN

⊥, x ∈ N.
(II.14)

In coordinates, the second derivative of U is given by

D2U(x) =
∑
j

Dψj(x)
TDψj(x), x ∈ N.

Recalling that gradψj = G−1DψTj , cf. [1, Def. 2.5.14], where G denotes
the metric tensor of the coordinate system, we get the following expression
for the Hessian H :

H = G−1D2U
∣∣
N

=
∑
j

〈 · , gradψj〉 gradψj .

Notice, that the last expression is independent of a chosen coordinate sys-
tem. Using the span relation (II.14), we obtain the nondegeneracy condi-
tion (II.5), rangeH = T⊥N . Thus, U constrains to the submanifold N in
the technical sense of Definition 1.

Now, let ω2(x) > 0 be a nonzero eigenvalue of H(x) and X ∈ TxN
⊥

the corresponding eigenvector,

H(x)X = ω2(x)X. (II.15)

Because of (II.14), there is a unique representation of X of the form

X =
∑
j

ξj · gradψj(x).

Inserting this into the eigenvalue problem (II.15) yields an equivalent, r-
dimensional problem,

Hr(x)ξ = ω2(x)ξ, (II.16)

for the Grammian matrix of the gradient vectors,

Hr(x)jk = 〈gradψj(x), gradψk(x)〉. (II.17)

The matrix-valued field Hr : N → Rr×r will be called the reduced Hessian
of the constraining potential U . Notice, that the normalization of X is
given according to

〈X,X〉 = ξTHr(x)ξ.

Solving the reduced r × r eigenvalue problem (II.16) is all one needs to
know for, first, deciding about whether U constrains spectrally smooth,
and second, establishing the homogenized potential Uhom.
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Example 1. (The Codimension One Case). The case of codimension
r = 1 provides the simplest possible example. Suppressing the index ’1,’
we directly read off that

ω(x) = ‖ gradψ(x)‖, x ∈ N,

where ‖ · ‖ denotes the norm on the tangent space TxM induced by the
Riemannian metric. The adiabatic invariant θ0 is given by

θ0 =
〈v∗, gradψ(x∗)〉2

2ω3(x∗)
.

Finally, Uhom takes the form Uhom(x) = θ0 · ω(x).

x1.7. Remarks on Genericity

We now study the “genericity” of the assumption that U constrains spec-
trally smooth. By definition, generic properties are structurally stable un-
der perturbations, i.e., are typical for a whole neighborhood of problems.
Otherwise, a property would be highly improbable in the presence of some
uncertainty in the problem data like modeling or measurement errors.

The reader should be cautioned that the term “generic” is always un-
derstood relatively to a specific class of perturbations.

Now, the genericity of the spectral smoothness of U depends on two
different influences: first, the presence of resonances on N ; second, the
class of perturbations of U allowed for by the underlying physical problem.

The Nonresonant Case. If there are no resonances of order two of the
normal frequencies ωλ on N , the potential U constrains spectrally smooth.
This claim can be proved by representing the spectral projections by a
Cauchy integral, a standard argument of perturbation theory [51]. We
omit the technical details here, the reader will find them in the first part
of the proof of Theorem II.3 later on.

Accordingly, because having no resonances of order two is certainly a
generic property with respect to any class of perturbations, the potential
U constrains spectrally smooth generically.

The Resonant Case. Here, certain resonances of order two exist on
the manifold N , a far more subtle case which requires a careful study of
the perturbations that are allowed. These perturbations determine the so-
called codimension19 of a resonance, i.e., the codimension of the set of all
matrices having that eigenvalue-resonance in the set of all those matrices
that are consistent with the given class of perturbations.

For real symmetric matrices, as the Hessian H , we typically have reso-
nances of codimension one or two, depending on whether the perturbations

19This notion should not be confused with the codimension r of the manifold N .
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preserve certain structures besides the symmetry H = HT or not. For a
complete classification of generic resonances in a problem class related to
quantum mechanics we refer to the remarks given in §IV.2.4.

Instead of developing a general theory we just provide some examples
and remarks which, however, seem to reflect the general situation quite
well.

Example 2. Let the constraining potential U have the special structure

U(x) = 1
2

r∑
j=1

|ψj(xj)|2, x ∈M.

Suppose that the underlying problem only admits perturbations which pre-
serve this structure. The results of §1.6 show that the reduced Hessian Hr

is always diagonal for this specific class of potentials, implying that U is
generically spectrally smooth. Now, the set of resonant diagonal matrices
obviously has codimension one in the set of all diagonal matrices.

The discussion of the butane molecule in §III.2.1 will provide a less
trivial example where a potential is generically spectrally smooth because
just a restricted class of perturbations applies.

The most general class of perturbations of a potential leads to per-
turbations of the Hessian that preserve the symmetry of the matrix only.
Here, a generic resonance has codimension two and, unavoidably, the po-
tential does not constrain spectrally smooth. A proof of these claims can
be found in Appendix A. If we have to admit general perturbations of the
constraining potential, either a resonance or the spectral smoothness are
non-generic.

An example of a generic resonance of codimension two is subject of
§4. We will show that the convergence assertion of Theorem 1, which is
necessarily not applicable there, suffers a dramatic breakdown.

x1.8. A Counterexample for Flat Resonances

The short discussion in §I.2.6 has motivated why resonance conditions have
to be employed at a certain stage of the proof we designed for Theorem 1.
Here, we will show that the result itself demands resonance conditions.

We consider the Euclidean space M = R3 and the potential

U(x) = 1
2ω

2
1(y)|z1|2 + 1

2ω
2
2(y)|z2|2, x = (y, z1, z2) ∈ R3 ,

with smooth functions ω1, ω2 ≥ 1 which will be specified below. This
potential is obviously constraining—in the technical sense of Definition 1—
to the one-dimensional submanifold N = {x ∈ M : z1 = z2 = 0}. The
Hessian H is given by the diagonal matrix

H(y) = diag(0, ω2
1(y), ω

2
2(y)).
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The initial values shall be given by x∗ = 0 ∈ N and v∗ = (w∗, 0, 2)T . Now,
we specify ω1 and ω2. Let ω ∈ C∞(R) be a function such that

ω(y) =

⎧⎪⎨⎪⎩
1, y ≤ 1/2,

0, 1 ≤ y ≤ 2,

1, 5/2 ≤ y,

and ω′(y) �= 0 for 1/2 < y < 1 and 2 < y < 5/2. We set

ω1 = 1, ω2 = 1 + ω.

Defining the projections P1 = diag(0, 1, 0) and P2 = diag(0, 0, 1), the Hes-
sian H trivially has the smooth spectral decomposition

H(y) = ω2
1(y)P1 + ω2

2(y)P2. (II.18)

According to Definition 4, this and the initial values yield the homogenized
potential

Uhom = ω2.

However, because of the resonance there are other smooth spectral decom-
positions of H which follow the paths of the eigenvalues in a different way.
Let φ ∈ C∞(R) be a function such that

φ(y) =

{
0, y ≤ 1,

π/2, 2 ≤ y,

and define the mutually orthogonal projections

P̂1(φ) =

⎛⎜⎝ 0 0 0

0 cos2 φ cosφ sinφ

0 cosφ sinφ sin2 φ

⎞⎟⎠ ,
and

P̂2(φ) =

⎛⎜⎝ 0 0 0

0 sin2 φ − cosφ sinφ

0 − cosφ sinφ cos2 φ

⎞⎟⎠ .
In particular, we have P̂1(0) = P1 and P̂2(0) = P2, but P̂1(π/2) = P2 and
P̂2(π/2) = P1. A short calculation reveals the smooth spectral decomposi-
tion

H(y) = ω̂2
1(y)P̂1(φ(y)) + ω̂2

2(y)P̂2(φ(y)), (II.19)

where

ω̂1(y) =

{
ω1(y), y ≤ 3/2,

ω2(y), 3/2 ≤ y,
ω̂2(y) =

{
ω2(y), y ≤ 3/2,

ω1(y), 3/2 ≤ y.
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Correspondingly, Definition 4 yields the homogenized potential

Ûhom = ω̂2.

The force fields U ′
hom and Û ′

hom differ, since for y ∈]2, 5/2[ we have

U ′
hom(y) = ω′

2(y) = ω′(y) �= 0 = ω′
1(y) = Û ′

hom(y).

For an initial velocity w∗ > 0 which is large enough, the corresponding
solutions xhom and x̂hom will hit this interval at some time t < T = 1.
Therefore, they must be different, xhom �= x̂hom.

Clearly now, Theorem 1 cannot hold true after dropping the assumption
of non-flat resonance. For then we would get the contradiction that both
yε → xhom and yε → x̂hom, i.e., xhom = x̂hom on the time interval [0, 1].

The setting of this counterexample fits into the framework of the model
problem of §I.2. Therefore, Theorem I.1 is applicable. It teaches that the
homogenized potential Uhom = ω2 is, in fact, the “correct” one, describing
the limit dynamics and yielding the uniform convergence yε → xhom. Thus,
the spectral decomposition (II.18) of the Hessian is somewhat more “nat-
ural” than the other, constructed one, Eq. (II.19). However, it seems to
be difficult defining a general notion of “natural” smooth spectral decom-
positions in a way which would allow to relax the resonance conditions of
Theorem 1 in any significant fashion. Moreover, the author conjectures that
the resonance conditions of Theorem 1 do not only reflect the possibility
of a non-uniqueness of the homogenized potential, but also the possibility
of a complete breakdown of the entire limit structure.

x1.9. A Counterexample for Unbounded Energy

If we drop the assumption of uniformly bounded energy, i.e., the assump-
tion x∗ ∈ N , we cannot expect a homogenization result similar to Theo-
rem 1. To show this, we reproduce a counterexample of Bornemann and
Schütte [18].

We consider on the configuration space M = R the Lagrangian

Lε(x, ẋ) =
1
2 ẋ

2 − ε−2U(x)

with the potential20

U(x) =

{
x2/2 x ≤ 0,

2x2 x ≥ 0,

which is constraining to the manifold N = {0}. Given the initial position
x∗ = 1 �∈ N and the initial velocity v∗ = 0, the energy Eε = 2ε−2 → ∞

20The limited differentiability of U is not essential for this counterexample. It could
be smoothed out at the cost of sacrificing the simplicity of the result.
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cannot be bounded uniformly in ε. The solution of the equation of motion
is given by the rapidly oscillating function xε(t) = x(t/ε), where

x(t) =

⎧⎪⎨⎪⎩
cos(2t) 0 ≤ t ≤ π/4,

−2 sin(t− π/4) π/4 ≤ t ≤ 5π/4,

sin(2t− 5π/2) 5π/4 ≤ t ≤ 3π/2.

Here, we get merely weak* convergence of xε in L∞, namely by a well-
known generalization, [23, Lemma I.1.2], of the Riemann-Lebesgue lemma

xε
∗
⇀ x0 ≡ −2/π =

1

3π/2

∫ 3π/2

0

x(τ) dτ,

which is not on the constraint manifold N . Trivially, this limit cannot be
described by a mechanical system with configuration space N .

x1.10. Bibliographical Remarks

Strikingly, the homogenization problem of this chapter has found only little
systematic attention in the mathematical and physical literature—at least
much less than the special case provided by the realization-of-constraints-
problem that will be discussed in §3.

All work we know of about this particular homogenization problem con-
siders an Euclidean spaceM = R

d as the configuration manifold. The gen-
eralization to Riemannian manifolds, as accomplished by us, is not straight-
forward since the metric introduces a further source of nonlinearity. As we
will see, the difficulty of the proof consists in controlling the nonlinearities
with respect to weak* convergence.

To our knowledge, the first mathematical work on the homogenization
problem was done by Rubin and Ungar [82, p. 82f.] in 1957. These
authors consider constraint manifolds N of codimension r = 1 only. The
result, somewhat hidden in the paper, is stated in a special coordinate
system.

Independently, for codimension r = 1, the result can be found by means
of an example in the work of the physicists Koppe and Jensen [58, Eq. (7)]
from 1971. The argument of these authors is basically physical and in-
volves averaging in an informal way. However, we owe the backbone of our
proof to the physical ideas presented in their paper: a virial theorem and
adiabaticity. The notion of weak* convergence puts the informal averaging
process on a firm mathematical basis. A corresponding mathematical proof
of the codimension r = 1 case has been worked out by Bornemann and
Schütte [18].

The codimension r = 1 case was also discussed in the work of the
physicist van Kampen [49] in 1985. This author utilizes the WKBmethod.
However, the proof is mathematically incomplete as has been pointed out
by Bornemann and Schütte [18].
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The first—and until our present work only—complete study of the gen-
eral case for M = Rd was given by Takens [94] in 1979. This author
revealed the importance of resonance conditions and proved the result un-
der the assumptions that there are no resonance hypersurfaces of second
and third order, all eigenvalues of the Hessian having smooth multiplicity
one. The method of proof set up by Takens starts with a rather explicit
representation of the normal oscillations, as one would do for an asymptotic
analysis, and then proceeds by using the Riemann-Lebesgue lemma, which
is in fact a result about weak convergence. The presentation of the proof
is in parts only sketchy, cf. Remark 2 on p. 43 below.

Referring to the work of Takens, an informal discussion of the general
homogenization result can be found in an article by Koiller [57] from
1990. This author uses action-angle variables and identifies the constants
θλ0 in the expression for the homogenized potential Uhom as adiabatic in-
variants.

One should also mention the work ofKeller andRubinstein [52] from
1991. The concern of these authors is the homogenization problem for the
semilinear wave equation vtt = Δv − ε−2 gradU(v). Their argument—an
ingenious multiple scale asymptotics—is directly applicable to our problem
and correctly establishes the homogenization potential Uhom. However,
the expansion presented in the paper is only formal and no estimate of
the remainder term is given. These authors cannot predict difficulties at
resonances like in §1.8. It should be stressed that no approximation further
than the zero-order term x0, the singular limit, is provided.

x2. The Proof of the Homogenization Result

The proof of Theorem 1 proceeds along the lines we have discussed in §I.2.
However, in contrast to the simple example given there, we now need a
considerable amount of notions from differential geometry. For purposes of
reference, we collect some of the intermediate results in a series of sixteen
lemmas. The assumptions of Theorem 1 shall be valid throughout.

x2.1. Step 1: Equi-Boundedness (Energy Principle)

The proof will be given in local coordinates. Since we work on compact
time intervals [0, T ] we can restrict ourselves to a single coordinate patch
of M , where we have

x = (x1, . . . , xm) ∈ Ω ⊂ R
m .

In these coordinates the metric is represented as usual by a covariant tensor
of second order, G = (gij). The equation of motion (II.1) can be rewritten21

as
ẍε + Γ(ẋε, ẋε) + FV (xε) + ε−2FU (xε) = 0. (II.20)

21Cf. [1, Proof of Prop. 3.7.4].
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The forces FV = gradV and FU = gradU are given by22

F iV = gij
∂V

∂xj
, F iU = gij

∂U

∂xj
,

where the contravariant tensor of second order (gij) = G−1 represents the
inverse matrix of G. The term Γ denotes the Christoffel symbols

Γ(u, v)i = Γijk u
jvk, Γijk = 1

2g
il

(
∂gjl
∂xk

+
∂glk
∂xj

− ∂gjk
∂xl

)
.

We will frequently use a slightly nonsymmetric version of the Christoffel
symbols,

Γ̂ijk = gil
(
∂gjl
∂xk

− 1

2

∂gjk
∂xl

)
,

which obviously gives Γ(u, u) = Γ̂(u, u). In coordinate representation the
Hessian is given by the tensor

H = (Hi
j), Hi

j = gik
∂2U

∂xk∂xj

and the energy as the expression

Eε =
1
2gij(xε)ẋ

i
εẋ
j
ε + V (xε) + ε−2U(xε).

The nondegenerate critical submanifold N can now be viewed as a sub-
manifold of Rm .

Lemma 1. There is a subsequence of ε→ 0, denoted by ε again, such that

xε → x0 in C0([0, T ],Rm), ẋε
∗
⇀ ẋ0 in L∞([0, T ],Rm).

The limit function is at least Lipschitz continuous and takes values in the
submanifold N , x0 ∈ C0,1([0, T ], N).

Proof. Let α > 0 denote the smallest eigenvalue of the metric G, V∗ a
lower bound of the potential V , and E∗ a uniform bound for the energy
Eε. Conservation of energy gives

α|ẋε(t)|2/2 ≤ E∗ − V∗

and integration

|xε(t)| ≤ |x∗|+ T

√
2

α
(E∗ − V∗)

for all t ∈ [0, T ]. These equi-boundedness results allow the application of
the extended Arzelà-Ascoli theorem, Principle I.4: There is a subsequence

22Throughout this chapter we will apply Einstein’s summation convention.
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of ε, denoted by ε again, and a limit function x0 ∈ C0,1([0, T ],Rm) such
that the asserted limit relations hold.

Multiplying the equation of motion (II.20) by ε2 and taking the weak*
limit shows that

gradU(x0(t)) = 0, i.e., x0(t) ∈ N,

for all t ∈ [0, T ]. Here, we have used Principle I.1 for establishing the weak*

convergence ε2ẍε
∗
⇀ 0.

From now on we consider the subsequence of this lemma. Further ex-
tractions will follow and they will always be denoted by ε again.

The uniform convergence xε → x0 implies that for sufficiently small ε
all trajectories are within a tubular neighborhood of N . A point x ∈ M is
an element of such a neighborhood, if there is a unique representation

x = expy z, y ∈ N, z ∈ TyN
⊥. (II.21)

Here, “exp” denotes the geodesic exponential map, [1, p. 149], and a well-
known theorem of differential geometry states the existence of such a tubu-
lar neighborhood of N , [1, Theorem 2.7.5]. We consider a smooth field
(e1, . . . , er) of orthonormal bases of the normal bundle TN⊥, i.e., for y ∈ N

ei(y) ∈ TyN
⊥, 〈ei(y), ej(y)〉 = δij .

Thus, in the tubular neighborhood we get the unique representation23

x = expy
(
zn+1e1(y) + . . .+ zn+rer(y)

)
.

Well-known properties of geodesics, [1, p. 150], imply that

dist(x,N)2 = 〈z, z〉 =
∑n+r

i=n+1
(zi)2, (II.22)

where the left hand side is independent of the chosen bases field.
For a set of given local coordinates (y1, . . . , yn) of the manifold N we

define the tubular coordinates

(x1, . . . , xm) = (y1, . . . , yn; zn+1, . . . , zn+r).

Putting y = (y1, . . . , yn; 0, . . . , 0) and z = (0, . . . , 0; zn+1, . . . , zn+r), this
coordinate system has an obvious linear structure and we will frequently
write in short form24

x = y + z, y ∈ N, z ∈ TyN
⊥.

23This particular numbering of the coefficients zi will simplify the notation following
below.

24Certainly, this is “abus de langage”, compared to the invariant relation (II.21).
However, when we use this short form, it should be clear that we are working in this
specific coordinate system.
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In the following we consider ε sufficiently small such that

xε = expyε zε, resp., xε = yε + zε,

defines a time-dependent functions yε with values inN and zε with values in
TyεN

⊥. We call yε the constrained motion of xε and zε its normal motion.

Lemma 2. The limit relations specify as follows:

yε → x0 in C0([0, T ], N), ẏε
∗
⇀ ẋ0 in L∞([0, T ],Rn),

for the constrained motion and25

zε = O(ε), żε
∗
⇀ 0 in L∞([0, T ],Rr )

for the normal motion.

Proof. Lemma 1 and the distance relation (II.22) proves that

yε → x0, ẏε
∗
⇀ ẋ0, zε → 0, żε

∗
⇀ 0.

Conservation of energy and a Taylor expansion shows that

ε2(E∗ − V∗) ≥ U(xε) =
1
2 〈H(yε)zε, zε〉+O(|zε|3).

The nondegeneracy condition (II.6) and the uniform convergence zε → 0
imply, for sufficiently small ε, the estimate

|zε|2 ≤ c(ε2 + |zε|3) ≤ cε2 + 1
2 |zε|2,

where c denotes some positive constant. This proves zε = O(ε).

In what follows, we will always abbreviate fε = f(yε) for any smooth
tensor field defined on the submanifold N , including ε = 0, i.e., f0 = f(x0).

We now take a closer look on the constrained and normal motion. To
this end, we apply the orthogonal projections of §1.2. Using the notation
just introduced, we get

Pεzε = zε, Pεẏε = 0.

Within the tubular coordinate system, we can view Pε as a time dependent
matrix. Thus, we can extend the action of Pε in a coordinate dependent
fashion and get for the velocities

Pεẋε = Pεżε = żε − Ṗεzε = żε +O(ε), (II.23)

and for the accelerations

Pεẍε =
d

dt
(Pεẋε)− Ṗεẋε = z̈ε − 2Ṗεżε − Ṗεẏε +O(ε) = z̈ε +O(1). (II.24)

25Here and in what follows, we denote an estimate for a time-dependent function by
a Landau symbol, if the estimate holds uniformly in time.
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Lemma 3. After a further extraction of subsequences the following limit
relations are satisfied by the constrained motion:

yε → x0, ẏε → ẋ0, ÿε
∗
⇀ ẍ0.

In particular, one gets the regularity x0 ∈ C1,1([0, T ], N). The initial values
of x0 are given by

x0(0) = x∗ ∈ N, ẋ0(0) = Q(x∗)v∗ ∈ Tx∗N.

The normal motion satisfies a second order equation of the form

z̈ε + ε−2Hεzε = O(1). (II.25)

Proof. If we multiply the equation of motion (II.20) by Qε, we get

ÿε + (Qεẍε − ÿε) +QεΓ(xε)(ẋε, ẋε) +QεFV (xε) + ε−2QεFU (xε) = 0.

The equi-boundedness of xε and ẋε shows that QεΓ(xε)(ẋε, ẋε) = O(1) and
QεFV (xε) = O(1). The projection relation (II.24) yields Qεẍε− ÿε = O(1).
Below, Lemma 5 will state that ε−2QεFU (xε) = O(1). Summarizing, we
obtain

ÿε = O(1).

An application of the extended Arzelà-Ascoli theorem, Principle I.4, proves
the limit assertions.

Likewise, if we multiply the equation of motion (II.20) by Pε, we get

z̈ε + (Pεẍε − z̈ε) + PεΓ(xε)(ẋε, ẋε) + PεFV (xε) + ε−2PεFU (xε) = 0.

Below, Lemma 5 will state that ε−2PεFU (xε) = ε−2Hεzε+O(1). The same
arguments as for the constrained motion yield that the middle terms are
equi-bounded. Thus, we obtain the asserted second order equation.

Since xε(0) = x∗ we obtain by the uniform convergence xε → x0 that
x0(0) = x∗. From Eq. (II.23) follows

Q(x∗)v∗ = lim
ε→0

Qεẋε|t=0 = lim
ε→0

ẏε(0).

The uniform convergence ẏε → ẋ0 implies ẋ0(0) = Q(x∗)v∗.

As a result, we now know that all quantities fε = f(yε) are strongly
convergent in C1[0, T ].

Lemma 4. In L∞([0, T ],Rr ), the bounded quantity ε−1zε converges weak-
ly* to zero,

ε−1zε
∗
⇀ 0.
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Proof. Lemma 2 shows that

ηε = zε/ε = O(1).

After an application of the Alaoglu theorem, Principle I.3, and an extrac-
tion of subsequences, we obtain that

ηε
∗
⇀ η0

for some η0 ∈ L∞([0, T ],Rr ). Multiplying the relation (II.25) by ε and
taking weak* limits gives, by Principle I.1, H(x0)η0 = 0. Thus, the nonde-
generacy condition (II.4) yields that

η0 ∈ Tx0N.

On the other hand, since ηε ∈ TyεN
⊥ implies Qεηε = 0, we get by taking

weak* limits that Q(x0)η0 = 0, i.e.,

η0 ∈ Tx0N
⊥.

Hence, we obtain that η0 = 0. Since this limit is unique we may discard
the extraction of subsequences, recalling Principle I.5.

Despite the fact that żε
∗
⇀ 0 and zε/ε

∗
⇀ 0, we cannot expect that

quadratic expressions of these quantities converge weakly* to zero. This
lack of weak* sequential convergence constitutes the core of the homoge-
nization result and, as we will see in §3.1, the general obstruction for real-
ization of constraints. For this reason, we explicitly introduce the quadratic
expressions26

Σε = ε−2zε ⊗Gεzε = ε−2zε ⊗ zεGε = (Σ i
εj), Σ i

εj = ε−2ziεz
k
ε gkj(yε),

and

Πε = żε ⊗Gεżε = żε ⊗ żεGε = (Π i
εj), Π i

εj = żiεż
k
ε gkj(yε).

By Lemma 2, both quadratic expressions are uniformly bounded,

Σε = O(1), Πε = O(1).

We may therefore assume—by an application of the Alaoglu theorem, Prin-
ciple I.3, and after a further extraction of subsequences—that

Σε
∗
⇀ Σ0, Πε

∗
⇀ Π0.

Later on we will see that in general Σ0 �= 0 and Π0 �= 0.27 There is a note-
worthy difference in the definitions of Σε and Πε: Whereas Σε invariantly

26The metric tensor Gε is included to make the resulting matrices selfadjoint with
respect to the Riemannian metric. This simplifies the calculations later on.

27To be specific, we will prove in §3.1, Lemma 17, that Σ0 = 0, or Π0 = 0, if and only
if the limit initial velocity v∗ is tangential to the critical submanifold N , v∗ ∈ Tx∗N .
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defines a tensor field along yε, covariant of order one and contravariant
of order one, the definition of Πε depends on the choice of the coordinate
system.

We finish this step of the proof by stating a Taylor expansion of the
strong force term FU . Parts of this statement have been used in the proof
of Lemma 3. For convenience, we introduce some further notation: The
quantity gradH denotes

(gradH)ijk = gil
∂Hj

k

∂xl
.

For A = (Ajk) and B = (Bkj ) we define the traces

(Γ̂ : A)i = Γ̂ijkA
jk, (gradH : B)i = (gradH)ijk B

k
j .

Lemma 5. The Taylor expansions of the force term ε−2FU to second order
is given by

ε−2FU (xε) = ε−2Hεzε +O(1)

= ε−2Hεzε − Γ̂ε : (HεΣεG
−1
ε ) + 1

2 gradHε : Σε +O(ε).

The projections into the normal bundle and its orthogonal complement can
be estimated by

ε−2QεFU (xε) = O(1), resp. ε−2PεFU (xε) = ε−2Hεzε +O(1).

Proof. We use the fact that zε = O(ε) and a long computation:

F iU (xε) = gij(xε)
∂U(xε)

∂xj
= gij(xε)

(
∂U(xε)

∂xj
− ∂U(yε)

∂xj

)
= gij(xε)

(
∂2U(yε)

∂xj∂xk
zkε +

1

2

∂3U(yε)

∂xj∂xk∂xl
zkε z

l
ε

)
+O(ε3)

= s1 + s2 + s3 +O(ε3),

where we have split into the following three terms:

s1 = gij(yε)
∂2U(yε)

∂xj∂xk
zkε = Hi

k(yε)z
k
ε , s2 = (gij(xε)− gij(yε))

∂2U(yε)

∂xj∂xk
zkε ,

and

s3 = 1
2g
ij(xε)

∂3U(yε)

∂xj∂xk∂xl
zkε z

l
ε =

1
2g
ij(yε)

∂3U(yε)

∂xj∂xk∂xl
zkε z

l
ε +O(ε3).

The last two need further treatment. By differentiating the relation I =
GG−1, we get

DG−1 = −G−1(DG)G−1, i.e.,
∂gij

∂xl
= −giq ∂gqp

∂xl
gpj .
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Thus, a Taylor expansion of gij(xε)− gij(yε) in the expression of s2 yields

s2 = −giq(yε)∂gqp(yε)
∂xl

gpj(yε)
∂2U(yε)

∂xj∂xk
zkε z

l
ε +O(ε3)

= −giq(yε)∂gqp(yε)
∂xl

Hp
k (yε)z

k
ε z
l
ε +O(ε3).

Likewise, by differentiating

∂2U

∂xk∂xl
= gkqH

q
l ,

we obtain
∂3U

∂xj∂xk∂xl
=
∂gkq
∂xj

Hq
l + gkq

∂Hq
l

∂xj
.

Inserting that into the expression for s3 yields

s3 = 1
2g
ij(yε)

∂gkq(yε)

∂xj
Hq
l (yε)z

k
ε z
l
ε +

1
2g
ij(yε)gkq(yε)

∂Hq
l (yε)

∂xj
zkε z

l
ε +O(ε3).

Altogether, after regrouping and renaming some summation indices we get

F iU (xε) =

Hi
j(yε)z

j
ε − Γ̂ijk(yε)H

j
l (yε)z

k
ε z
l
ε +

1
2g
ij(yε)

∂H l
k(yε)

∂xj
zkε z

q
ε gql(yε) +O(ε3),

which immediately gives the desired formula. The assertions on the pro-
jections follow from the nondegeneracy conditions (II.7).

x2.2. Step 2: The Weak Virial Theorem

This step of the proof is about the distribution of energy in the constrained
and the normal motion.

Definition 5. The kinetic energy T
‖
ε , the potential energy U

‖
ε , and the

total energy E
‖
ε of the constrained motion are defined by

T ‖
ε = 1

2gij(yε)ẏ
i
εẏ
j
ε , U

‖
ε = V (yε), E

‖
ε = T

‖
ε + U

‖
ε .

The kinetic energy T⊥
ε , the potential energy U⊥

ε , and the total energy E⊥
ε

of the normal motion are defined by

T⊥
ε = 1

2gij(yε)ż
i
εż
j
ε , U⊥

ε = 1
2ε

−2〈H(yε)zε, zε〉, E⊥
ε = T⊥

ε + U⊥
ε .

Notice that only the potential parts are defined in a coordinate inde-
pendent fashion. This ambiguity, however, will disappear in the limit ε→ 0
as an implication of the weak virial theorem.
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The quadratic expressions Πε and Σε allow elegant expressions for the
energies of the normal motion and their weak* limits in L∞[0, T ],

T⊥
ε = 1

2 tr Πε
∗
⇀ T⊥

0 = 1
2 trΠ0,

U⊥
ε = 1

2 tr(HεΣε)
∗
⇀ U⊥

0 = 1
2 tr(H0Σ0).

(II.26)

Recall that we use the notation Hε = H(yε).
The following lemma shows that we essentially have split all the energy

into the constrained and normal motion.

Lemma 6. The total energy Eε decomposes into

Eε = E‖
ε + E⊥

ε +O(ε).

Both parts converge uniformly as functions in C[0, T ],

E‖
ε → E

‖
0 = 1

2 〈ẋ0, ẋ0〉+ V (x0), E⊥
ε → E⊥

0 = E0 − E
‖
0 .

Proof. Differentiation of the orthogonality relation

〈ẏε, zε〉 = gij(yε)ẏ
i
εz
j
ε = 0

with respect to time yields

gij(yε)ẏ
i
εż
j
ε = −gij(yε)ÿiεzjε −

∂gij(yε)

∂xk
ẏiεẏ

k
ε z
j
ε = O(ε).

Thus, the kinetic energy decomposes into

1
2 〈ẋε, ẋε〉 = 1

2gij(xε)ẋ
i
εẋ
j
ε = T

‖
ε + T⊥

ε +O(ε).

Taylor expansion of the potentials gives

V (xε) = U‖
ε +O(ε)

and

ε−2U(xε) =
1
2ε

−2 ∂
2U(yε)

∂xi∂xk
ziεz

j
ε +O(ε) = U⊥

ε +O(ε).

Hence, the energy decomposes as claimed.
Lemma 3 implies the asserted uniform convergence of the constrained

part E
‖
ε of the energy. By Eq. (II.3), the total energy converges as a number

in R, Eε → E0. This readily implies the uniform convergence of the normal
part E⊥

ε of the energy.

Now, we state and prove a central result of our argument. For reasons
we have discussed at length in §I.2.6, we call it the weak virial theorem.
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Lemma 7. (Weak Virial Theorem). The limit of the quadratic expres-
sions of normal position and velocity are related by the Hessian,

Π0 = H0Σ0. (II.27)

In the limit, the quadratic expressions commute with the Hessian,

[H0,Σ0] = 0, [H0,Π0] = 0, (II.28)

and there is an equi-partitioning of the kinetic and potential energy of the
normal motion,

T⊥
0 = U⊥

0 .

Proof. 28 By Lemma 2, we obtain

Ξε = żε ⊗ zεGε = O(ε) → 0,

and that this quantity Ξε has a bounded time derivative,

Ξ̇ε = żε ⊗ żεGε + z̈ε ⊗ zεGε + żε ⊗ zε Ġε = Πε −HεΣε +O(ε). (II.29)

In the last step, we have made use of the second order equation (II.25) of
Lemma 3. By Principle I.1, taking weak* limits on both sides of Eq. (II.29)
yields

0 = Π0 −H0Σ0.

This readily implies that, in the limit, the kinetic and potential parts of
the normal energy are equal,

T⊥
0 = 1

2 tr(Π0) =
1
2 tr(H0Σ0) = U⊥

0 .

Since all the tensors Π0, Σ0, and H0 are linear operators Tx0M → Tx0M
and they are obviously selfadjoint with respect to the Riemannian metric,
we get the commutation relations (II.28).

From the relation (II.27) of the weak virial theorem, an important fact
follows: In contrast to the coordinate-dependent definition of Πε, the limit
Π0 represents—as its counterparts H0 and Σ0 do—an invariantly defined
field of linear maps Tx0M → Tx0M . In the same way, the limit normal
part T⊥

0 of the kinetic energy is a scalar field invariantly defined along x0.
The weak virial theorem allows us to give a partial, abstract, and general

answer to the homogenization problem.

28This proof owes its formal structure to the traditional proof of the virial theorem of
classical mechanics which may be found for instance in the textbooks of Abraham and
Marsden [1, Theorem 3.7.30], Goldstein [39, Chap. 3-4], and Landau and Lifshitz
[62, p. 23].

A different proof, using the localization principle of semiclassical measures, can be
found in Appendix D. That considerably more technical, though still short proof sys-
tematizes the result and broadens the perspective by relating it, for instance, to the
theory of compensated compactness.
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Lemma 8. (The Abstract Limit Equation). The limit x0 obeys

ẍ0 + Γ(x0)(ẋ0, ẋ0) + FV (x0) + F hom
U (t) ⊥ Tx0N, (II.30)

which is the second order equation of motion for a mechanical system that
is constrained to the manifold N . The homogenized force F hom

U (t) is given
by

F hom
U (t) = 1

2 gradH(x0(t)) : Σ0(t). (II.31)

Proof. As in the proof of Lemma 3, we multiply the equation of motion
(II.20) by the projection Qε. However, this time we are interested in the
weak* limit behavior of each term and not only in their boundedness. We
get

Qεÿε +Qεz̈ε +QεΓ(xε)(ẏε, ẏε) + 2QεΓ(xε)(ẏε, żε) +QεΓ̂(xε)(żε, żε)

+ QεFV (xε) + ε−2QεFU (xε) = 0.
(II.32)

Because of the weak* convergence żε
∗
⇀ 0 and the uniform convergences

xε → x0 and ẏε → ẋ0, we get

QεΓ(xε)(ẏε, żε)
∗
⇀ 0.

Using Eq. (II.23) and Eq. (II.24), we obtain

Qεz̈ε = 2QεṖεżε +QεṖεQεẋε +O(ε)
∗
⇀ 0

since QεṖεQε = 0 by Lemma 9 below. We get further

QεΓ̂(xε)(żε, żε) = QεΓ̂(xε) : (ΠεG
−1
ε )

∗
⇀ Q0Γ̂0 : (Π0G

−1
0 ).

Lemma 5 and the nondegeneracy condition (II.7) give

ε−2QεFU (xε) = −QεΓ̂ε : (HεΣεG
−1
ε ) + 1

2 gradHε : Σε +O(ε)

∗
⇀ −Q0Γ̂0 : (H0Σ0G

−1
0 ) + 1

2 gradH0 : Σ0.

Thus, taking weak* limits in Eq. (II.32) yields the equation

Q0

(
ẍ0 + Γ(x0)(ẋ0, ẋ0) + FV (x0) +

1
2 gradH(x0) : Σ0

)
+ Q0Γ̂0 :

(
(Π0 −H0Σ0)G

−1
0

)
= 0,

where the last term is zero29 because of the weak virial theorem (II.27).

We call the limit equation (II.30) abstract since we have no real access
to the time-dependent force field F hom

U . It involves the weak* limit Σ0,
an expression that depends on the particular subsequence we have chosen.
Therefore, we cannot even conclude that x0 is unique, i.e., independent of
the chosen subsequence of ε.

29This term would be trivially zero for a flat manifold M , like the Euclidean space,
since then Γ̂ ≡ 0. Here is the first of two places in our proof, where such a metric-
dependent term drops out like magic because of the weak virial theorem.
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Remark 1. For M = Rm endowed with the Euclidean metric, Lemma 8
has been proven by Bornemann and Schütte [18, Theorem 2.1]. For
critical submanifolds N with codimension r = 1 this lemma appears in
somewhat different form—using suitable averaging operators—in the work
of the physicists Koppe and Jensen [58, Eq. (5)] and van Kampen [49,
Eq. (8.33)].

For the purposes of Chapter IV, we state the following lemma more
general than we have needed in the proof of Lemma 8 above.

Lemma 9. Let P be a projection operator in some Hilbert space H , and
Q be an arbitrary bounded operator, both depending continuously differ-
entiable on a parameter. Assume that

PQ = QP = 0.

Then, if we denote differentiation with respect to the parameter by a prime,
we obtain

PQ′P = 0, PP ′P = 0.

Proof. Differentiation of PQ = 0 gives P ′Q + PQ′ = 0. Because of
QP = 0, multiplication by P from the right yields PQ′P = 0. Likewise,
by differentiating the projection relation P 2 = P , we get P ′P +PP ′ = P ′.
Multiplication by P from the right gives PP ′P = 0.

x2.3. Step 3: Adiabatic Invariance of the Normal Actions

Until now we have not made any use of the smooth spectral decomposition
of the Hessian H introduced in §1.3. Recall that the corresponding eigen-
projections Pλ induce an orthogonal decomposition of the normal spaces
TyN

⊥, y ∈ N . In particular, we decompose the normal motion into30

zε =
∑
λ

zελ with zελ = Pελzε.

As we have done with the projection P in §2.1, we may view the projec-
tions Pλ in the tubular coordinate system as parameter-dependent matri-
ces. This allows to extend their action to all vectors of Rm in a coordinate-
dependent fashion. Analogously to the relations (II.23) and (II.24), we now
get

żελ = Pελżε + Ṗελzε = Pελżε +O(ε) (II.33)

and

z̈ελ = Pελz̈ε + 2Ṗελżε +O(ε) = Pελz̈ε +O(1). (II.34)

30As usual, we abbreviate Pελ = Pλ(yε) and ωελ = ωλ(yε), including ε = 0.
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Therefore, multiplying the differential equation (II.25) by Pελ immediately
yields the component-wise relation

z̈ελ + ε−2ω2
ελzελ = O(1). (II.35)

This equation explains why we have called ωλ the normal frequencies of the
Hessian H . The components zελ are thus perturbed harmonic oscillations.

The next lemma shows that the limit quadratic expressions Π0 and Σ0

have a block-diagonal form with respect to the eigenspaces of H . This is
a direct consequence of the weak virial theorem and a certain resonance
condition.

Lemma 10. Let there be essentially no resonances of order two along the
limit x0, i.e.,

ω0λ �= ω0μ a.e.

for λ �= μ. Then, one gets the block-diagonalizations

Σ0 =
∑
λ

P0λΣ0P0λ, P0λΣ0P0μ = 0 λ �= μ, (II.36)

and

Π0 =
∑
λ

ω2
0λ P0λΣ0P0λ, P0λΠ0P0μ = 0 λ �= μ, (II.37)

as functions in L∞([0, T ],Rm×m).

Proof. Multiplying the commutativity relation H0Σ0 = Σ0H0 of the weak
virial theorem by the projection P0λ from the left and by P0μ from the
right gives

ω2
0λP0λΣ0P0μ = ω2

0μP0λΣ0P0μ.

Thus, by the resonance assumption, for λ �= μ we get P0λΣ0P0μ = 0 in
L∞([0, T ],Rm×m). The same argument applies to Π0. The representation
Π0 = H0Σ0 of the weak virial theorem yields

P0λΠ0 = P0λH0Σ0 = ω2
0λP0λΣ0.

By Qεzε = 0, we obtain QεΣε = ΣεQε = 0 and, taking weak* limits,
Q0Σ0 = Σ0Q0 = 0. This implies, by using the weak virial theorem, i.e.,
Π0 = H0Σ0 = Σ0H0, that there is Q0Π0 = Π0Q0 = 0. Thus, Σ0 and Π0

have the asserted block-structure.

The corresponding off-diagonal blocks of the non-limit expressions are
given by

PελΣεPεμ = ε−2 zελ ⊗ zεμGε, PελΠεPεμ = żελ ⊗ żεμGε +O(ε). (II.38)
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These relations can easily be proven in coordinates by using Eq. (II.33) and
the selfadjointness P ∗

λ = Pλ, i.e.,

P j
λi gjk = gijP

j
λk . (II.39)

Thus, Lemma 10 shows the weak* continuity of certain, but certainly not
all, quadratic expressions,

ε−2 zελ ⊗ zεμ
∗
⇀ 0, żελ ⊗ żεμ

∗
⇀ 0, λ �= μ. (II.40)

Recall that ε−1zε
∗
⇀ 0 and żε

∗
⇀ 0.

Surprisingly, only very little is needed to establish full cubic weak conti-
nuity. A further resonance condition and the perturbed harmonic oscillator
equation (II.35) turn out to be enough.

Lemma 11. Let there be essentially no resonances of order three along
the limit x0, i.e.,

ω0λ + ω0μ �= ω0ν a.e.

for all indices λ, μ, and ν. Then, there is weak* convergence of cubic terms,

ε−2zε ⊗ zε ⊗ żε
∗
⇀ 0, żε ⊗ żε ⊗ żε

∗
⇀ 0, (II.41)

in components,

ε−2ziελz
j
εμż

k
εν

∗
⇀ 0, żiελż

j
εμż

k
εν

∗
⇀ 0, (II.42)

for all indices λ, μ, and ν, and i, j, and k.

Proof. Differentiating the uniform limit

ziελż
j
εμż

k
εν → 0

gives, by using Eq. (II.35) and Principle I.1,

żiελż
j
εμż

k
εν − ε−2ω2

εμz
i
ελz

j
εμż

k
εν − ε−2ω2

ενz
i
ελż

j
εμz

k
εν

∗
⇀ 0. (II.43)

On the other hand, differentiating the uniform limit

ε−2ziελz
j
εμz

k
εν → 0,

and applying Principle I.1 once more, immediately yields

ε−2(żiελz
j
εμz

k
εν + ziελż

j
εμz

k
εν + ziελz

j
εμż

k
εν)

∗
⇀ 0. (II.44)

By combining the limit equation (II.44) with the three limit equations
obtained from Eq. (II.43) by a cyclic permutation of the indices i, j, and
k, and simultaneously of the indices λ, μ, and ν, we get⎛⎜⎜⎜⎝

0 1 1 1

1 0 −ω2
εν −ω2

εμ

1 −ω2
εν 0 −ω2

ελ

1 −ω2
εμ −ω2

ελ 0

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

=Aε

⎛⎜⎜⎜⎝
żiελż

j
εμż

k
εν

ε−2żiελz
j
εμz

k
εν

ε−2ziελż
j
εμz

k
εν

ε−2ziελz
j
εμż

k
εν

⎞⎟⎟⎟⎠ ∗
⇀ 0.
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Now, we have that

detAε = (ωελ+ωεμ+ωεν)(ωελ−ωεμ−ωεν)(ωεμ−ωεν−ωελ)(ωεν−ωελ−ωεμ).

Therefore, the resonance condition yields detA0 �= 0, almost everywhere,
which finishes the proof.

Remark 2. There is a nice motivation for the off-diagonal quadratic weak*
continuity (II.40) and the cubic weak* continuity (II.41). Suppose, the
components zελ satisfy unperturbed harmonic oscillator equations,

z̈ελ + ε−2ω2
λzελ = 0

with constant frequencies ωλ. Using the formulas for products of trigono-
metric functions, one writes the terms żλε ⊗ żμε as a linear combination of
the harmonic oscillations

exp (i(ωλ − ωμ)t/ε) and exp (i(ωλ + ωμ)t/ε) .

If there are no resonances of order two, the Riemann-Lebesgue lemma, [84,
Sec. 5.14], shows the weak* convergence to zero for λ �= μ. Correspond-
ingly, a further application of the product formulas yields a representation
of the terms żλε⊗ żμε⊗ żεν as a linear combinations of the harmonic oscil-
lations

exp (±i(ωλ + ωμ − ων)t/ε)

over all cyclic permutations of λ, μ, and ν. Thus, if there are no resonances
of order three, a further application of the Riemann-Lebesgue lemma shows
the weak* convergence to zero. Basically, this is the argument given by
Takens in his paper [94]. However, one has to modify the idea to incor-
porate the perturbations which are present in Eq. (II.35). This is only
sketched in [94]; working out the details appears to be quite involved. We
think that our proof of the weak* continuity of cubic expressions has the
advantage of being much simpler—besides being more general with respect
to the resonance conditions.

Later, we will need a more detailed knowledge of the O(1)-term on the
right-hand-side of Eq. (II.35).

Lemma 12. The perturbed harmonic oscillator equation for the compo-
nent zελ is given by

z̈iελ + ε−2ω2
ελz

i
ελ = 2(Ṗελżε)

i − 2(PελΓε(ẏε, żε))
i

+ a i
ελjk ż

j
ε ż
k
ε + ε−2b i

ελjkz
j
εz
k
ε + c i

ελ

(II.45)

with uniformly converging fields aελ, bελ, and cελ.
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Proof. We multiply the equation of motion (II.20) by the projection Pελ
from the left obtaining

Pελẍε + PελΓ(xε)(ẋε, ẋε) + PελFV (xε) + ε−2PελFU (xε) = 0.

Each term of this equation will be studied separately. In order to simplify,
we use the notation

g(t; ε) ≡ f(t; ε) (mod C0-lim)

to mean that the difference g(t; ε)− f(t; ε) converges uniformly in C0. We
get by PελPε = Pελ and the relations (II.23), (II.24) as well as (II.33),
(II.34) that

Pελẍε = PελPεẍε = Pελz̈ε − 2PελṖεżε − PελṖεẏε +O(ε)

= z̈ελ − 2 (ṖελPε + PελṖε)︸ ︷︷ ︸
=Ṗελ

żε − PελṖεẏε +O(ε)

≡ z̈ελ − 2Ṗελżε (mod C0-lim).

The symmetric bilinearity of Γ yields

PελΓ(xε)(ẋε, ẋε) ≡ 2PελΓε(ẏε, żε) + PελΓε(żε, żε) (mod C0-lim).

Obviously, we obtain

PελFV (xε) ≡ 0 (mod C0-lim).

Finally, Lemma 5 and the spectral decomposition (II.8) gives

ε−2PελFU (xε) ≡ ε−2ωελzελ − PελΓ̂ε : (HεΣεG
−1
ε )

+ 1
2Pελ gradHε : Σε (mod C0-lim).

Putting the results together, we obtain the asserted equation.

Now, we split the energy of the normal motion into its components,
corresponding to the splitting zε = zε1 + . . .+ zεs.

Definition 6. The kinetic energy T⊥
ελ, the potential energy U⊥

ελ, and the
total energy E⊥

ελ of the normal λ-component are defined as

T⊥
ελ = 1

2gij(yε)ż
i
ελż

j
ελ, U⊥

ελ = 1
2ε

−2ω2
ελ〈zελ, zελ〉, E⊥

ελ = T⊥
ελ + U⊥

ελ.

Again, only the potential parts are invariantly defined in a coordinate
independent fashion. This ambiguity will disappear in the limit ε → 0,
because of the weak virial theorem.
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Lemma 13. The energy of the normal motion splits as

E⊥
ε =

∑
λ

E⊥
ελ +O(ε).

By defining σλ = tr(P0λΣ0P0λ), one obtains the weak* limits

T⊥
ελ

∗
⇀ T⊥

0λ = 1
2ω

2
0λσλ, U⊥

ελ
∗
⇀ U⊥

0λ = 1
2ω

2
0λσλ, E⊥

ελ
∗
⇀ E⊥

0λ = ω2
0λσλ,

such that there is an equi-partitioning of energy in the limit.

Proof. By using properties of the trace and the relation (II.38), the kinetic
energy splits as follows,

T⊥
ε = 1

2 tr Πε = 1
2

∑
λμ

tr(PελΠεPεμ) =
1
2

∑
λμ

tr(ΠεPεμPελ)

= 1
2

∑
λ

tr(PελΠεPελ) =
∑
λ

T⊥
ελ +O(ε).

Likewise, we get

U⊥
ε = 1

2 tr(HεΣε) =
1
2

∑
λ

ω2
ελ tr(PελΣεPελ) =

∑
λ

U⊥
ελ.

Further, relation (II.38) and P0λΠ0P0λ = ω2
0λP0λΣ0P0λ which directly fol-

lows from the weak virial theorem, Eq. (II.27), yield

T⊥
ελ = 1

2 tr(PελΠεPελ) +O(ε)
∗
⇀ 1

2 tr(P0λΠ0P0λ) =
1
2ω

2
0λσλ.

More directly, we obtain

U⊥
ελ = 1

2ω
2
ελ tr(PελΣεPελ)

∗
⇀ 1

2ω
2
0λσλ,

which finishes the proof.

After all these preparations, we come to the main result of the present
step in the proof of the homogenization result, Theorem 1. First, we intro-
duce an important notion.

Definition 7. The action of the normal λ-component is defined as the
time-dependent ratio

θλε =
E⊥
ελ

ωελ
.

Due to the nondegeneracy condition (II.10), this ratio is well-defined.
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Lemma 14. Let there be essentially no resonances of order two or three
along the limit x0. Then, the action of each normal λ-component is an
adiabatic invariant,31 i.e.,

θλε → θλ0 = const

uniformly in C0[0, T ]. The value of θλ0 is given by

θλ0 =
〈Pλ(x∗)v∗, Pλ(x∗)v∗〉

2ωλ(x∗)
.

Proof. The main idea in showing the adiabatic invariance is computing
the weak* limit of the derivative Ė⊥

ελ, where

Ė⊥
ελ = tr

((
z̈ελ + ε−2ω2

ελzελ
)⊗ żελGε

)
+ 1

2 tr(żελ ⊗ żελĠε) +
1
2ε

−2ω2
ελ tr(zελ ⊗ zελĠε)

+ 1
2ε

−2 tr(zελ ⊗ zελGε) · d
dt
ω2
ελ.

We call the three rows of the right hand side s1, s2, and s3, respectively.
The weak* limit of s3 is given, by using Eq. (II.38) and σλ = tr(P0λΣ0P0λ),
as

s3 = 1
2 tr(PελΣεPελ) ·

d

dt
ω2
ελ

∗
⇀ 1

2σλ
d

dt
ω2
0λ.

By using Eqs. (II.38) and (II.8), we obtain

s2 = 1
2 tr(PελΠεPελG

−1
ε Ġε) +

1
2 tr(PελHεΣεPελG

−1
ε Ġε) +O(ε)

∗
⇀ 1

2 tr(P0λΠ0P0λG
−1
0 Ġ0) +

1
2 tr(P0λH0Σ0P0λG

−1
0 Ġ0).

The evaluation of the weak* limit of s1 requires much more work. The
detailed second order equation (II.45) of Lemma 12 yields

s1 = żiελ(z̈
j
ελ + ε−2ω2

ελz
j
ελ)gij(yε)

= a j
ελklż

k
ε ż
l
εż
i
ελgij(yε)︸ ︷︷ ︸

∗
⇀0

+ b j
ελklε

−2zkε z
l
εż
i
ελgij(yε)︸ ︷︷ ︸

∗
⇀0

+ c j
ελ ż

i
ελgij(yε)︸ ︷︷ ︸
∗
⇀0

+ 2 (Ṗελżε)
j żiελgij(yε)︸ ︷︷ ︸
=s4

− 2(PελΓε(ẏε, żε))
j żiελgij(yε)︸ ︷︷ ︸

=s5

.

The first two weak* limits are direct consequences of the cubic weak con-
vergence stated in Lemma 11, the third follows from żε

∗
⇀ 0. We recall that

31Notice that the time interval [0, T ] under consideration is of order O(ε−1τε), where
τε denotes a typical period of a small oscillation in the normal direction. Thus, the
usage of the notion “adiabatic invariant” is in accordance with the definition given in
Arnold� Kozlov, and Neishtadt [6, Chap. 5.4].
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aελ, bελ, and cελ are uniformly convergent. Now, by properties of the trace
and the relations (II.33) and (II.38) as well as by the fact that, according
to Lemma 9, PελṖελPελ = 0, we obtain

s4 = tr(Ṗελżε ⊗ żελGε) =
∑
μ

tr(Ṗελżεμ ⊗ żελGε) +O(ε)

=
∑
μ

tr(ṖελPεμΠεPελ) +O(ε) =
∑
μ�=λ

tr(PελṖελPεμΠε) +O(ε)

=
∑
μ�=λ

tr(ṖελPεμΠεPελ) +O(ε)
∗
⇀
∑
μ�=λ

tr(Ṗ0λP0μΠ0P0λ) = 0,

where the last equation stems from Eq. (II.37). The next effort involves the
quantity s5. To begin, the selfadjointness relation (II.39) and the projection
relation (II.33) yield

s5 = 2Γε(ẏε, żε)
kP j

ελkgji(yε)ż
i
ελ = 2Γε(ẏε, żε)

kgkj(yε)P
j

ελi ż
i
ελ

= 2 tr(Γε(ẏε, żε)⊗ (Pελżελ)Gε) = 2 tr(Γε(ẏε, żε)⊗ żελGε) +O(ε).

Now, since we can write Γε(ẏε, żε) = Aεżε with a strongly converging linear
operator Aε, we further get by Eq. (II.38)

s5 = 2
∑
μ

tr(Aεżεμ ⊗ żελGε) +O(ε) = 2
∑
μ

tr(AεPεμΠεPελ) +O(ε)

= 2
∑
μ�=λ

tr( AεPεμΠεPελ︸ ︷︷ ︸
∗
⇀A0P0μΠ0P0λ=0

) + 2 tr(AεPελΠεPελ)︸ ︷︷ ︸
=s6

+ O(ε).

Finally, we compute the weak* limit of the quantity s6 as

s6 = 2 tr(Γε(ẏε, żελ)⊗ żελGε) +O(ε) = 2Γijk(yε)ẏ
j
ε ż
k
ελż

l
ελgli(yε) +O(ε)

= gli(yε)g
iq(yε)

(
∂gjq(yε)

∂xk
+
∂gqk(yε)

∂xj
− ∂gjk(yε)

∂xq

)
ẏjε ż

k
ελż

l
ελ +O(ε)

=

⎛⎜⎜⎝ ∂gjl(yε)

∂xk
− ∂gjk(yε)

∂xl︸ ︷︷ ︸
skewsymmetric in k and l

+
∂glk(yε)

∂xj

⎞⎟⎟⎠ ẏjε żkελżlελ +O(ε)

=
∂glk(yε)

∂xj
ẏjε ż

k
ελż

l
ελ +O(ε) = tr(żελ ⊗ żελGεG

−1
ε Ġε) +O(ε)

= tr(PελΠεPελG
−1
ε Ġε) +O(ε)

∗
⇀ tr(P0λΠ0P0λG

−1
0 Ġ0).
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Summarizing, we have shown that

s1
∗
⇀ − tr(P0λΠ0P0λG

−1
0 Ġ0).

Therefore, we obtain by the weak virial theorem32

s1 + s2
∗
⇀ 1

2 tr
(
P0λ(H0Σ0 −Π0)P0λG

−1
0 Ġ0

)
= 0,

which implies

Ė⊥
ελ

∗
⇀ Ė⊥

0λ = 1
2σλ

d

dt
ω2
0λ.

On the other hand, a direct differentiation of the limit relation given in
Lemma 13, i.e., E⊥

0λ = σλω
2
0λ, yields the expression

Ė⊥
0λ = σ̇λω

2
0λ + σλ

d

dt
ω2
0λ.

By comparing the two expressions for Ė⊥
0λ, we obtain the following differ-

ential equation for the function σλ,

σ̇λ = − 1
2σλ

dω2
0λ/dt

ω2
0λ

= −σλ dω0λ/dt

ω0λ
.

Solving this differential equation explicitly shows that there is a constant
θλ0 such that

σλ =
θλ0

ωλ(x0)
, E⊥

0λ = θλ0 ωλ(x0). (II.46)

Now, since the derivative Ė⊥
ελ converges weakly, we may conclude—by a

further application of the extended Arzelà-Ascoli theorem, Principle I.4—
that the energy itself converges uniformly. Hence, we get the uniform
convergence

θλε =
E⊥
ελ

ωελ
→ E⊥

0λ

ωλ(x0)
= θλ0 = const .

In particular, the value of θλ0 can be computed for t = 0 as the limit of an
expression of the initial values. Since yε(0) = x∗ and zε(0) = 0 we have

U⊥
ελ(0) = 0.

The projection relations (II.23) and (II.33) together with PελPε = Pελ
imply

żελ(0) = Pλ(yε(0))ẋε(0) +O(ε) → Pλ(x∗)v∗.

Thus, the kinetic energy converges at t = 0,

T⊥
ελ(0) → 1

2 〈Pλ(x∗)v∗, Pλ(x∗)v∗〉,
which finishes the proof of the lemma.

32Here is the second of the two places mentioned earlier, where a metric-dependent
term drops out like magic because of the weak virial theorem. Again, the term would
be trivially zero for a flat manifold, for then Ġ0 = 0.
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x2.4. Step 4: Identification of the Limit Mechanical System

In this final step of the proof of Theorem 1 we come back to the abstract
limit equation of Lemma 8. In particular, we relate the time-dependent
force field F hom

U to the homogenized potential Uhom of Definition 4.

Lemma 15. Let there be essentially no resonances of order two or three
along the limit x0. Then, the homogenized force F hom

U and the homogenized
potential Uhom are related by

Q(x0)F
hom
U = gradN Uhom(x0).

Proof. We work with local coordinates (y1, . . . , yn) of the critical subman-
ifold N . Let v ∈ Tx0N be an arbitrary vector field along the limit x0. By
the definition of the force F hom

U we get

〈F hom
U , v〉 = 1

2 tr

(
∂H(x0)

∂yi
· Σ0

)
vi.

Differentiating the spectral decomposition of the Hessian (II.8) yields

∂H

∂yi
=
∑
λ

∂ω2
λ

∂yi
Pλ +

∑
λ

ω2
λ

∂Pλ
∂yi

.

Inserting this expression, and the block-diagonalization (II.36) of Σ0, into
the force term yields

1
2 tr

(
∂H(x0)

∂yi
· Σ0

)
= 1

2

∑
λ

∂ω2
λ(x0)

∂yi
tr(Pλ(x0)Σ0Pλ(x0))

+ 1
2

∑
λμ

ω2
λ(x0) tr

(
Pμ(x0)

∂Pλ(x0)

∂yi
Pμ(x0)Σ0

)

=
∑
λ

θλ0
∂ωλ(x0)

∂yi
=
∂Uhom(x0)

∂yi
.

Here, we have used three facts, previously proven. First, by Eq. (II.46),
that

tr(P0λΣ0P0λ) = σλ =
θλ0
ω0λ

.

Second, by Lemma 9, that Pμ ·∂yiPλ ·Pμ = 0. Third, that the limit actions
θλ0 are constants.

Thus, Lemma 15 implies33 that, under the given resonance conditions,
the abstract limit equation (II.30) represents the equations of motions of

33This claim follows from well-known facts on constrained motion in Lagrangian me-
chanics, as can be found, for instance, in [1, p. 229] and [6, p. 19].
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a natural mechanical system with configuration space N . This mechanical
system is given by the Lagrangian

Lhom(x, ẋ) =
1
2 〈ẋ, ẋ〉 − V (x) − Uhom(x) ẋ ∈ TxN. (II.47)

We denote by xhom the solution of this mechanical system for the initial
position x∗ and initial velocity Q(x∗)v∗.

Now, to summarize, we have shown that if there were essentially no
resonances of order two or three along the up to now inaccessible limit x0,
the equality x0 = xhom would hold. Surprisingly, one can decide on this
equality by looking at the resonance properties of the accessible function
xhom.

Lemma 16. If xhom is non-flatly resonant up to order three, there are only
finitely many resonances of order two or three along x0, and one gets

x0 = xhom.

Proof. In the course of this proof, the notion “resonance” will always
mean a resonance of order two or three.

There are only finitely many resonances along xhom in the compact time
interval [0, T ]. Otherwise we would get a converging sequence tj → t̄ of
crossing times for one and the same resonant surface. As a consequence, at
time t̄ there would be a non transversal crossing with that resonant surface.
This would contradict the assumption of transversality.

Because of x0(0) = xhom(0), the maximal time

t∗ = max {t ∈ [0, T ] : x0|[0, t] = xhom|[0, t]}
of equality is a well defined quantity. Suppose we have t∗ < T . Then, there
are only finitely many resonances of x0 during the time interval [0, t∗]. Since
x0 and xhom are C1-functions of time, we get

ẋ0(t∗) = ẋhom(t∗),

just using the initial values of Lemma 3 if t∗ = 0. Hence, by the assumption
on xhom, if x0 crosses a resonance surface at time t∗ it does so transversally.
As a consequence, there is a small δ > 0 such that there are no further reso-
nances of x0 during the time interval ]t∗, t∗+ δ]. Thus, there are essentially
no resonances along x0 during [0, t∗+ δ]. The summary which precedes the
statement of this lemma, shows that

x0|[0, t∗ + δ] = xhom|[0, t∗ + δ],

contradicting the maximality of t∗. We therefore obtain t∗ = T , which is
equivalent to x0 = xhom.

From this lemma we conclude that the limit x0 of the subsequence
under consideration is unique, i.e., independent of the chosen subsequence.
Thus, by Principle I.5, we may discard all extractions of subsequences and
have proven the uniform convergence xε → xhom, as was asserted in the
statement of Theorem 1.
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x3. Realization of Holonomic Constraints

Näıve intuition could lead to the expectation that, in the limit ε → 0,
a constraining potential U just constrains the motion to the critical sub-
manifold N . According to the Lagrange-d’Alembert principle, the limit
motion would then34 be governed by a natural mechanical system on the
configuration manifold N belonging to the Lagrangian

Lcon(x, ẋ) =
1
2 〈ẋ, ẋ〉 − V (x), ẋ ∈ TxN.

On the other hand, physicists frequently have expressed the idea,35 that
ideal (mathematical) constraints should be thought of as being induced by
appropriate “strong potentials.”

From now on, the term “realization of holonomic constraints” will have
the following technical meaning.

Definition 8. For a sequence ε → 0, let there be a family of mechanical
systems given by the Lagrangian

Lε(x, ẋ) =
1
2 〈ẋ, ẋ〉 − V (x)− ε−2U(x), ẋ ∈ TxM.

The potential U is assumed to be constraining to a nondegenerate critical
submanifold N ⊂ M . For fixed initial values xε(0) = x∗ ∈ N and ẋε(0) =
v∗ ∈ Tx∗M and a finite time interval [0, T ] there exists a unique sequence
xε of solutions of the Euler-Lagrange equations corresponding to Lε. Let
xcon be the unique solution of the Euler-Lagrange equations corresponding
to the holonomic constrained Lagrangian

Lcon(x, ẋ) =
1
2 〈ẋ, ẋ〉 − V (x), ẋ ∈ TxN,

with initial data xcon(0) = x∗ ∈ N and ẋcon(0) = Q(x∗)v∗ ∈ Tx∗N . If
the sequence xε converges to xcon uniformly, xε → xcon, one says that the
potential U and the initial values (x∗, v∗) realize the holonomic constraints
given by the submanifold N .

This definition allows statements analogously to the homogenization
result, Theorem 1. The reader should notice, however, that neither a res-
onance conditions is employed in this definition, nor the potential U is
assumed to constrain spectrally smooth.

We will establish conditions on both, the initial values in §3.1, and the
constraining potentials in §3.2, that imply realization of constraints.

34Compare Footnote 33 on p. 49.
35For instance, quite controversial positions are adapted by Koppe and Jensen [58]

and van Kampen [49]. The reader should consult the book of Gallavotti [34, §3.6] for
an extensive discussion of the question of “physically real” constraints. One should also
look at his historical remarks in [34, §3.10].
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x3.1. Conditions on the Initial Values

The following theorem completely characterizes the initial values for which
a realization-of-constraints-result holds.

Theorem 2. A pair (x∗, v∗) of initial values, x∗ ∈ N and v∗ ∈ Tx∗M ,
realizes holonomic constraints for all potentials U constraining to N , if and
only if

v∗ ∈ Tx∗N.

Proof. Let U be any potential constraining to the manifold N . We recall
that during the first two steps of the proof of Theorem 1, §§2.1-2.2, neither
a resonance condition has been employed, nor has been made use of the
fact that U constrains spectrally smooth. In particular, Lemmas 6 and 8
are applicable under the current assumptions.

For the sufficiency part of the proof, let us assume that v∗ ∈ Tx∗N .
Below, we are going to prove that this implies that żε → 0 and ε−1zε → 0,
strongly in L2. Hence, we obtain Πε → 0 and Σε → 0, strongly in L1. In
particular, the weak limits are

Π0 = Σ0 = 0.

The force term F hom
U of the abstract limit equation (II.30) vanishes, making

this equation the Euler-Lagrange equation of the Lagrangian Lcon with
the solution x0 = xcon—independently of the chosen subsequence that has
defined the limit function x0 of Lemma 8. By Principle I.5, this shows that
we may discard the extraction of subsequences and obtain realization of
constraints.

The proof of the strong convergences will be based on considering the
function

φε(t) =

∫ t

0

〈żε(τ), żε(τ)〉 dτ + ε−2

∫ t

0

〈zε(τ), zε(τ)〉 dτ

=

∫ t

0

tr(Πε(τ) + Σε(τ)) dτ.

This function is intimately related to the normal energy E⊥
ε of Definition 5.

On the one hand, the nondegeneracy condition (II.6) implies that

φ̇ε(t) = trΠε(t) + tr Σε(t) ≤ 2(1 + ω−2
∗ )E⊥

ε (t).

On the other hand, Lemma 6 gives the limit normal energy

E⊥
0 = E∗ − 1

2 〈ẋ0, ẋ0〉 − V (x0).

Differentiating this expression and using the abstract limit equation (II.30)
of Lemma 8 yields

Ė⊥
0 = −〈ẋ0,∇ẋ0 ẋ0 + gradV (x0)〉 = 〈ẋ0, F hom

U 〉 = 1
2 〈ẋ0, gradH0 : Σ0〉.
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By integrating in time, we obtain

E⊥
0 (t) = E⊥

0 (0) + 1
2

∫ t

0

〈ẋ0(τ), gradH(x0(τ)) : Σ0(τ)〉 dτ. (II.48)

From this, by considering the uniform convergence E⊥
ε → E⊥

0 and the

weak* convergence Σε
∗
⇀ Σ0, we get that correspondingly

E⊥
ε (t) = E⊥

ε (0) + δε +
1
2

∫ t

0

〈ẋ0(τ), gradH(x0(τ)) : Σε(τ)〉 dτ, t ∈ [0, T ],

where δε → 0 for ε → 0. Since trΣε = ε−2〈zε, zε〉 is a matrix norm for Σε,
the estimate

E⊥
ε (t) ≤ E⊥

ε (0) + δε + cφε(t), t ∈ [0, T ],

holds for some positive constant c. Now, the initial velocity being tangen-
tial, v∗ ∈ Tx∗N , implies that initially

E⊥
ε (0) = 0,

cf. Eq. (II.49) below. Summarizing, we end up with the differential in-
equality

φ̇ε(t) ≤ 2(1 + ω−2
∗ )(δε + cφε(t)), t ∈ [0, T ].

The Gronwall lemma yields the estimate

φε(t) ≤ 2(1 + ω−2
∗ )δεT exp(2(1 + ω−2

∗ )cT ), t ∈ [0, T ].

This reveals that φε → 0 uniformly, implying the asserted strong conver-
gences in L2.

The proof of necessity will be based on Theorem 1. Let us assume that
a given pair (x∗, v∗) of initial values realizes holonomic constraints for all
potentials U constraining to N . Now, let ω : N → R be a strictly positive,
smooth function, such that

gradω(x∗) �= 0.

In a tubular neighborhood of N , cf. §2.1, we define a specific constraining
potential by

U(x) = 1
2ω(y) dist(x,N)2, x = expy z, y ∈ N, z ∈ TyN

⊥.

A simple calculation reveals that the Hessian H of U is given by

H(x) = ω(x)P (x), x ∈ N.

Thus, Theorem 1 is applicable and yields the convergence xε → x0 = xhom,
where xhom belongs to the homogenized potential

Uhom = θ0 · ω, θ0 =
〈P (x∗)v∗, P (x∗)v∗〉

2ω(x∗)
.
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Since by assumption x0 = xcon, a comparison of the Euler-Lagrange equa-
tions belonging to Lhom and Lcon shows that the homogenized force field
must vanish at the initial position x∗,

0 = gradUhom(x∗) = θ0 · gradω(x∗).

By construction of ω, this implies θ0 = 0 which is equivalent to

P (x∗)v∗ = 0, i.e., v∗ ∈ Tx∗N,

as being asserted.

Remark 3. Theorem 2 would be just a simple corollary of the homoge-
nization result, Theorem 1, if we made two additional assumptions; first,
that the potential U under consideration constrains spectrally smooth, and
second, that the trajectory xcon is non-flatly resonant up to order three.
For then, the proof of sufficiency36 would proceed as follows: An initial
velocity v∗ ∈ Tx∗N fulfills Pλ(x∗)v∗ = 0 for all indices λ. A fortiori, we get
θλ0 = 0 and

Uhom = 0.

Hence, Lhom = Lcon and Theorem 1 yields realization of constraints.

The proof of Theorem 2 provides further insight in the homogenization
problem of §§1-2. In particular, it teaches that the quadratic obstructions
Π0 and Σ0 do not vanish in general. Thus, we cannot modify the proof of
§2 in a way which avoids weak* convergences. We summarize this aspect
by stating the following Lemma.

Lemma 17. Let the assumptions of Lemma 8 be valid. Then, for fixed
initial values x∗ ∈ N and v∗ ∈ Tx∗M the following properties are equiva-
lent:

(i) v∗ ∈ Tx∗N ,

(ii) E⊥
ε (0) = 0,

(iii) E⊥
0 ≡ 0,

(iv) żε → 0, strongly in L2,

(v) ε−1zε → 0, strongly in L2,

(vi) Π0 = 0,

(vii) Σ0 = 0.

36The proof of necessity has already been based on Theorem 1.
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Proof. The equivalence of (i) and (ii) follows immediately from Definition 5
which gives

E⊥
ε (0) = T⊥

ε (0) = 1
2 〈P (x∗)v∗, P (x∗)v∗〉. (II.49)

The proof of Theorem 2 has shown that property (i) implies properties
(iii)–(v) and that (iv) implies (vi), as well as (v) implies (vii).

Property (vii) implies the weak* convergence tr Σε
∗
⇀ 0 and therefore

ε−2

∫ T

0

〈zε(τ), zε(τ)〉 dτ =

∫ T

0

tr Σε(τ) dτ → 0,

i.e., property (v). Analogously one shows that (vi) implies (iv).
The weak virial theorem, Lemma 7, and the nondegeneracy conditions

(II.4) and (II.5) prove the equivalence of (vi) and (vii). Now, by the limit
relations (II.26), we obtain from (vi) and (vii) that E⊥

0 ≡ 0, i.e. property
(iii). Finally, by using Eq. (II.49) and the uniform convergence E⊥

ε → E⊥
0

of Lemma 6, we obtain that property (iii) implies property (ii).

x3.2. Conditions on the Constraining Potential

Here, we state a sufficient condition on the potential U which implies re-
alization of constraints for general initial velocities v∗ ∈ Tx∗M . Later on,
in Lemma 18, we will show that this condition is also necessary, at least
partially.

Theorem 3. Let U be constraining to the critical manifold N . Suppose
the spectrum σ(H) of the Hessian H is constant on N . Then, the potential
U constrains spectrally smooth and realizes holonomic constraints for all
initial values x∗ ∈ N , v∗ ∈ Tx∗M .

Proof. First, we show that U constrains spectrally smooth. Let

0 < ω2
∗ ≤ ω2

1 < . . . < ω2
s . s ≤ r,

denote the different, by assumption constant, eigenvalues of H . Denote by
Γλ a small path in the complex plane, such that ω2

λ is encircled, but none
of the other eigenvalues of H . The eigenprojection Pλ belonging to ω2

λ is
given by the Cauchy integral,

Pλ(x) =
1

2πi

∫
Γλ

(ζI −H(x))−1 dζ, x ∈ N,

as frequently used in perturbation theory, [51, Chap. II,§1.4]. Since the
path Γλ does not depend on x ∈ N , and is never crossed by any of the con-
stant eigenvalues of H , this representation shows the smooth dependence
of Pλ(x) on x ∈ N .

This smoothness implies that, belonging to the eigenvalues ω2
1 , . . . , ω

2
s ,

each counted by multiplicity, there is a smooth field (e1(x), . . . , er(x)) of



	
 Homogenization of Natural Mechanical Systems �Chap� II

orthonormal bases of TxN
⊥ consisting of eigenvectors of H(x). Taking

this particular basis to form the coordinates system of §2.1, we obtain a
constant matrix representation of H ,

H(x) =

(
0 0

0 D

)
, D = diag(ω2

1 , . . . , ω
2
s),

where the eigenvalues appear according to their multiplicities. Thus, the
coordinate-dependent expression gradH vanishes,

gradH = 0.

This implies that also the force term F hom
U of the abstract limit equation

(II.30) vanishes, making this equation the Euler-Lagrange equation of the
LagrangianLcon with the solution x0 = xcon—independently of the chosen
subsequence that has defined the limit function x0 of Lemma 8. By Princi-
ple I.5, this shows that we may discard the extraction of subsequences and
obtain realization of constraints. The reader should notice that Lemma 8
is valid under the assumptions made in this theorem.

Remark 4. Theorem 3 would be just a simple corollary of the homoge-
nization result, Theorem 1, if we made the additional assumption, that the
constant normal frequencies ωλ satisfy no resonance of order three,37

ωλ + ωμ �= ων

for all indices λ, μ, and ν. For then, the proof would proceed as follows:
Because all the normal frequencies are constant, we would get Uhom =∑

λ θ
λ
0ωλ = const. Hence, the Lagrangians Lhom and Lcon differ only

by a constant. Thus, they have the same Euler-Lagrange equations and
Theorem 1 gives realization of constraints.

Example 3. A simple example for a potential U which satisfies the con-
ditions of Theorem 3, is provided by

U(x) = 1
2 dist(x,N)2.

An easy calculation reveals that the Hessian of this function is just the
projection onto the normal bundle,

H = P.

Thus, there is only one normal frequency, ω1 ≡ 1. Theorem 3 states real-
ization of constraints for all initial values x∗ ∈ N , v∗ ∈ Tx∗M . Notice that
the simple proof mentioned in Remark 4 is applicable here.

37Notice that there are no resonance of order two. For the normal frequencies being
constant, we can discard identical ones by combining corresponding eigenspaces of H,
cf. §1.3.
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Now, we state a partial converse of Theorem 3. Its proof relies on the
homogenization result, Theorem 1.

Lemma 18. Let U constrain spectrally smooth to the critical manifold N .
Suppose, that the normal frequencies have no resonances of order two or
three. Let U realize holonomic constraints for all initial values x∗ ∈ N and
v∗ ∈ Tx∗M . Then, the spectrum σ(H) of the Hessian H is constant on N .

Proof. Let us fix an initial position x∗ ∈ N . For a given index λ, we can
choose an initial velocity v∗ ∈ Tx∗M such that

θλ0 = 1, θμ0 = 0 μ �= λ.

By the assumptions and Theorem 1, the homogenized force field must van-
ish at the initial position x∗,

0 = gradUhom(x∗) = gradωλ(x∗).

Otherwise, the limit xhom would not satisfy the Euler-Lagrange equation
belonging to the Lagrangian Lcon of holonomic constraints. Since x∗ and
λ are arbitrary, each normal frequency, and therefore the spectrum of H ,
is constant on the critical submanifold N .

In §3.1, Lemma 17, we have shown that the conditions of Theorem 2
can be characterized by a normal energy E⊥

ε that vanishes in the limit,
E⊥

0 ≡ 0. Partially, a similar result holds here.

Corollary 1. Let the assumptions of Theorem 3 be valid. Then, the nor-
mal energy E⊥

ε is an adiabatic invariant,38 i.e.,

E⊥
ε → E⊥

0 = const,

uniformly in t ∈ [0, T ].

Proof. By the proof of Theorem 3, there is a coordinate system such that
gradH = 0. Now, the adiabatic invariance follows from Lemma 6 and the
integral representation (II.48) of E⊥

0 .

The converse is not true, since one can easily construct homogenized poten-
tials Uhom such that the initial values (x∗, Q(x∗)v∗) are fixed points. This
would lead to E⊥

0 = const without a realization-of-constraint-result being
valid.

x3.3. Bibliographical Remarks

The first mathematical proof of the sufficiency part of Theorem 2 was given
in 1957 by Rubin and Ungar [82]. These authors consider, however, the
Euclidean spaceM = Rm only. For this case, the theorem has been proven

38Compare Footnote 31 on p. 46.
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by Bornemann and Schütte [18, Theorem 3.1] along the lines presented
here. The specific case of codimension r = 1 has been discussed in the
work of the physicists Koppe and Jensen [58] and van Kampen [49].
This case also appears in form of an example in a textbook of Arnold

[5, Chap. 17A]. For general Riemannian manifolds, the sufficiency part is
stated as Theorem 9 in the encyclopedic survey of classical mechanics, [6,
Chap. 1,§6.2] byArnold, Kozlov, and Neishtadt. However, for a proof
they refer to the work of Rubin and Ungar [82], and of Takens [94]. On
the latter work a proof could only be based along the lines of Remark 3. In
addition, one would have to exclude any resonances of order two or three.

The necessity part of Theorem 2 appears to be entirely new. It relies
on our generalization, Theorem 1, of the work of Takens [94], which has
made possible to consider eigenvalues of multiplicity r for the first time.

In the setting of Theorem 2, the convergences in normal direction are
actually strong, cf. Lemma 17. This strong convergence allows to apply
the “slow manifold” technique of Kreiss [59], which has been worked out
1993 by Lubich [66, Theorem 2.2] in his work on Runge-Kutta methods
for “stiff” mechanical systems.

For the Euclidean space M = R
m , Theorem 3 has been stated and

proved 1983 by Gallavotti [34, Chap. 3, §3.8] as “Arnold’s theorem” in
view of a remark, which was made by Arnold on p. 91f of his textbook [5].
Takens [94, p. 429] offers a proof along the lines of Remark 4, however,
under the more restrictive assumption that the normal frequencies satisfy
no resonances of order two or three, nor have any multiplicity bigger than
one. Thus, his proof cannot even handle Example 3, which requires the
multiplicity r. For codimension r = 1, one can find a discussion in the
work of Rubin and Ungar [82], Koppe and Jensen [58], and van Kam-

pen [49]. A proof of Gallavotti’s theorem along the lines presented here was
given by Bornemann and Schütte [18, Theorem 3.2]. In 1993, Schmidt
[86, Prop. 3] has generalized the work of Gallavotti to Riemannian mani-
folds and nonconservative forces. This author refers to Theorem 3 as the
“Arnold-Gallavotti theorem.”

Under the assumptions39 of Theorem 3, Benettin, Galgani, and
Giorgilli [11][12] have shown the adiabatic invariance of the normal en-
ergy E⊥

ε for exponentially large times. To be precise, these authors have
proven a Nekhoroshev-type of result,

|E⊥
ε (t)− E⊥

ε (0)| < ε for 0 ≤ t ≤ exp(b ε−a),

where a and b are positive constants. In general, one has a = 1/r, where
r denotes the codimension of the critical manifold N ; but for instance, the
specific potential of Example 3 yields a = 1 in any dimension. These results
should be contrasted with the comparatively rather trivial Corollary 1 and
the estimate given by Schmidt [86, Prop. 1].

39For holomorphic potentials and M = Rm Euclidean.
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There is an intimate connection of the realization-of-constraint prob-
lem to various singular limits in fluid dynamics, such as the incompressible
limit of compressible fluid flow, or the quasi-geostrophic limit of geophysi-
cal fluid flow. The condition v∗ ∈ Tx∗N of Theorem 2 corresponds to initial
data which are balanced. For balanced data, a Hamiltonian approach to
the incompressible limit was given by Ebin [26], a careful perturbation
analysis can be found in the work of Klainerman and Majda [55], and
weak topologies are considered by Chemin [21]. Later on, it has turned
out that the “constraining” potentials of these flow problems satisfy con-
ditions that correspond to the one given in Theorem 3. Thus, in general,
unbalanced data lead to the same limit equations as balanced data. For
the incompressible limit consult the work of Schochet [87], for the quasi-
geostrophic limit Embid and Majda [27].

x4. Spectrally Nonsmooth Constraining Potentials:
Takens Chaos

According to Theorem 1, the limit dynamics of a natural mechanical sys-
tem with a strong, smoothly constraining potential U is governed by the
homogenized Lagrangian Lhom. This Lagrangian does only depend on the
fixed initial position x∗ and on the limit initial velocity v∗. In particular,
the details of the limiting process ẋε(0) → v∗ do not matter at all—which
is a far-reaching stability property of the homogenization process.

A completely different situation can be encountered if the constraining
potential U fails to constrain spectrally smooth. This was discovered by
Takens [94] who sketched how to construct generic40 examples for which
the limit set is not uniquely determined by the limit initial values (x∗, v∗).
We will construct an explicit example which shows up the strange properties
predicted by Takens.

The arguments of §1.7 show that a constraining potential U generi-
cally fails to constrain spectrally smooth if the normal frequencies have
a generic resonance of codimension two. Thus, we need at least a two-
parameter dependence of the Hessian, i.e., we have the lower bound n ≥ 2
for the dimension of the critical manifold. On the other hand, for having
eigenvalue-resonances at all, the Hessian has to operate on a normal space
that is two-dimensional at least, i.e., r ≥ 2.

We will construct a minimal example with n = 2, r = 2.

On the Euclidean space R4 , with coordinates x = (y1, y2, z1, z2), we
consider the singularly perturbed natural mechanical system given by the
Lagrangian

Lε =
1
2 |ẏ|2 + 1

2 |ż|2 − ε−2U(y, z).

40Here, the term “generic” is understood with respect to arbitrary smooth perturba-
tions of the potential.
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The potential U is given by41

U(y, z) = 1
2 〈H(y)z, z〉, H(y) = 1

4

(
I +

(
y1 y2

y2 −y1
))

.

The eigenvalues of H are

ω2
1(y) =

1
4 (1 − |y|), ω2

2(y) =
1
4 (1 + |y|).

Thus, if we restrict ourselves, for instance, to the cylinder

M = {(y, z) : |y| ≤ 0.95},
the matrix H is uniformly positive definite and U constrains to the critical
submanifold

N = {x = (y, z) ∈M : z = 0}.
The spectral decomposition of H is best described using polar coordinates,

y1 = r cosφ, y2 = r sinφ.

The eigenvectors of H which belong to ω2
1 and ω2

2 are then given by( − sin(φ/2)
cos(φ/2)

)
, resp.

(
cos(φ/2)
sin(φ/2)

)
.

The occurrence of the argument φ/2 shows that these eigenvectors are
defined up to a sign only. For a unique representation we have to cut the
y-plane along a half-axis, e.g., along φ = 3π/2. Hence, we restrict the
angular variable to the open interval

φ ∈
]
−π
2
,
3π

2

[
.

This way, the eigenvectors become smooth vector fields uniquely defined
on the cut plane

R
2
c = R

2 \ {y : y1 = 0, y2 ≤ 0}.
They cannot, however, be continued beyond the cut, but instead change
their mutual roles there. Thus, there is no neighborhood of x = 0 where
the potential U is constraining spectrally smooth.

We consider the following family of initial values depending on a pa-
rameter μ ≥ 0:

yε(0) = (9/16, 0), ẏε(0) = (0, μ), zε(0) = (0, 0), żε(0) = (1, 0).

For the discussion of the singular limit ε → 0 we have to distinguish two
cases.

41The matrix

(
y1 y2

y2 −y1
)

is the famous example of Rellich for a smooth sym-

metric matrix that is not smoothly diagonizable, cf. [80, §2][51, Chap. 2, Example 5.12].
In fact, the arguments of Appendix A show that this matrix inevitably enters as a kind
of normal form for any resonance of codimension two.
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The Case µ = 0. In this case, the limit trajectory yμ=0
0 crosses the

singularity y = 0 of the spectral decomposition of H .

Lemma 19. Let μ = 0 and T = 11
√
5/6. For ε small enough, we obtain

y2ε ≡ z2ε ≡ 0, |y1ε (t)| ≤ 0.95 ∀ t ∈ [0, T ].

There are the convergences z1ε = O(ε) and

y1ε → ημ=0 in C1[0, T ],

where ημ=0 is the solution of the initial value problem

η̈ = − 1

5
√
1 + η

, η(0) = 9/16, η̇(0) = 0. (II.50)

The limit function crosses the singularity y = 0 at time t∗ = 7
√
5/6,

η(t∗) = 0.

Proof. The equations of motion are given by

ÿ1ε = − 1
8ε

−2
(
(z1)2 − (z2)2

)
, ÿ2ε = − 1

4ε
−2z1z2,

and

z̈1ε = − 1
4ε

−2
(
z1 + (y1z1 + y2z2)

)
, z̈2ε = − 1

4ε
−2
(
z2 + (y2z1 − y1z2)

)
.

Given the initial values with μ = 0, one readily observes that y2ε ≡ z2ε ≡ 0
and the system reduces to

ÿ1ε = − 1
8ε

−2(z1)2, z̈1ε = − 1
4 ε

−2(1 + y1)z1.

In the (y1, z1)-space, these are the equations of motion for the natural
mechanical system

L̂ε =
1
2 |ẏ1|2 + 1

2 |ż1|2 − ε−2Û(y1, z1), Û(y1, z1) = 1
8 (1 + y1)(z1)2.

As long as |y1| ≤ 0.95, the potential Û is constraining spectrally smooth
to the critical submanifold z1 = 0 of codimension one. According to Defi-
nition 4, we obtain

ω(y1) = 1
2

√
1 + y1, θ0 = 4

5 , Ûhom(y
1) = 2

5

√
1 + y1.

Corresponding to this homogenized potential Ûhom(y
1), the Newtonian

equation of motion is given by Eq. (II.50). Denote its solution by η. By
conservation of energy we get the first order equation

η̇ = −
√
1− 4

5

√
1 + η.
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Using separation of variables, the time t∗ at which η equals zero is given
by

t∗ =

∫ 9/16

0

dη√
1− 4

5

√
1 + η

= 7
√
5

6 = 2.6087 . . . .

Accordingly, the time T at which there is η(T ) = −15/16 = −0.9375 is
given by

T =

∫ 9/16

−15/16

dη√
1− 4

5

√
1 + η

= 11
√
5

6 = 4.0994 . . . .

Now, Theorem 1 is applicable for small ε and yields the claimed strong
convergence y1ε → η in C1[0, T ]. Lemma 2 gives z1ε = O(ε).

We will denote the limit trajectory in y-space by yμ=0
0 = (ημ=0, 0).

The Case µ > 0. In this case, the y-components stay in the cut plane
R2
c , the potential U is constraining spectrally smooth, and Theorem 1 is

directly applicable.

Lemma 20. Let μ > 0 be small enough and T = 11
√
5/6. For ε small

enough, we obtain

0 < μ ≤ |y1ε (t)| ≤ 0.95 ∀ t ∈ [0, T ],

and the values of yε stay in the cut plane R2
c . There are the convergences

zε = O(ε) and
yε → y0 in C1([0, T ],R2),

where y0 is the solution of the initial value problem

ÿ0 = − 1

5
√
1 + |y0|

y0
|y0| , y0(0) = (9/16, 0), ẏ0(0) = (0, μ). (II.51)

Proof. For values y ∈ R2
c with |y| ≤ 0.95, the potential U is constraining

spectrally smooth. According to Definition 4, the given initial values yield

θ10 = 0, θ20 = 4
5 , Uhom(y) = θ20 ω2(y) =

2
5

√
1 + |y|.

Thus, the homogenized mechanical system is given by the Lagrangian

Lhom = 1
2 |ẏ|2 − 2

5

√
1 + |y| = 1

2 ṙ
2 + 1

2r
2φ̇2 − 2

5

√
1 + r.

The Euler-Lagrange equations (II.51) transform into polar coordinates as

r̈ = rφ̇2 − 1

5
√
1 + r

,
d

dt

(
r2φ̇
)
= 0,
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with the initial values r(0) = 9/16, φ(0) = 0, ṙ(0) = 0, and φ̇(0) = 16μ/9.
We obtain

φ̇ = 9
16μr

−2 > 0,

showing that φ is strictly monotonely increasing. Elimination of the cyclic
variable φ and conservation of energy yields the first order equation

ṙ2 + 81
256μ

2r−2 + 4
5

√
1 + r = 1 + μ2.

Thus, for μ small enough, there is a periodic motion between the two
extrema

r0 = 9
√
5

16 μ+O(μ2) = μ · 1.2577 . . .+ O(μ2), r1 = 9
16 = 0.5625.

By separation of variables, the period Δt of the motion is given by

Δt = 2

∫ r1

r0

dr√
1 + μ2 − 4

5

√
1 + r − 81

256
μ2

r2

→ 2

∫ 9/16

0

dr√
1− 4

5

√
1 + r

= 2t∗, μ→ 0.

During that period the angular variable φ increases for the amount Δφ,
given by

Δφ = 2

∫ r1

r0

φ̇ dr

ṙ
= 2

∫ r1

r0

9μ dr

16r2
√
1 + μ2 − 4

5

√
1 + r − 81

256
μ2

r2

= 2

∫ 1

r0
r1

9μ dz

16r0
√
1 + μ2 − 4

5

√
1 + r0/z − 81

256
μ2z2

r20

→ 2

∫ 1

0

dz√
1− z2

= π, μ→ 0.

Thus, for μ small enough, the solution of the homogenized system stays well
inside the cut plane R2

c for [0, T ]. Theorem 1 and Lemma 2 are applicable
and show the asserted convergences. These in turn imply the estimates for
the trajectories yε themselves.

If one takes the limit μ ↓ 0 of the ε-limit solution y0 given by Eq. (II.51)

one ends up with the function yμ↓00 = (ημ↓0, 0), where ημ↓0 fulfills the
differential equation

η̈ =

⎧⎪⎪⎨⎪⎪⎩
− 1

5
√
1 + η

η > 0,

1

5
√
1− η

η < 0,

with the initial values η(0) = 9/16, η̇(0) = 0.




� Homogenization of Natural Mechanical Systems �Chap� II

Discussion. The different limit behavior of the two cases can be ex-
plained roughly as follows. For μ > 0 we are in the situation of a spec-
trally smooth constraining potential. Thus, eigenvalues and eigenspaces
are followed according to their number, and even for μ ↓ 0 the dynamics is
governed by the potential

Uhom(y) = θ10 ω1(y) + θ20 ω2(y),

and the initial values

y0(0) = (9/16, 0), ẏ0(0) = (0, 0).

On the other hand, for μ = 0 we are in a dimensionally reduced situation
and follow the active eigenvalue smoothly. This means we have to change
its number after passing y = 0. Here, the dynamics is governed by the
potential

Ûhom(y
1, 0) =

⎧⎨⎩ θ10 ω1(y
1, 0) + θ20 ω2(y

1, 0) y1 ≥ 0,

θ20 ω1(y
1, 0) + θ10 ω2(y

1, 0) y1 ≤ 0,

according to the same initial values

y0(0) = (9/16, 0), ẏ0(0) = (0, 0).

Hence, as long as the singularity y = 0 does not appear, Theorem 1 is
applicable and the two limit functions are equal,

yμ↓00 (t) = yμ=0
0 (t), t ∈ [0, t∗].

However, after passing the singularity y = 0 at t = t∗, the limits ε→ 0 and
μ ↓ 0 are not longer interchangeable,

lim
ε→0

lim
μ↓0

yε(t) = yμ=0
0 (t) �= yμ↓00 (t) = lim

μ↓0
lim
ε→0

yε(t), t ∈]t∗, T ].

This non-commutativity is illustrated in Figure II.1. Now, if we consider
the simultaneous limit by taking an ε-dependent sequence μ(ε) ↓ 0, the
resulting limit solution y0 would depend on how the limit initial velocity

lim
ε→0

ẏε(0) = lim
ε→0

(0, μ(ε)) = (0, 0)

is obtained.
This is in sharp contrast to the assertion of Theorem 1, showing the

necessity of potentials which are constraining spectrally smooth. The situ-
ation here is even worse: By continuity we may obtain as the limit value
of yε(t) at time t > t∗ any value ỹ = (η̃, 0) with

ημ=0(t) ≤ η̃ ≤ ημ↓0(t).
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Legend: The y1-components of the following trajectories are shown versus time:

(a) Trajectories for μ = 0 and different ε: the limit ε = 0 (solid), ε = 0.1
(dashed), and ε = 0.5 (dotted)

(b) Trajectories for ε = 0.1 and different μ: μ = 0 (solid), μ = 0.05 (dashed),
and μ = 0.1 (dotted)

(c) Trajectories for μ = 0.05 and different ε: ε = 0.1 (solid), ε = 0.01 (dotted),
ε = 0.005 (dotted), and the limit ε = 0 (dashed)

(d) The limit ε = 0 for μ > 0 and different μ: μ = 0.05 (solid), the limit μ ↓ 0
(dashed), and μ = 0.1 (dotted)

Notice that the dashed line of a subfigure appears as the solid line in the next
subfigure.

Figure II.1: Illustration of the non-commutativity of the limits μ→ 0 and ε→ 0





 Homogenization of Natural Mechanical Systems �Chap� II

0 1 2 3 4
−1

−0.5

0

0.5

Figure II.2: Illustration (y1 vs. t) of a funnel as the limit set.

One just has to choose the sequence μ(ε) accordingly.
Until the impact time t = t∗ the limit dynamics is governed by the

homogenized potential Uhom, afterwards it changes suddenly in a completely
unpredictable way—given the limit initial values x∗ = (9/16, 0) and v∗ =
(0, 0) as the only data. With these data only, we have to regard the funnel42

between the two extreme cases ημ=0 and ημ↓0 as the limit set . Figure II.2
illustrates the situation. With regard to Takens’ discovery of this effect,
we speak of Takens chaos, cf. [18][57].

Because the strong influence of the particularities of the limiting process
ẋε(0) → v∗ shows up in time with a considerable delay, it should be clear
that the structure of Theorem 1 is completely destroyed. There is no
hope for a comparably elegant result for spectrally nonsmooth constraining
potentials.

42The appearance of funnels bears similarities with non-uniquely solvable initial value
problems, cf. [48][56][74].
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Applications

Suppose that, due to strong forcing, the motion of a mechanical system
exhibits rapid oscillations around some equilibrium positions. These equi-
librium positions form a submanifold N of the configuration space M . If
the rapid oscillations occur on a time scale τfast, compared to the time scale
τavg of the average motion, they introduce a small scale ratio

ε =
τfast
τavg

� 1.

For a variety of reasons, one might be interested to establish models which
approximate the average motion of the mechanical system by a dynamical
system on N , thus eliminating the rapidly oscillating degrees of freedom.
These reasons are, e.g.:

• The understanding of the average motion, cf. §§1 and 3.

• A simplification of the model, and a dimensional reduction from the
configuration space M to the submanifold N , cf. §§1 and 2.

• The acceleration of numerical integrators which suffer from small
time-scales which require the use of correspondingly small time-steps,
cf. §§2 and 3.

The homogenization theory of Chapter II offers, if applicable, a zero-order
approximation in ε, i.e., the singular limit ε → 0. As far as the present
author knows, there are no results available which provide higher-order
approximations for submanifoldsN of codimension higher than one.43 Even
the formal multiscale asymptotics ofKeller andRubinstein [52] provides
just the zero order approximation.

If the mechanical system is not given in a form that Theorem II.1 is
directly applicable, one nevertheless might be able to transform it into
a natural mechanical system with a strong constraining potential. Two
important transforms should be considered:

43With the exception, however, of the two exemplary asymptotic studies of Ap-
pendix C, added later by the present author. In fact, those studies show how involved
an asymptotic analysis of higher order would be in general.

67
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• Dimensional reduction of systems with symmetry. An example is
provided by the method of Routh for eliminating cyclic variables,
cf. §1.

• Legendre transform of a system given in Hamiltonian formulation,
cf. §3.

In the present chapter, we will discuss three applications from different
areas of the natural sciences. The first one, in §1, is from plasma physics.
The second one, in §2, is from (classical) molecular dynamics. The third
one, in §3, is from quantum chemistry. This final application is the starting
point of Chapter IV, where we will extend the methods of Chapter II to
an infinite-dimensional problem.

x1. Magnetic Traps and Mirrors

Here, we discuss a classical, very interesting application of the homoge-
nization results in the codimension r = 1 case. We will closely follow the
discussion given by Bornemann and Schütte [18, §6.2].

We consider the motion of a nonrelativistic, charged particle in a non-
uniform, steady magnetic field B(x). We assume that this field is “strongly
axially symmetric” in the sense that, in cylindrical coordinates r, z, φ, the
B-field does not depend on the angle φ and also the φ-component of B van-
ishes. We express the divergence-free field B in terms of a vector potential
A with components A = (0, 0, A(r, z)), such that B = curlA , i.e.,

B = (−∂zA, ∂rA+A/r, 0) . (III.1)

We denote by e the charge of the particle and by m its mass.
According to [61, §17], the Lagrangian of the motion is given by

L = 1
2m〈ẋ, ẋ〉+ e〈ẋ,A 〉 = 1

2m(ṙ2 + ż2 + r2φ̇2) + erφ̇A.

Here, x = (x1, x2, x3) and 〈·, ·〉 denotes the Euclidean inner product of R3 .
Since L does not depend on φ, we obtain the conservation of the angular
momentum,

∂L

∂φ̇
= J = const, i.e., mr2φ̇+ erA = J.

By the classical method of Routh [6, Chap. 3, §2.1], we eliminate the cyclic
variable φ reducing the Lagrangian in (r, z)-coordinates to

Lred = L − Jφ̇
∣∣∣
mr2φ̇+erA=J

= 1
2m(ṙ2 + ż2)− 1

2m
−1e2 (A− J/er)

2
.

Since multiplication of the Lagrangian by the constant factor m−1 does not
change the equation of motion, we instead consider the Lagrangian

Lε =
1
2 (ṙ

2 + ż2)− ε−2U(r, z), U(r, z) = 1
2 (A− J/er)2 , ε = m/e.
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This fits into the framework of Chapter II. The results of §§II.1-2 show
that, for a large specific charge ε−1 = e/m, the projection of the motion to
the (r, z)-plane oscillates very rapidly in a small neighborhood of the line

Nred = {(r, z) : A(r, z) = J/er}.

In addition, we are able to describe the secular oscillations of the angular
variable φ. We have to use some of the notions and results of §II.2.1. In
a vicinity of Nred we introduce tubular coordinates (ζ‖, ζ⊥) of the (r, z)-
plane. This means that ζ‖ denotes the nearest point on Nred and ζ⊥ its
distance to the point under consideration. By Lemma 4 of §II.2.1, we
obtain44

φ̇ε =
ε−1

rε

(
J

erε
−A(rε, zε)

)
= ±

√
2ε−2U/rε

=
ω(ζ

‖
ε )

rε
ε−1ζ⊥ε +O(ε1/2)

∗
⇀ 0,

implying by the extended Arzelà-Ascoli theorem, Principle I.4, the uniform
convergence φε → φ∗ to the fixed initial value φ∗ = φε(0). Thus, the actual
motion in space is a small amplitude gyration around the line

N = {(r, z, φ) : A(r, z) = J/er, φ = φ∗},

the so-called guiding center of the motion which, in fact, is a field line of
the magnetic field (III.1).

The frequency of gyration is ε−1ω, where ω2 is given as the single
nonzero eigenvalue of the Hessian

H = D2U |Nred
=

(
(∂rA+ J/er2)2 ∂zA · (∂rA+ J/er2)

∂zA · (∂rA+ J/er2) (∂zA)
2

)∣∣∣∣∣
Nred

=

(
B2
z −BrBz

−BrBz B2
r

)
,

computed in (r, z)-coordinates. Here, Br and Bz denote the components
of the B-field in the corresponding directions. A simple calculation reveals

ω2 = B2
r +B2

z = |B|2.

Alternatively, one can use the result of Example II.1. With

grad (A− J/er)|Nred
= (Bz,−Br),

44Notice that the component ζ⊥ε is just zε of Lemma II.4, cf. Eq. (II.21).
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using (r, z)-coordinates, one likewise obtains ω = |B|. Thus, just as in
the case of a uniform magnetic field, the particle gyrates with the Larmor
frequency e|B|/m.

Theorem 1 shows that in the limit ε→ 0 the average tangential motion
along the guiding center N is governed by the potential

Uhom = θ0 |B|,

where the adiabatic invariant θ0 constitutes the magnetic moment of the
particle motion. Therefore, the limit equation of motion now reads

s̈ = −θ0 ∂

∂s
|B|, (III.2)

where s denotes arc length on the line N .
As we see, the appearing homogenized potential Uhom introduces the

only force term for the limit motion. This force term is of utmost impor-
tance in engineering and natural sciences: Charged particles are moderated
by an increasingly strong magnetic field—and that the more, the bigger
the initial normal velocity was. This is the working principle of magnetic
traps45 and magnetic mirrors in plasma physics, as well as of the Van Allen
radiation belt of the earth with all its implications for northern lights and
astronautics.

Remark 1. The first derivation of equation (III.2) by physical reasoning
was given by the Swedish Nobel prize winner Alfvén [2, Chapter 2.3], see
also the books of Northrop [72] and Spitzer [93].

The guiding center motion (III.2) was derived by Hellwig [44] and
Kruskal [60] by means of a formal two-scale, or WKB-type, asymptotics.
Later on, Berkowitz and Gardner [15] derived error bounds for these
formal asymptotic expansions.

The first mathematically complete discussion of the limit e/m → ∞
was given by Rubin and Ungar [82] who also discuss a nice mechanical
analogue of the magnetic mirror. However, they only considered the re-
duced motion in the (r, z)-plane. The adiabatic invariance of the magnetic
moment was shown by Arnold in his seminal paper [3] using now well
established tools46 of the perturbation theory of integrable Hamiltonian
systems.

x2. Molecular Dynamics

In classical molecular dynamics approaches, the simulation of the dynami-
cal behavior of a molecular system is based on the assumption that the sys-
tem of interest is well predictable using classical mechanics. The molecule

45For obvious reasons, they are sometimes called adiabatic traps.
46Only slightly more elaborate than the discussion of codimension r = 1 in §I.2.6.
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is viewed as being composed of m mass points with positions xi ∈ R3 .
Using a more or less empirically constructed interaction potential W , the
dynamics is assumed to be governed by the Lagrangian

L (x, ẋ) = 1
2 〈Gẋ, ẋ〉 −W (x), x ∈ R3m , ẋ ∈ R3m .

Here, G ∈ R3m×3m denotes the diagonal mass matrix and 〈·, ·〉 the Eu-
clidean inner product of R3m . Typically, the potential can be split into
two parts of essentially different strength. Indicating this, we write the
interaction potential as the sum

W (x) = Vweak(x) + Vstrong(x), Vstrong(x) = ε−2U(x),

where Vstrong represents the strong interactions and Vweak the collection of
all weak interactions. The scaling of U and ε is chosen in the following
way: Let τfast be a period of a typical fast vibration for which Vstrong is
responsible, and τref a reference time-scale of the average motion. We then
define

ε =
τfast
τavg

.

There is a strong practical need for eliminating these small time scales
because they pose a severe restriction for efficient and reliable long-term
numerical simulations of macromolecules.

The potential Vstrong usually collects the bond-stretching and bond-
angle potentials which have unique equilibria. Thus, we can assume that
U is constraining to the manifold N of fixed, or “frozen”, bond-lengths
and bond-angles. If the strong potential U happens to constrain spectrally
smooth,47 the homogenization theory of Chapter II is applicable. Theo-
rem II.1 teaches that a zero-order description of the motion is given by the
Lagrangian

Lhom(x, ẋ) =
1
2 〈Gẋ, ẋ〉 − Vweak(x)− Uhom(x), ẋ ∈ TxN.

According to Definition II.4, the homogenized potential is given by the
expression

Uhom(x) =
∑
λ

θλ0 ω̂λ(x), x ∈ N.

47We have no idea, whether in general the strong potentials of molecular dynamics are
generically constraining spectrally smooth. By the arguments of §II.1.7, this is certainly
the case as long as there are no resonances of the normal frequencies. Otherwise, it will
depend on the admissible type of perturbations that define the term “generic.” Now,
because the strong potentials are usually of short range, typically nearest neighbor, the
Hessian will have a block diagonal structure. Only perturbations that preserve this
structure are “physical.” Due to this restriction it can happen that a resonance is of
codimension one only, or if of higher codimension non-generic because the parameter-
dependence of the corresponding eigenspace is essentially only one-dimensional. This
latter effect occurs in the Example of §2.1, the butane molecule, which constitutes a
typical building block of the block diagonal structure previously mentioned.
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Here, the frequencies ω̂λ are given via the spectral decomposition of the
Hessian H of U ,

H(x) = G−1D2U(x) =
∑
λ

ω̂2
λ(x)Pλ(x), x ∈ N.

Using Definition II.7 and Lemma II.14, the adiabatic invariants θλ0 can be
expressed as the ratios

θλ0 =
E⊥
λ (0)

ω̂λ(x∗)
,

where E⊥
λ (0) denotes the energy in the λ-vibrational mode at time t = 0,

and the point x∗ the orthogonal projection of the initial position to the
constraints manifold N .

The reader should notice that the homogenized potential, Uhom, does
not depend on the actual scaling of U and ε. Denoting by ωλ the frequencies
of the strong potential, Vstrong, itself,

ωλ = ε−1ω̂λ,

we obtain the scaling invariance

Uhom(x) =
∑
λ

E⊥
λ (0)

ω̂λ(x)

ω̂λ(x∗)
=
∑
λ

E⊥
λ (0)

ωλ(x)

ωλ(x∗)
= (Vstrong)hom(x).

This is, because energy is not effected by the scaling.
However, establishing a proper scaling of the singular perturbation pa-

rameter ε can help to understand the capabilities of the approach. The
smaller the size of ε is, the better will be the approximation of the zero-
order model and, equally important, the greater will be the pay-off in
computational work: As a rule of thump, eliminating a time scale of the
order O(ε) will increase the time-step of a numerical integrator by a factor
of O(ε−1).

x2.1. An Example: The Butane Molecule

We illustrate the possibilities of the approach with one of the simplest
realistic examples, the lumped butane molecule. We follow closely the
presentation previously given by Schütte and Bornemann [89]. The
data of the butane molecule are taken from [99].

The model of the butane molecule, CH3-CH2-CH2-CH3, consists of four
mass points given by the four CH-groups. These groups are located at the
positions xi ∈ R3 , i = 1, . . . , 4. Thus, the configuration space is the 12-
dimensional space R12 . The mass matrix is given by

G = diag(m1,m1,m1,m2,m2,m2,m2,m2,m2,m1,m1,m1),
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according to the mass m1 = 15u of the CH3-group, and m2 = 14u of
the CH2-group. Here, “u” denotes the atomic mass unit, 1u = 1.66054 ·
10−27kg. The strong part of the interaction potential W is given by the
bond-stretching and bond-angle potentials,

Vstrong(x) =

3∑
k=1

Vbs(xk, xk+1) + Vba(x1, x2, x3) + Vba(x2, x3, x4). (III.3)

The bond-stretching potential Vbs is modeled as a spring,

Vbs(xk, xk+1) =
1
2α(|xk − xk+1| − r0)

2,

where | · | denotes Euclidean length in R3 . The equilibrium length r0 and
the constant α are given by

r0 = 1.53 Å, α = 83.7
kcal

mol · Å2 .

As usual in chemistry, we have 1kcal = 4184J. The bond-angle potentials
Vba are “quasi-harmonically” given as

Vba(xk, xk+1, xk+2) =
1
2β(cosφ− cosφ0)

2.

Here, φ = φ(xk, xk+1, xk+2) denotes the angle between the bonds connect-
ing xk with xk+1, and xk+1 with xk+2,

cosφ(xk, xk+1, xk+2) =
(xk − xk+1)

T (xk+2 − xk+1)

|xk − xk+1| |xk+2 − xk+1| .

The equilibrium angle φ0 and the constant β are given by

φ0 = 109.5◦, β = 43.1
kcal

mol
.

The weak part Vweak of the interaction potentialW is given by the so-called
torsion-angle potential

Vweak(x) = Vtor(cos θ(x)),

with

Vtor(c) = (1.116− 1.462c− 1.578c2 + 0.368c3 + 3.156c4 + 3.788c5)
kcal

mol
.

The torsion-angle θ = θ(x1, x2, x3, x4) is the angle between the two planes
spanned by x1, x2, x3 and x2, x3, x4, respectively,

cos θ(x) =
(r1 × r2)

T (r2 × r3)

|r1 × r2| |r2 × r3| , rk = xk+1 − xk.
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Figure III.1: The normal frequencies ω (left) and corresponding periods τ (right).

The torsion-angle potential Vtor(cos θ) is symmetric with respect to θ = π,
cf. Figure III.2, and possesses a primary minimum located at θ = π, and
two secondary minima near θ = π/3 and θ = 5π/3. These minima account
for the two different geometrical conformations of the butane molecule.

The strong potential (III.3) is of the form discussed in §II.1.6. It is a
sum of five quadratic terms, therefore we have r = 5. We number the five
terms of the right hand side of Eq. (III.3) according to their appearance
from left to right. For computing the five frequencies ωk, k = 1, . . . , 5, we
first establish the reduced Hessian Hr as defined in Eq. (II.17). A lengthy
calculation, which we omit here, reveals that

Hr(x) =

⎛⎜⎜⎜⎜⎝
η1 η2 0 η4 η5
η2 η3 η2 η4 η4
0 η2 η1 η5 η4
η4 η4 η5 η7 η6
η5 η4 η4 η6 η7

⎞⎟⎟⎟⎟⎠ , x ∈ N,

where we use the abbreviations

η1 =
α

m1
+

α

m2
, η2 =

α cosφ0
m2

, η3 =
2α

m2
, η4 = −

√
αβ (1 + cosφ0)

2

r0m2
,

η5 = −
√
αβ cos θ sin2 φ0

r0m2
, η6 =

2β (1 + cosφ0) cos θ sinφ
2
0

r20 m2
,

η7 =
β (1 + cosφ0)

r20

((
1

m1
+

1

m2

)
(1− cosφ0) +

2

m2
(1 + cosφ0)

2

)
.

Notice that the reduced Hessian Hr does only depend on the torsion an-
gle θ. This single-parameter dependence can be explained as follows: Due
to conservation of momentum and angular momentum, the configuration
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Figure III.2: Left: Torsion angle potential Vweak (dashed line) and the corrected
potential Vweak+(Vstrong)hom (solid line). Both potentials are shifted such that their
global minimum has value zero. Right: Evolution of the distance |x1 − x4|, for the
original solution (dashed line) and for the homogenized solution (solid line).

space is 6-dimensional effectively. The intersection of the constraint mani-
fold N with this effective configuration space still has codimension 5, i.e.,
it is one-dimensional.

By a standard result of perturbation theory [51, Chap. 2, Thm. 6.1], this
holomorphic dependence of Hr on the single parameter θ yields a smooth
spectral decomposition of Hr. Moreover, the smoothness of the spectral
decomposition is generic, if only perturbations of the parameters α, β,
r0, φ0, m1 and m2 are allowed being considered as physically reasonable
perturbations of the potential.

Computed from the eigenvalue decomposition ofHr, the five frequencies
ω1, . . . , ω5 are shown as functions of the torsion angle θ in Figure III.1. We
number them according to

ω1(π) < ω2(π) < ω3(π) < ω4(π) < ω5(π).

Because of

ωj(θ) ≥ 20THz, θ ∈ [0, 2π], j = 1, . . . , 5,

the nondegeneracy condition (II.10) is fulfilled.
Summarizing, the strong potential Vstrong is generically constraining

spectrally smooth to the equilibrium manifold of “frozen” bond-lengths
and bond-angles,

N = {x ∈ R
12 : |x2 − x1| = |x3 − x2| = |x4 − x3| = r0,

φ(x1, x2, x3) = φ(x2, x3, x4) = φ0}

of codimension r = 5. We notice that, in an obvious way, the frequencies ω1

and ω2 as well as ω3, ω4, and ω5 form two groups. The first group of lower
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frequencies corresponds to the two bond-angle potentials, and the second
of higher frequencies to the three bond-stretching potentials. This reflects
the experience that the bond-stretching potentials are “stronger” than the
bond-angle potentials. We further notice that there are two resonance
points of the frequencies ω1 and ω2. These resonances occur at torsion
angles which are near to the secondary minima of the weak potential, cf.
Figure III.2. Corresponding to the frequency ωj , there is a “period”

τj =
2π

ωj
, j = 1, . . . , 5.

These periods are also shown in Figure III.1. The “fast” time scale of
Vstrong, as compared to Vweak, is given by the maximum value of the τj ,
i.e.,

τfast ≈ 0.25ps.

As it turns out in numerical simulations, cf. Figure III.2, a typical average
time scale would be given by τavg = 1ps yielding a scale ratio

ε ≈ 0.25,

which cannot really be considered as small.
For comparing the original motion with the zero order approximation

of the homogenization Lhom, we choose initial data for which

E⊥
4 (0) = 3.577

kcal

mol
, E⊥

1 (0) = E⊥
2 (0) = E⊥

3 (0) = E⊥
5 (0) = 0.

This energy amounts for half of the average energy of the butane molecule
in a gas at temperature 300K. The left subfigure of Figure III.2 shows
how the homogenized potential (Vstrong)hom “corrects” (solid line) the tor-
sion potential Vweak (dashed line). In particular, the roles of the primary
and secondary minima are reversed. The right subfigure of Figure III.2
shows the “length” of the molecule, r14 = |x4 −x1|, for the original motion
(dashed) and the homogenized motion (solid line). We observe a good ap-
proximation of the mean value despite the fact that the given scale ratio
is rather large. The time-step of the numerical integrator increases by a
factor which is roughly the scale ratio of the smallest eliminated time scale,

τavg
τ5

≈ 10.

For larger times, the homogenized solution increasingly deviates from the
original motion. Given a fixed ε > 0, this had to be expected . However,
the good approximation for intermediate times is promising in two respects:

• We gained analytical insight into the model of the butane molecule.
In particular, one might consider to remodel according to the homog-
enization with appropriately chosen normal energies E⊥

j (0).
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• The understanding of the singular limit ε → 0 opens the way to-
wards advanced numerical techniques for simulating the originally
given model efficiently. In our example, the increase of the time step
by an order of magnitude points in this direction.

x2.2. Relation to the Fixman-Potential

Historically, people in the molecular dynamics business first tried to es-
tablish a zero-order model with frozen bond-lengths and bond-angles using
just the Lagrangian of holonomic constraints

Lcon(x, ẋ) =
1
2 〈Gẋ, ẋ〉 − Vweak(x), ẋ ∈ TxN.

It soon became clear that the results are unsatisfactory. Reich [79] devel-
oped the idea that the model of holonomic constraints should be corrected
by an additional potential. Using arguments of equi-distribution48 of en-
ergy among the fast vibrational modes, borrowed from thermodynamics, he
came up with the so called Fixman-potential of statistical physics, namely

UFix(x) =
1
2E

⊥ · log detHr(x), x ∈ N,

where Hr denotes the reduced Hessian of U as introduced in §II.1.6. The
constant E⊥ stands for the energy in any of the normal vibrational modes.
Thus, he suggested to use

LFix(x, ẋ) =
1
2 〈Gẋ, ẋ〉 − Vweak(x)− UFix(x), ẋ ∈ TxN.

For short time-simulations, this potential correction showed quite promis-
ing results. This can be understood by the following argument: Equi-
distribution of energy in the normal vibrational modes yields that

E⊥
λ (0) = nλ ·E⊥, λ = 1, . . . , s.

Hence, the homogenized potential is given by

Uhom(x) = E⊥ ∑
λ

nλ
ωλ(x)

ωλ(x∗)
, x ∈ N.

For x ≈ x∗, such as for small times, the corresponding force term can by
approximated by the force term of the Fixman-potential,

gradUhom(x) = E⊥ ∑
λ

nλ
ωλ(x∗)

gradωλ(x)

≈ E⊥ ∑
λ

nλ
ωλ(x)

gradωλ(x) = gradUFix(x).

48This should not be mixed up with the provable equi-partitioning of energy into its
potential and kinetic part within each normal vibrational mode, i.e., Lemma II.13.
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Here, we have used the relation

UFix(x) =
1
2E

⊥ · log
(∏

λ

ωλ(x)
2nλ

)
= E⊥∑

λ

nλ logωλ, x ∈ N.

However, the two forces are obviously not the same and the Fixman-
potential does not describe the zero-order motion.

Remark 2. Interestingly enough, Gallavotti [34, p. 172ff], in his dis-
cussion of the homogenization problem for the codimension one case, Exam-
ple II.1, did not derive the correct homogenized potential Uhom but rather
the Fixman-potential UFix instead. Studying the special case ω2(x) =
1 + x2, however, “only in a heuristic, nonrigorous way”, as he writes, he
arrives at the potential

UFix(x) =
1
2E

⊥ · log(1 + x2).

instead of

Uhom(x) = E⊥
√

1 + x2

1 + x2∗

The reason for this flaw is exactly as above: He first correctly derives for
x ≈ x∗

gradUhom(x) ≈ E⊥ x

1 + x2∗
,

but in turn he argues that gradUhom is therefore given by

E⊥ x

1 + x2
,

which is not correct but yields UFix.

x3. Quantum-Classical Coupling: The Finite
Dimensional Case

Quite recently, the coupling of quantum mechanical systems with systems
behaving more classical has become an important modeling issue in molec-
ular dynamics and quantum chemistry, cf., e.g., [9][10][14][35]. The model
suggested in the latter two reference can be based on first principles as was
shown by Bornemann, Nettesheim, and Schütte [17]. This model
consists of a singularly perturbed Schrödinger equation that is nonlinearly
coupled to a classical Newtonian equation of motion. For a further justifica-
tion of the model, and for the development of efficient numerical methods,
an understanding of the singular limit is extremely important. This sin-
gular limit and further mathematical aspects of the model are subject of
Chapter IV.
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Here, we consider a finite dimensional analogue—as for instance arising
after a Galerkin approximation of the infinite dimensional Hamiltonian. We
will show that the singular limit can be discussed by the homogenization
theory that we have developed in Chapter II. This helps to understand,
why only technical modifications of the basic method are required to handle
the general case of Chapter IV.

The model system is given by the equations

ÿjε = −〈∂jH(yε)ψε, ψε〉, j = 1, . . . , n,

iεψ̇ε = H(yε)ψε.
(III.4)

Here, we denote by y ∈ Rn the “classical” positions, by ψ ∈ C r the “quan-
tum” states, and by 〈·, ·〉 the Euclidean inner product49 on C r . The smooth
mappingH : Rn → Rr×r takes real symmetric matrices as values, uniformly
positive definite, i.e., for some ω∗ > 0 we have

〈H(y)ψ, ψ〉 ≥ ω∗|ψ|2, y ∈ R
n , ψ ∈ C

r . (III.5)

The Euclidean norm on Rn and C r will be denoted by | · |. Finally, we
specify initial values for (III.4) by

yε(0) = y∗, ẏε(0) = w∗, ψε(0) = ψ∗. (III.6)

We assume,50 that ψ∗ has a single complex phase, i.e., there is a γ ∈ C

with |γ| = 1 such that

iγψ∗ ∈ R
r . (III.7)

We will show that the coupling equations (III.4) are the equations of motion
of a certain natural mechanical system to which Theorem II.1 is applicable.
This will be accomplished in three steps. First, by making the equations
real. Second, by giving them a canonical structure. Third, by applying a
Legendre transform.

We introduce phase space coordinates (y, η; z, ζ) ∈ R2n × R2r such that

ψ =
ε−1z + iζ

γ
√
2

, η = ẏ. (III.8)

Now, the coupling equations (III.4) transform into the system

ẏε = ηε, η̇jε = − 1
2 〈∂jH(yε)ζε, ζε〉 − 1

2ε
−2〈∂jH(yε)zε, zε〉

żε = H(yε)ζε, ζ̇ε = −ε−2H(yε)zε.

49The reader should be aware that there are slight changes of notation compared to
Chapter II.

50This assumption simplifies the following discussion. It is by no means essential,
however, as the general results of Chapter IV will show.
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A simple calculation reveals that this system just is the canonical system51

ẏε =
∂Eε
∂η

, η̇ε = −∂Eε
∂y

, żε =
∂Eε
∂ζ

, ζ̇ε = −∂Eε
∂z

, (III.9)

belonging to the energy function

Eε =
1
2 |η|2 + 1

2 〈H(y)ζ, ζ〉 + 1
2ε

−2〈H(y)z, z〉 = 1
2 |ẏ|2 + 〈H(y)ψ, ψ〉.

Thus, η is the conjugate momentum for y, and ζ for z. We now switch to
Lagrangian mechanics by applying a Legendre transform, [1, Chap. 3.6], to
the energy function Eε. The configuration space of the obtained Lagrangian
Lε will be M = Rn × Rr . Now, the Legendre transform yields

Lε(y, z, ẏ, ż) = 〈ẏ, η〉+ 〈ż, ζ〉 − Eε, ẏ =
∂Eε
∂η

, ż =
∂Eε
∂ζ

.

Evaluating these expression leads to

ζ = H(y)−1ż,

and, with x = (y, z), to the Lagrangian

Lε(x, ẋ) =
1
2 〈ẋ, ẋ〉G − ε−2U(x), ẋ ∈ TxM. (III.10)

Here, the Riemannian metric 〈·, ·〉G on the configuration space M is given
by the metric tensor

G(y, z) =

(
I 0
0 H(y)−1

)
and the potential U by the function

U(y, z) = 1
2 〈H(y)z, z〉.

The critical manifold N = {x ∈ M : U(x) = 0} of this nonnegative poten-
tial is just

N = R
n × {0} ⊂M.

On N , the Hessian HU of the potential U , as defined52 in §II.1.1, is given
by

HU (y) = G−1(x)D2U(x)
∣∣
x=(y,0)

=

(
0 0
0 H2(y)

)
.

Assumption (III.5) is equivalent to the nondegeneracy condition, Eq. (II.6),
showing that the potential U is constraining to the critical submanifoldN in

51This canonical structure of the quantum-classical-coupling model has been intro-
duced by Bornemann� Nettesheim, and Sch�utte [17, §IV.C].

52The reader should notice that in Chapter II the Hessian HU was simply denoted by
the letter H. This should not be confused with the Hamiltonian H here.
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the sense of Definition II.1. Now, we proceed further along the lines of §II.1.
We assume that the Hamiltonian H has a smooth spectral decomposition

H(y) =

s∑
λ=1

ωλ(y)P
H
λ (y), s ≤ r.

This yields a smooth spectral decomposition of the Hessian HU ,

HU (y) =
s∑

λ=1

ω2
λ(y)Pλ(y), Pλ =

(
0 0
0 PHλ

)
.

For calculating the homogenized potential Uhom of Definition II.4, we need
to identify the initial values of our system in the x = (y, z) coordinates.
By assumption (III.7), we obtain

x∗ = xε(0) = (y∗, 0) ∈ N, v∗ = ẋε(0) = (w∗,−iγ
√
2H(y∗)ψ∗).

Thus, we get the action constants

θλ0 =
〈Pλ(y∗)v∗, Pλ(y∗)v∗〉G

2ωλ(y∗)
= 〈PHλ (y∗)ψ∗, ψ∗〉,

and the homogenized potential

Uhom(y) =
∑
λ

θλ0 ωλ(y).

The equation of motion belonging to the corresponding natural mechanical
system on N are given by

ÿjhom = −∂jUhom(yhom), j = 1, . . . , n, (III.11)

with initial values yhom(0) = y∗ and ẏhom(0) = w∗. This is the finite-
dimensional analog of what is known as the time-dependent Born-Oppen-
heimer model in quantum mechanics [22][41], also known as the quantum
adiabatic approximation. We will come back to that point in Chapter IV.

Theorem II.1 and its proof in §II.2 yield the following result.53

Theorem 1. Let the Born-Oppenheimer solution yhom be non-flatly reso-
nant up to order three. Then, for every finite time interval [0, T ] we obtain
the strong convergence

yε → yhom in C1([0, T ],Rn)

and the weak* convergence

ψε
∗
⇀ 0 in L∞([0, T ], C r ).

53An asymptotic study yielding error estimates is subject of Appendix C. There,
however, more restrictive resonance assumptions have to be applied.
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Proof. Conservation of energy shows that ẏε is uniformly bounded. Thus,
on the finite time interval [0, T ], we obtain uniform bounds for y, z, and ζ.
We may thus restrict ourselves to compact portions of the energy surface
and the critical submanifoldN . Then, Theorem II.1 is applicable and yields
the asserted strong convergence yε → yhom in C1. Putting all coordinates
in the right order, we obtain

ψε =
ε−1zε + iH(yε)

−1żε

γ
√
2

.

Now, the weak* convergence ψε
∗
⇀ 0 follows from Lemmas II.2 and II.4.

Remark 3. This Theorem still holds true, if we relax the resonance con-
dition by only assuming that yhom is non-flatly resonant up to order two.
The reasons for this are the special structure of the metric tensor G and
the potential U being quadratic. Now, a careful review of the proof of
Theorem II.1 would reveal that those terms that we have shown to con-
verge weakly* to zero because of the third-order resonance conditions, are
identically zero in this particular case. However, we have refrained from
formulating this fact explicitly, since we will prove a far more general result
in Chapter IV.

A simple calculation shows the conservation of the Euclidean norm of
the “quantum” state,

|ψε(t)| = |ψ∗|.
Also, this follows from more general conservation properties which we will
discuss in Chapter IV. Thus, the weak* convergence ψε

∗
⇀ 0 is strong if

and only if we consider the trivial initial value ψ∗ = 0, which is physically
not interesting. This is in perfect accordance with Lemma II.17.



IV

Adiabatic Results in Quantum Theory and

Quantum-Classical Coupling

Most commonly, the simulation of the dynamical behavior of molecular
systems is based on the assumption that the system of interest can suffi-
ciently well be described by models of classical mechanics, cf. §III.2. How-
ever, such classical molecular dynamics approaches cannot be valid if the
very nature of the process under consideration is quantum mechanically:
e.g., the transfer of key protons in enzymes, clusters, or matrices. In all
these cases a quantum dynamical description is unavoidable. Since a full
quantum dynamics simulation of, e.g., a complete enzyme is not feasible,
so-called mixed quantum-classical models have found growing interest in
applications. These models describe most atoms by the means of classical
mechanics but an important, small portion of the underlying system by the
means of quantum mechanics.

In the current literature various mixed quantum-classical models have
been proposed. We will restrict our attention to a particular model, the
so-called QCMD (quantum-classical molecular dynamics) model, which has
been used extensively for real life applications, cf. [9][17] and the references
cited therein. Our concern is a further mathematical understanding of
this model by studying its singular limit. Besides yielding analytical in-
sight into the model, this study opens the way towards advanced numerical
techniques.

For the sake of simplicity, we introduce this coupling model in the case
of two particles. We assume that they have spatial coordinates x ∈ Rd

and y ∈ R
n , with mass m = ε2 � 1, respectively M = 1. The interaction

potential will be denoted by V (y, x). The lighter particle is supposed to
perform a quantum motion. It thus has to be described by a quantum
Hamiltonian H which is typically of the form

H(y) = −Δx + V (y, x),

where Δx denotes the Laplacian with respect to x. Hence, the Hamiltonian
is parametrized by the position y of the heavier particle, the description
of which remains classical. The equations of motion of the coupling model
are given by

ÿjε = −〈∂jH(yε)ψε, ψε〉, j = 1, . . . , n,

iεψ̇ε = H(yε)ψε.

83
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Here, 〈·, ·〉 denotes the inner product of the Hilbert space H = L2(Rd)
under consideration.

The singular limit of the coupling model can be put into the broader
framework of adiabatic results in quantum theory. In fact, the limit equa-
tion that we will obtain can be motivated by referring to the adiabatic
theorem of quantum mechanics. The adiabatic theorem will be subject of
§1 and, based upon it, the mentioned motivation of the limit equation will
be given at the beginning of §2, where we address the singular limit of the
coupling model.

Recall that we have studied an analogue of the coupling model with a
Hamiltonian operating on a finite dimensional Hilbert space H in §III.3.
There, we have shown that the coupling model can be transformed to a
natural mechanical system with a strong constraining potential to which
the homogenization theory of Chapter II is applicable. This result suggests
that the singular limit of the coupling model, and the adiabatic theorem
of quantum mechanics itself, can in principle be attacked in a more direct
way by the method of weak convergence. The point is to identify the right
quadratic quantity to look at. This quantity turns out to be the density
operator ρε(t) belonging to the wave function ψε(t) under consideration,

ρε(t) = 〈 · , ψε(t)〉 · ψε(t).
Now, for finite dimensional state spaces H , we can proceed closely along
the lines of the illustrative example in §I.2. For instance, the important
weak virial theorem, which has related the limit quadratic quantities with
the Hessian in §I.2, or §II.2.2, here establishes a commutation relation
between the limit density operator and the Hamiltonian, namely

[ρ0, H(y0)] = 0.

This way, we get a simple and, in physical terms, well-motivated proof of
the finite dimensional limit result, Theorem III.1. This direct proof for
finite dimensional state spaces was developed by the present author and
published in joint work of Bornemann and Schütte [19].

The extension of this direct proof to infinite dimensional state spaces
poses considerable functional analytical problems. First, and foremost,
since the operator-valued functions ρε are bounded in every reasonable
respect, one would like to establish an extraction principle ensuring ρε

∗
⇀

ρ0. As it turns out, such an extraction principle holds in the space

L∞([0, T ],J1(H ))

of trace-class-operator-valued functions, but would not do so in the corre-
sponding space L∞([0, T ],B(H )) of functions having bounded operators
as values.

A second source of problems is the fact that the Hamiltonian H is
unbounded as an operator in H , making it difficult to assign any direct
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meaning to a strong convergence H(yε) → H(y0) which we would like to
get as a consequence of yε → y0. However, since Hamiltonians in quantum
theory are semi-bounded and therefore associated with a quadratic form
(the energy), there is a bounded extension H : H+ → H−, where H+ ↪→
H ↪→ H− is a so-called rigging of the Hilbert space H . This way we
obtain the above mentioned strong convergence H(yε) → H(y0) simply in
the space L∞([0, T ],B(H+,H−)).

All these more sophisticated tools from functional analysis will be pre-
sented in Appendix B. Using these tools makes the proof of the adiabatic
theorem in §1, and that of the singular limit result in §2, only slightly more
elaborate for the infinite than for the finite dimensional case. However,
the reader should shortly browse through Appendix B first, familiarizing
himself with the notation that we will employ.

x1. The Adiabatic Theorem of Quantum Mechanics

The adiabatic theorem in quantum theory refers to a situation in which the
original Hamiltonian of a system is gradually changed into a new Hamil-
tonian. Roughly speaking, the theorem states that an eigenstate for the
original energy becomes approximately an eigenstate for the new energy if
the switch-on of the energy difference is sufficiently slow.

The model for this situation is given by a time-dependent Schrödinger
equation with slowness parameter ε� 1,

iψ̇ε = H(εt)ψε, ψε(0) = ψ∗.

The switch-on of the change takes place at time t0 = 0, the switch-off
at time t1 = T/ε. We are interested in the limit situation ε → 0 of
an “infinitely slow” change. It is convenient to transform the time vari-
able linearly onto the fixed interval [0, T ], yielding the singularly perturbed
equation

iεψ̇ε = H(t)ψε, ψε(0) = ψ∗.

If ω(t) is a sufficiently smooth path in the time-dependent discrete spectrum
of H(t) and P (t) the corresponding spectral projection, the folk theorem
states that

〈P (t)ψε(t), ψε(t)〉 → 〈P (0)ψ∗, ψ∗〉.
We will give an entirely new proof for this claim under reasonably general
assumptions. A short review of the literature can be found in §1.6.

x1.1. The Result

Let H(t), t ∈ [0, T ], be a family of semi-bounded selfadjoint operators on a
separable Hilbert space H . The corresponding coercive quadratic forms54

will be denoted by h(t; ·, ·). We will make the following hypotheses:

54For this notion, and the notation we are going to use below, consult §B.2.
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(H1) The form domain H+ of H(t) is time-independent and the form h
uniformly H+-coercive, i.e., there are constants γ > 0, and κ ∈ R

such that
h(t;ψ, ψ) ≥ γ〈ψ, ψ〉H+

− κ〈ψ, ψ〉
for all t ∈ [0, T ] and ψ ∈ H+. The corresponding rigging of H will
be denoted by H+ ↪→H ↪→H−.

(H2) The bounded extension H(t) : H+ →H− depends two times contin-
uously differentiable on t,

H ∈ C2([0, T ],B(H+,H−)).

(H3) There is a section ω ∈ C[0, T ] of the discrete spectrum55 of H ,

ω(t) ∈ σdisc(H(t)),

together with a time-dependent family P ∈ C1([0, T ],K (H )) of or-
thogonal projections, such that

H(t)P (t) = ω(t)P (t), t ∈ [0, T ].

We assume that P is the spectral projection belonging to ω almost
everywhere.

Notice, first, that the values of P have finite rank, and second, that hy-
pothesis (H3) allows for eigenvalue crossings on a set of measure zero.

Theorem 1. Suppose that the hypotheses (H1), (H2), and (H3) are valid.
Then, for a given initial value ψ∗ ∈ H+ with ‖ψ∗‖ = 1 and a sequence
ε→ 0 there are unique solutions

ψε ∈ C([0, T ],H+) ∩ C1([0, T ],H−)

of the initial value problem

iεψ̇ε = H(t)ψε, ψε(0) = ψ∗.

The differential equation holds in the space H−. The solution operator is
unitary, ‖ψε(t)‖ = 1 for all t ∈ [0, T ]. As ε→ 0, the energy level probability
belonging to ω converges uniformly in time to the constant given by its
initial value,

〈Pψε, ψε〉 → 〈P (0)ψ∗, ψ∗〉 in C[0, T ].

55In quantum mechanics, one refers to points of the discrete spectrum of the Hamil-
tonian as energy levels. The well-known relation E = ♥ω of energy and frequency allows
to identify these energy levels with eigen-frequencies. For this reason, and in accordance
with the notation of Chapter II and §III.3, we prefer to denote the energy levels by the
letter “ω.” One could also think of choosing appropriate units leading to ♥ = 1.
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x1.2. The Proof

The proof proceeds along the lines of the first three steps of the scheme set
up in the illustrative example of §I.2.

Step 1: Energy-Principle. We start with Kisyński’s nontrivial exis-
tence and uniqueness result for the time-dependent Schrödinger equation,
[54, Théorème 8.1]. The proof given by this author sharpens the variational
method of Lions [64] for abstract evolution equations.

Theorem 2. (Kisyński 1963). Suppose that hypotheses (H1) and (H2)
are valid. Then, for ε > 0 and ψ∗ ∈H+, there exists a unique solution

ψε ∈ C([0, T ],H+) ∩ C1([0, T ],H−)

of the initial value problem

iεψ̇ε = H(t)ψε, ψε(0) = ψ∗.

The differential equation is understood to hold in the space H−. The
solution operator is unitary,

‖ψε(t)‖ = ‖ψ∗‖, t ∈ [0, T ].

If ψ∗ ∈ D(H(0)), there is the additional regularity

ψε ∈ C1([0, T ],H ), ψε(t) ∈ D(H(t)), t ∈ [0, T ].

From now on, hypotheses (H1), (H2), and (H3) will be valid through-
out. Moreover, we put ‖ψ∗‖ = 1 as usual in quantum theory. Physically
reasonable, there is a uniform bound on the energy:

Lemma 1. Let ψ∗ ∈H+. Then, as ε→ 0, there is the uniform bound

ψε = O(1) in C([0, T ],H+).

Proof. First, assume that ψ∗ ∈ D(H(0)). By the regularity result of
Theorem 2, we obtain56

d

dt
〈H(t)ψε(t), ψε(t)〉
= 〈H(t)ψε(t), ψ̇ε(t)〉+ 〈ψ̇ε(t), H(t)ψε(t)〉 + 〈Ḣ(t)ψε(t), ψε(t)〉
= iε−1〈H(t)ψε(t), H(t)ψε(t)〉 − iε−1〈H(t)ψε(t), H(t)ψε(t)〉

+ 〈Ḣ(t)ψε(t), ψε(t)〉
= 〈Ḣ(t)ψε(t), ψε(t)〉.

(IV.1)

56In physics, this result is sometimes called the “Hellmann-Feynman theorem.”
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Now, by hypotheses (H1) and (H2), the expression

‖ψ‖2t = h(t;ψ, ψ) + κ‖ψ‖2 = 〈H(t)ψ, ψ〉 + κ‖ψ‖2

defines a norm uniformly equivalent to ‖ · ‖H+
. By what be have shown for

the first term of this norm expression, we obtain

d

dt
‖ψε(t)‖2t = 〈Ḣ(t)ψε(t), ψε(t)〉,

since ‖ψε‖2 ≡ 1. Invoking hypothesis (H2), we obtain

d

dt
‖ψε(t)‖2t ≤ 2c ‖ψε(t)‖2t

with a constant c which is independent of ε. Thus, by the Gronwall lemma,
there is the uniform bound

‖ψε(t)‖t ≤ ‖ψ∗‖0 ecT , t ∈ [0, T ].

A density argument shows that this estimate still holds true if we take
initial values ψ∗ ∈ H+. Because of the stated uniform norm equivalence,
we have proved the asserted uniform bound for the ‖ · ‖H+

-norm.

The quadratic quantities Σε and Πε of Chapter II generalize in the
present setting to the operator-valued function

ρε = 〈 · , ψε〉ψε ∈ C([0, T ],J1(H )).

The values of ρε are nonnegative selfadjoint trace class operators having
trace one,

tr ρε(t) = 〈ψε(t), ψε(t)〉 = 1.

Operators with these properties are called density operators in quantum
theory.57 Therefore, we call ρε the time-dependent density operator associ-
ated with the pure state ψε. Because of ψε ∈ C([0, T ],H+) we can extend
the operator values of ρε uniquely to operate on H− such that

ρε ∈ C([0, T ],B(H−,H+)).

Now, with the help of the tools developed in §B.1, the result of uniformly
bounded energy, Lemma 1, implies the following important extraction prin-
ciple. Recall that σ : H− → H+ denotes the Riesz representation map of
the rigging of H .

57Frequently, density operators are also called statistical operators. A very readable
survey of the Schrödinger picture of quantum mechanics in terms of these operators was
given by Fano [30], cf. also the textbook of Messiah [69, §VIII.21–25].
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Lemma 2. There is a subsequence of ε, denoted by ε again, and a function
ρ0 ∈ L∞([0, T ],B(H−,H+)) such that:

(i) ρε
∗
⇀ ρ0 in L∞([0, T ],J1(H )),

(ii) ρεσ
∗ ∗
⇀ ρ0σ

∗ in L∞([0, T ],J1(H+)),

(iii) σ∗ρε
∗
⇀ σ∗ρ0 in L∞([0, T ],J1(H−)),

(iv) ρεH
∗
⇀ ρ0H in L∞([0, T ],J1(H+)),

(v) Hρε
∗
⇀ Hρ0 in L∞([0, T ],J1(H−)).

Proof. The uniform boundedness of ‖ψε‖ and ‖ψε‖H+
shows that {ρε} is

bounded in L∞([0, T ],J1(H )), {ρεσ∗} is bounded in L∞([0, T ],J1(H+)),
and {σ∗ρε} is bounded in L∞([0, T ],J1(H−)). By Theorem B.3 and Lem-
ma B.10, this immediately implies the existence of a limit function ρ0 ∈
L∞([0, T ],B(H−,H+)) and a subsequence such that the assertions (i), (ii),
and (iii) hold. By hypothesis (H2) we have

Hσ ∈ C([0, T ],B(H−)), σH ∈ C([0, T ],B(H+)).

Hence, Lemma B.4 shows that

ρεH = ρεσ
∗ · σH ∗

⇀ ρ0σ
∗ · σH = ρ0H in L∞([0, T ],J1(H+)),

proving assertion (iv). Likewise, we obtain

Hρε = Hσ · σ∗ρε
∗
⇀ Hσ · σ∗ρ0 = Hρ0 in L∞([0, T ],J1(H−)),

proving assertion (v).

Step 2: The Weak Virial Theorem. As in the illustrative example
of §I.2, the weak limit relations of Lemma 2 allow to prove a significant
commutation relation.

Lemma 3. (Weak Virial Theorem). There holds the commutation re-
lation

ρ0(t)H(t) ⊂ H(t) ρ0(t)

for almost all t ∈ [0, T ] as unbounded, densely defined operators in H .

Proof. Theorem 2 shows that

ρσε = 〈 · , ψε〉H−ψε ∈ C1([0, T ],J1(H−)).

Since we have conservation of norm, ‖ψε‖ = 1, the sequence ρσε is uniformly
bounded in C([0, T ],J1(H−)), yielding

iερσε → 0 in C([0, T ],J1(H−)).
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Using the notation introduced in Lemma B.8, we get the time derivative

iερ̇σε = −〈 · , iεψ̇ε〉H−ψε + 〈 · , ψε〉H− iεψ̇ε

= −〈 · , Hψε〉H−ψε + 〈 · , ψε〉H−Hψε

= (Hρε)
σ − (ρεH)σ.

Taking weak* limits in L∞([0, T ],J1(H−)) shows, by applying Lemma 2,
Lemma B.9, and Lemma B.3, that

0 = (Hρ0)
σ − (ρ0H)σ.

Now, given an arbitrary element ψ ∈H+, we get

0 = (H(t)ρ0(t))
σ
σ∗ψ− (ρ0(t)H(t))

σ
σ∗ψ = H(t)ρ0(t)ψ− ρ0(t)H(t)ψ, (*)

for almost all t ∈ [0, T ]. Since ρ0(t)ψ ∈H+ and ρ0(t)H(t)ψ ∈H+, we thus
have shown that

ρ0(t)D(H(t)) ⊂ ρ0(t)H+ ⊂ D(H(t)), (**)

almost everywhere. Combining (*) and (**) gives the assertion.

Remark 1. On a first sight, calling Lemma 3 the “weak virial theorem”
might appear a little bit strange. However, this is justified by the anal-
ogy in proof to Lemma II.7. Moreover, there is a strong analogy between
the virial theorem in classical mechanics and results in quantum theory
which state that the expectation value of certain commutators is zero. This
analogy was first studied by Hirschfelder [46], who coined the notion
hypervirial theorem for such a kind of result. These hypervirial theorems
play a prominent role in modern quantum chemistry, cf. the monograph of
Fernández and Castro [31]. As in the case of classical mechanics, §I.2.6,
we replace the average, i.e., the expectation value, by the weak*-limit: the
proof of Lemma 3 has shown that [H, ρε]

∗
⇀ 0, if interpreted in the correct

way.

As an immediate corollary we obtain the following lemma which has
been the ultimate goal of this step of the proof.

Lemma 4. For almost all t ∈ [0, T ] there holds the commutation relation

[ρ0(t), P (t)] = 0 in B(H ).

Proof. The spectral theorem for unbounded selfadjoint operators, e.g., in
the very formulation as Theorem 13.33 in Rudin’s textbook [83], teaches
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the following: If P (t) is a spectral projection of H(t) and the bounded op-
erator ρ0(t) commutes with H(t) in the sense that ρ0(t)H(t) ⊂ H(t) ρ0(t),
then one obtains

P (t)ρ0(t) = ρ0(t)P (t). (*)

By hypothesis (H3), P (t) is the spectral projection belonging to ω(t) almost
everywhere. By Lemma 3, ρ0(t) commutes with H(t) in the appropriate
sense almost everywhere. Thus, (*) holds almost everywhere.

Step 3: Adiabatic Invariance of the Action. According to the corre-
spondence principle of Ehrenfest, the “action” of the quantum mechan-
ical system under consideration is given by the (time-dependent) energy
level probability

θε = 〈Pψε, ψε〉 ∈ C1[0, T ].

At time t = 0, the energy level probability is given by the ε-independent
value

θε(0) = 〈P (0)ψ∗, ψ∗〉.
The proof of Theorem 1 is finished by the following lemma.

Lemma 5. For the originally given sequence ε→ 0, there is

θε → θ0 = 〈P (0)ψ∗, ψ∗〉 = const in C[0, T ].

Proof. First, let ε be the subsequence which has been introduced in
Lemma 2. Since P ∈ C1([0, T ],K (H )), we obtain by Lemma B.5 that

θε = tr(P ρε)
∗
⇀ tr(P ρ0) = θ0 in L∞[0, T ]. (IV.2)

Recall that P (t) is the orthogonal projection onto a finite dimensional
subspace of D(H(t)) ⊂H+. Hence, the time derivative of θε is given by

θ̇ε = 〈Pψε, ψ̇ε〉+ 〈ψ̇ε, Pψε〉+ 〈Ṗ ψε, ψε〉
= iε−1〈Pψε, Hψε〉 − iε−1〈Hψε, Pψε〉+ 〈Ṗψε, ψε〉
= iε−1〈HPψε, ψε〉 − iε−1〈ψε, HPψε〉+ 〈Ṗψε, ψε〉
= iε−1ω〈Pψε, ψε〉 − iε−1ω〈ψε, Pψε〉+ 〈Ṗψε, ψε〉
= 〈Ṗψε, ψε〉 = tr(Ṗ ρε).

Employing Lemma B.5 once again, we conclude that

θ̇ε = tr(Ṗ ρε)
∗
⇀ tr(Ṗ ρ0) = θ̇0 in L∞[0, T ].

In particular, the sequence {θ̇ε} is uniformly bounded in L∞[0, T ]. The ex-
tended Arzelà-Ascoli theorem, Principle I.4, implies therefore the uniform
convergence

θε → θ0 in C[0, T ]
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and the regularity θ0 ∈ C0,1[0, T ]. Now, using the commutativity result,
Lemma 4, we obtain

θ̇0 = tr(Ṗ ρ0) = tr(PṖ · ρ0 · P ) + tr((I − P )Ṗ · ρ0 · (I − P ))

= tr(PṖP · ρ0) + tr((I − P )Ṗ (I − P ) · ρ0) = 0,

almost everywhere. Recall that there holds PṖP = (I − P )Ṗ (I − P ) = 0
by Lemma II.9. Thus, we get θ0 ≡ θ0(0) = 〈P (0)ψ∗, ψ∗〉. Since this limit
is independent of the subsequence chosen, we can discard the extraction of
subsequences by recalling Principle I.5.

x1.3. Extension to the Essential Spectrum

So far we have proven the adiabatic invariance only for energy level prob-
abilities which belong to the discrete spectrum of H . However, since the
solution operator is unitary, we can prove similar results for the essential
spectrum as a whole.

To this end, we replace hypothesis (H3) by:

(H3′) Denote by Q(t) the spectral projection of H(t) belonging to the es-
sential spectrum σess(H(t)). There is a number Ndisc ∈ N0 ∪ {∞}
and a family ωλ ∈ C[0, T ] which builds up the discrete spectrum of
H ,

{ωλ(t)}Ndisc

λ=1 = σdisc(H(t)).

Further, there is a family Pλ ∈ C1([0, T ],K (H )) the values of which
are orthogonal projections obeying

Pλ(t)Q(t) = Q(t)Pλ(t) = 0, rangePλ(t) ⊂ D(H(t)),

and
H(t)Pλ(t) = ωλ(t)Pλ(t), λ = 1, . . . , Ndisc.

In the strong operator topology, all these projections sum up to the
identity operator,

I = Q(t) +
∑

λ
Pλ(t), t ∈ [0, T ].

The set of resonance points,

Ir = {t ∈ [0, T ] : ωλ(t) = ωμ(t) for some λ �= μ},

is of measure zero.58

58Since the set Ir is the countable union of closed subsets of the real line R, it has
measure zero if and only if it is countable. This follows immediately from the fact
that every open subset of R is a countable disjoint union of open intervals, cf. [45,
Theorem 6.59].
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Notice that hypothesis (H3′) implies the validity of hypothesis (H3) for
every pair (ωλ, Pλ). We define the energy level probabilities

θλε = 〈Pλψε, ψε〉, θQε = 〈Qψε, ψε〉.
Under hypothesis (H1), (H2), and (H3′), Theorem 1 shows that

θλε → θλ0 = 〈Pλ(0)ψ∗, ψ∗〉 in C[0, T ]. (IV.3)

However, we cannot prove the same way that

θQε → θQ0 = 〈Q(0)ψ∗, ψ∗〉 in C[0, T ], (IV.4)

for the following reason: despite the fact that the assertion of Lemma 4
applies to Q(t) with literally the same proof, i.e., there is

[ρ0(t), Q(t)] = 0, (IV.5)

for almost all t ∈ [0, T ], the proof of Lemma 5 does not work any longer
because of

Q(t) �∈K (H ).

For Q(t) is a orthogonal projection of infinite rank.
However, there are two situations where we can prove a convergence like

Eq. (IV.4). This possibility is based on the observation that the solution
operator being unitary implies

θQε (t) +
∑

λ
θλε (t) = ‖ψε(t)‖2 = 1 = ‖ψ∗‖2 = θQ0 +

∑
λ
θλ0 . (IV.6)

First, completely trivial, there is the following corollary of Theorem 1.

Corollary 1. Let hypotheses (H1), (H2), and (H3′) be valid. If the dis-

crete spectrum is finite, Ndisc <∞, then θQε → θQ0 in C[0, T ].

Second, and far less trivial, there is the following corollary of Theorem 1.

Corollary 2. Let hypotheses (H1), (H2), and (H3′) be valid. If the es-
sential spectrum is not excited initially, i.e., Q(0)ψ∗ = 0, then there is the
convergence

θQε (t) → θQ0 = 0,

pointwise for all t ∈ [0, T ].

Proof. The isometry relation (IV.6) shows that

‖{θλε (t)}λ‖
1 =
∑

λ
θλε (t) ≤ 1 =

∑
λ
θλ0 = ‖{θλ0}λ‖
1.

Thus, the component-wise convergence Eq. (IV.3) and Lemma 6 below
yield the pointwise convergence∑

λ
θλε (t) →

∑
λ
θλ0 = 1, t ∈ [0, T ],

which implies the assertion.
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Lemma 6. Let there be a sequence {xε} in the space �1. Suppose that
this sequence converges component-wise to an element x0 ∈ �1,

xε(λ) → x0(λ), λ ∈ N,

while the norm remains bounded as ‖xε‖
1 ≤ ‖x0‖
1 . Then, there is the
strong convergence

xε → x0 in �1.

Proof. The component-wise convergence and the uniform bound in norm
imply that xε

∗
⇀ x0 in �1 = c∗0. Hence, we have

‖x0‖
1 ≤ lim inf ‖xε‖
1 ≤ lim sup ‖xε‖
1 ≤ ‖x0‖
1 ,
i.e., ‖x0‖
1 = lim ‖xε‖
1 . By a well-known result about the space �1, [45,
Theorem 13.47], this convergence of the norm, together with the assump-
tion of component-wise convergence, implies the strong convergence in �1.

x1.4. Remarks on the Limit of the Time-Dependent Density
Operator

Here, we study the limit function ρ0 of Lemma 2 more closely. The results
of Lemma B.6 show that the values ρ0(t) are nonnegative selfadjoint trace
class operators, almost everywhere. However, the weak* convergence

ρε
∗
⇀ ρ0 in L∞([0, T ],J1(H ))

does not suffice to conclude that

1 ≡ tr ρε
∗
⇀ tr ρ0 in L∞[0, T ],

and therefore, that ρ0 has trace one. In fact, even though the trace map

tr : L∞([0, T ],J1(H )) → L∞([0, T ], C )

is norm continuous, it is not weakly* sequentially continuous, as shown in
§B.1.4. Thus, without further structure, we cannot state that the values
ρ0(t) are density operators almost everywhere. Instead, one can only show
the following estimate:

tr ρ0(t) ≤ ‖ tr ρ0‖L∞[0,T ] = ‖ρ0‖L∞([0,T ],J1(H ))

≤ lim inf ‖ρε‖L∞([0,T ],J1(H ))

= lim inf ‖ tr ρε‖L∞[0,T ] = 1,

(IV.7)

almost everywhere. However, in the setting of Corollary 2 one can actually
prove more.
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Corollary 3. Let hypotheses (H1), (H2), and (H3′) be valid. If Q(0)ψ∗ =
0, one obtains

tr ρ0 = 1 in L∞[0, T ], ρ0Q = Qρ0Q = 0 in L∞([0, T ],J1(H )).

Proof. Eq. (IV.2) shows that tr(Pλρ0) ≡ θλ0 . Thus, Eqs. (IV.6) and (IV.7)
yield that

1 =
∑

λ
θλ0 ≤ tr(Q(t)ρ0(t)) +

∑
λ
tr(Pλ(t)ρ0(t)) = tr ρ0(t) ≤ 1,

almost everywhere, which is equivalent to tr ρ0 = 1 in L∞[0, T ]. Moreover,
this two-sided estimate shows that

0 = tr(Q(t)ρ0(t)) = tr(Q(t)ρ0(t)Q(t)) = ‖Q(t)ρ0(t)Q(t)‖J1(H ), a.e.,

since Q(t)ρ0(t)Q(t) is nonnegative. Thus, by using the commutativity re-
lation Eq. (IV.5), we obtain ρ0Q = ρ0Q

2 = Qρ0Q = 0.

Up to now, the limit function ρ0 cannot be identified uniquely, i.e., inde-
pendent of the defining subsequence. However, under stronger assumptions,
the limit ρ0 can be described with the help of the initial data.

Corollary 4. Let hypotheses (H1), (H2), and (H3′) be valid. Suppose
that Q(0)ψ∗ = 0 and

rankPλ(0) > 1 =⇒ Pλ(0)ψ∗ = 0.

Then, for the originally given sequence ε→ 0, one obtains

ρε
∗
⇀ ρ0 =

∑
λ
θλ0 Pλ in L∞([0, T ],J1(H )),

the sum being understood to converge in the strong operator topology.

Proof. Lemma 4 and the corresponding result for Q, Eq. (IV.5), show
that

ρ0 = Qρ0Q +
∑

λ
Pλρ0Pλ, (*)

almost everywhere. Corollary 3 yields Qρ0Q = 0. On the other hand, there
is

‖Pλ(t)ρ0(t)Pλ(t)‖J1 = tr(Pλ(t)ρ0(t)) = θλ0 ,

almost everywhere. Thus, since θλ0 is nonzero for projections Pλ(t) of rank
one only, we obtain

Pλρ0Pλ = θλ0 Pλ, λ = 1, . . . , Ndisc.

Summarizing, the limit (*) is given by the asserted expression, indepen-
dently of the defining subsequence. Therefore, by Principle I.5, we may
discard the extraction of subsequences.

This way, the limit density operators ρ0(t) are convex combinations of
density operators of rank one. In particular, the rank of ρ0(t) is given by

rank ρ0(t) = #{λ : θλ0 �= 0},
almost everywhere.
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x1.5. The Example of a Two-Body Hamiltonian

As an example for the abstract results of the preceding sections, we consider
a time-dependent two-body Hamiltonian on H = L2(R3 ),

H(t) = −Δ+ V (t, ·),

where the potential fulfills

V = V1 + V2, V1 ∈ C2([0, T ],R), V2 ∈ C2([0, T ], L∞(R3 )).

The discussion of the Rollnik class R in §B.2.1 shows that the hypotheses
(H1) and (H2) of §1.1 are valid. The associated rigging of H = L2(R3 ) is
given by the scale of Sobolev spaces,

H− = H−1(R3 ), H+ = H1(R3 ).

Assuming hypothesis (H3′), Theorem 1 yields the adiabatic invariance

〈Pλψε, ψε〉 → 〈Pλ(0)ψ∗, ψ∗〉 in C[0, T ], λ = 1, . . . , Ndisc,

of the energy level probabilities for the discrete spectrum. Under the addi-
tional assumption that the discrete spectrum is finite, Ndisc < ∞, or the
essential spectrum is not excited initially, Q(0)ψ∗ = 0, Corollaries 1 and 2
yield the adiabatic invariance of the energy level probability belonging to
the essential spectrum as a whole,

〈Q(t)ψε(t), ψε(t)〉 → 〈Q(0)ψ∗, ψ∗〉, t ∈ [0, T ].

Looking at these results, three questions arise naturally: first, whether
the discrete spectrum is finite, i.e., Ndisc < ∞, second, whether σess is
connected, and third, whether σess = ∅. For the convenience of the reader,
we recall some criteria from Reed’s and Simon’s textbook [77] which help
to decide about these questions:

Denote by R + L∞(R3 )δ the space

R + L∞(R3 )δ = {V : ∀ δ > 0 ∃V = V1δ + V2δ,

V1δ ∈ R, V2δ ∈ L∞(R3 ), ‖V2δ‖L∞ ≤ δ
}
.

Suppose that V (t, ·) ∈ R+L∞(R3 )δ for all t ∈ [0, T ]. Then, as an applica-
tion of Weyl’s theorem, Example XIII.4.7 of [77] teaches that the essential
spectrum is connected, in fact

σess(H(t)) = [0,∞[, t ∈ [0, T ].

Additionally, Theorem XIII.6 of [77] states the following:



§�� The Adiabatic Theorem of Quantum Mechanics 
�

(a) Suppose that

V (0, x) ≤ −a|x|−2+η, |x| > R0,

for some R0 and some a > 0, η > 0. Then the discrete spectrum is
infinite, Ndisc = ∞.

(b) Suppose that

V (0, x) ≥ − 1
4 b|x|−2, |x| > R0,

for some R0 and some b < 1. Then the discrete spectrum is finite,
Ndisc <∞.

If it happens to be that V (0, ·) ∈ R, then the so-called Birman-Schwinger
bound, [77, Theorem XIII.10], states that

Ndisc ≤
(‖V (0, ·)‖R

4π

)2

<∞.

On the other hand, Theorem XIII.16 of [77] tells us that H(t) has a purely
discrete spectrum, i.e.,

σess(H(t)) = ∅,
if V (t, ·) is a locally bounded nonnegative function such that V (t, x) → ∞
as |x| → ∞.

x1.6. Bibliographical Remarks

Our approach to the adiabatic theorem of quantum mechanics is somewhat
complementary to the existing literature. By looking at density operators
instead of the wave function we directly attack the energy level probabil-
ities. This way, however, we have stated and proven nothing about the
convergence of the solution ψε itself. In this respect, our result is weaker
than what can be found in the literature. On the other hand, our result
is stronger, since we do not have to employ a so-called “gap condition” for
the discrete part of the spectrum. Such a gap condition would virtually
exclude any eigenvalue resonances.

For finite dimensional state spaces H , the first mathematical proof of
the adiabatic theorem was given by Born and Fock [16]. These authors
considered simple eigenvalues with at most finitely many resonances. Fur-
ther, they assumed that there exists a κ ∈ N0 such that for each resonance
ωλ(t∗) = ωμ(t∗) a higher order nondegeneracy condition holds,

dκ

dtκ
(ωλ − ωμ)

∣∣∣∣
t=t∗

�= 0,
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just putting κ = 0 if there are no resonances at all. By estimating oscil-
latory integrals as arising in geometric optics, they were able to prove the
asymptotic result, [16, Eq. (60)],

〈Pλψε, ψε〉 = 〈Pλ(0)ψ∗, ψ∗〉+O
(
ε−κ−1

)
.

This shows in particular that the rate of convergence in Theorem 1 can be
arbitrary slow as a power of the singular perturbation parameter ε.

This early work set up the central ideas which, more or less, were fol-
lowed by all later work: a suitable coordinate change, called “rotating axis
representation” in the textbook of Messiah [69, §XIII.12], and a simplified
motion for comparison purposes, called “adiabatic evolution” byKato [50].

The work of Born and Fock was later extended to infinite dimensional
state spaces H by Kato [50], who, however, restricted himself to the case
that the essential spectrum is not excited initially, i.e., Q(0)ψ∗ = 0. In
unpublished work, Friedrichs [32] removed this restriction. Both, Kato

and Friedrichs had to use a “gap-condition” for their proof to work.
In a second part [33] of his work, concerned with two-dimensional state

spaces, Friedrichs studied the resonant case, restating the result of Born

and Fock for the case κ = 1.
The most complete account of the method of “adiabatic evolution”

can be found in the more recent work of Avron, Seiler, and Yaffe

[7][8]. Notice that the “gap-condition” [7, cond. (iii), p. 37] is crucial there.
Moreover, these authors only consider time-dependent Hamiltonians with
a time-independent domain of definition. Thus, their result does not apply
to the two-body Hamiltonians which have been studied in §1.5.

The completely different strategy of proof used in §1.2 was developed
by the present author and presented by Bornemann and Schütte [19]
for the case of finite dimensional state spaces. Using density operators, this
method is physically intuitive and allows to study resonances while being
reasonably simple. In the opinion of the present author, this simplicity can
also be appreciated in the infinite dimensional case, as soon as one is willing
to accept the tools from functional analysis presented in Appendix B.

x2. Quantum-Classical Coupling: The Infinite
Dimensional Case

Continuing our study of the coupling model

ÿjε = −〈∂jH(yε)ψε, ψε〉, j = 1, . . . , n,

iε ψ̇ε = H(yε)ψε,

we observe the following: The classical position y influences the Hamilto-
nian H(y) slowly compared to the time scale O(ε) of rapid fluctuations in
the wave function ψε, in fact “infinitely slowly” in the singular limit ε→ 0.
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Given that only a finite number of isolated eigenvalues (energy levels)59

ωλ(y) of the Hamiltonian H(y) are excited initially, we thus would expect,
in analogy to the quantum adiabatic theorem, Theorem 1, the adiabatic
invariance of the energy level probabilities,

〈Pλ(yε)ψε, ψε〉 → θλ0 = const

as ε→ 0. Here, Pλ(y) denotes a projection into the eigenspace correspond-
ing to ωλ(y). This motivates the convergence of the potential energy,

〈H(yε)ψε, ψε〉 → UBO(y0) =
∑
λ θ

λ
0 ωλ(y0),

leading us to the limit equation as

ÿj0 = −∂jUBO(y0),

which is the well-known time-dependent Born-Oppenheimer approximation
of quantum theory, cf. [22][41]. Notice that we extend the notion of the
Born-Oppenheimer approximation to a finite number of excited energy lev-
els, not just the ground state.

x2.1. The Singular Limit

We will state and prove the convergence of the coupling model to the Born-
Oppenheimer approximation under hypotheses (Q1)-(Q3) below. These
hypotheses are more restrictive than (H1)-(H3) in the preceding §1. This
is because first, there seems to be no such general existence result available
in the literature for nonlinearly coupled Schrödinger equations as for just
time-dependent ones, and second, we have to show more than the adiabatic
invariance, namely the weak* convergence to the Born-Oppenheimer force
of the force term in the first, Newtonian equation of the coupling model.

(Q1) The semi-bounded selfadjoint operator H0 has the form domain H+

yielding the rigging H+ ↪→ H ↪→ H−. The coercivity estimate of
the corresponding form is explicitly given by

〈H0ψ, ψ〉 ≥ γ‖ψ‖2
H+

− κ1‖ψ‖2, ψ ∈H+,

for some γ > 0 and κ1 ∈ R.

(Q2) The interaction potential V fulfills V ∈ C2(Rn ,B(H )). The uniform
bound for V is explicitly given by

‖V (y)‖B(H ) ≤ κ2, y ∈ R
n ,

for some κ2 ∈ R.

59Recall Footnote 55 on p. 86.
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Now, the parameter-dependent Hamiltonian of the system under consider-
ation is

H(y) = H0 + V (y), y ∈ R
n .

Since V (y) is a bounded operator, the Kato-Rellich theorem, [76, Theo-
rem X.12], shows that H(y) is a semi-bounded selfadjoint operator with
domain

D(H(y)) = D(H0), y ∈ R
n .

The corresponding form h(y; ·, ·) on H+, defined by

h(y;ψ, φ) = 〈H0ψ, φ〉+ 〈V (y)ψ, φ〉, ψ, φ ∈H+,

is uniformly H+-coercive,

h(y;ψ, ψ) ≥ γ‖ψ‖2
H+

− (κ1 + κ2)‖ψ‖2, y ∈ R
n , ψ ∈H+. (IV.8)

Thus, H(y) extends to a bounded operator H+ →H− such that

H ∈ C2(Rn ,B(H+,H−)), ∂jH = ∂jV ∈ C1(Rn ,B(H )), j = 1, . . . , n.

The next hypothesis specifies the spectral information we need.

(Q3) There is a number s ∈ N and a family ωλ ∈ C2(Rn ) of eigenvalues

ωλ(y) ∈ σdisc(H(y)), λ = 1, . . . , s.

Further, there is a family Pλ ∈ C1(Rn ,K (H )) of orthogonal projec-
tions obeying

rangePλ(y) ⊂ D(H0), H(y)Pλ(y) = ωλ(y)Pλ(y), y ∈ R
n .

The orthogonal projection Q = I − P1 − . . . − Ps is the spectral
projection belonging to the remaining part of the spectrum, σ(H(y))\
{E1(y), . . . , Es(y)}, for all y ∈ Rn .

Now, Definition II.4 translates to the present setting as follows.

Definition 1. Let be Q(y∗)ψ∗ = 0. Introducing the constants

θλ0 = 〈Pλ(y∗)ψ∗, ψ∗〉, λ = 1, . . . , s,

we set

UBO(y) =

s∑
λ=1

θλ0 ωλ(y), y ∈ R
n .

The potential UBO will be called the Born-Oppenheimer potential belonging
to the given initial values y∗ ∈ R

n and ψ∗ ∈ D(H0).
60

60Notice that Q(y∗)ψ∗ = 0 already implies ψ∗ ∈ D(H0).
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Theorem 3. Let hypotheses (Q1), (Q2), and (Q3) be valid. For a se-
quence ε → 0, and a finite time T , there exist unique sequences yε ∈
C2([0, T ],Rn) and ψε ∈ C1([0, T ],H ) of solutions of the coupling equa-
tions

ÿjε = −〈∂jH(yε)ψε, ψε〉, j = 1, . . . , n,

iεψ̇ε = H(yε)ψε,
(IV.9)

with initial values yε(0) = y∗, ẏε(0) = v∗, and ψε(0) = ψ∗ with ‖ψ∗‖ = 1
and Q(y∗)ψ∗ = 0.

Let UBO be the Born-Oppenheimer potential belonging to the given
initial values and yBO ∈ C2([0, T ],Rn) the unique solution of the Born-
Oppenheimer equation

ÿj
BO

= −∂jUBO(yBO), j = 1, . . . , n,

with initial values yBO = y∗, ẏBO(0) = v∗.
If yBO is non-flatly resonant up to order two,61 the positions and veloci-

ties of yε converge uniformly to those of yBO, i.e., yε → yBO in C1([0, T ],Rn).

x2.2. The Proof

Again, we follow the four steps of the scheme set up in the illustrative
example of §I.2. However, the first three steps are only modifications of
the proof given in §1.2 for the adiabatic theorem of quantum mechanics,
Theorem 1. Throughout this section the hypotheses of Theorem 3 shall be
valid.

Step 1: Energy-Principle. We start with a local existence and unique-
ness result.

Lemma 7. Let be Q(y∗)ψ∗ = 0. Then, for each ε > 0 there is a maximal
time 0 < Tε ≤ ∞ such that the coupling model, Eq. (IV.9), has a unique
solution yε ∈ C2([0, Tε[,R

n ) and ψε ∈ C1([0, Tε[,H ). The wave function
has the additional regularity

ψε(t) ∈ D(H0), t ∈ [0, Tε[.

If Tε <∞, then there would be a blow-up in the sense that

lim
t→Tε

(|yε(t)|+ |ẏε(t)|+ ‖ψε(t)‖) = ∞.

Proof. We write Eq. (IV.9) as a first order system

U̇ε = AUε + Fε(Uε)

61Recall Definition II.3 for this notion.
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on the Hilbert space X = Rn × Rn ×H . Here,

Uε =

⎛⎜⎜⎝
yε

vε

ψε

⎞⎟⎟⎠ , A =

⎛⎜⎜⎝
0 I 0

−I 0 0

0 0 −iε−1H0

⎞⎟⎟⎠ ,
and

Fε(Uε) =

⎛⎜⎜⎝
0

yε − 〈∇V (yε)ψε, ψε〉
−iε−1V (yε)ψε

⎞⎟⎟⎠ .
The linear operator A is skewadjoint with domain of definition D(A) =
Rn × Rn ×D(H0). By Stone’s theorem it generates a C0-group of unitary
operators. The assumptions on the initial data imply that Uε(0) ∈ D(A).
By hypothesis (Q2), the mapping F : X → X is continuously differen-
tiable. Therefore, the theory of Lipschitz perturbations of linear evolution
equations, cf. [90][73, §6.1], is applicable and yields the result.

According to the study of the finite dimensional case in §III.3, the
energy of the coupling model, Eq. (IV.9), is given as the following time-
dependent function:

Eε =
1
2 |ẏε|2 + 〈H(yε)ψε, ψε〉.

Conservation of energy and norm leads to the following basic estimates.

Lemma 8. For all ε > 0 there is Tε = ∞. One obtains conservation of
norm and energy,

‖ψε(t)‖ = ‖ψ∗‖ = 1, Eε(t) = E∗ = 1
2 |v∗|2 + 〈H(y∗)ψ∗, ψ∗〉,

for all t ≥ 0, and, for a finite time interval [0, T ], the uniform bounds

yε = O(1) in C2([0, T ],Rn), ψε = O(1) in L∞([0, T ],H+),

as ε→ 0.

Proof. Using the Schrödinger equation for ψε we obtain that

d

dt
〈ψε, ψε〉 = iε−1〈ψε, H(yε)ψε〉 − iε−1〈H(yε)ψε, ψε〉 = 0,

i.e., the conservation of norm. Since ψε(t) ∈ D(H0) = D(H(yε(t)), virtually
the same argument which led in the proof of Lemma 1 to Eq. (IV.1)62 gives
here that

d

dt
〈H(yε)ψε, ψε〉 =

〈(
d

dt
H(yε)

)
ψε, ψε

〉
=
∑n

j=1
〈∂jH(yε)ψε, ψε〉ẏjε .

62The “Hellmann-Feynman theorem.”
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This shows that the time-derivative of the energy vanishes,

Ėε =
∑

j

(
ÿjε + 〈∂jH(yε)ψε, ψε〉

) · ẏjε = 0.

Thus, for any time t of existence, the uniform coercivity, Eq. (IV.8), implies
the following bound:

γ‖ψε(t)‖2H+
≤ 〈H(yε(t))ψε(t), ψε(t)〉+ (κ1 + κ2)‖ψε(t)‖2 ≤ E∗ + (κ1 + κ2).

Likewise, one gets the uniform bound

1
2 |ẏε(t)|2 ≤ E∗ − 〈H(yε(t))ψε(t), ψε(t)〉 ≤ E∗ + (κ1 + κ2).

Integration yields a bound for yε which grows only linearly in time. This
way, there is no blow-up in the sense of Lemma 7 and therefore Tε = ∞.
Finally, by the bounds proven above, the force term 〈∂jH(yε)ψε, ψε〉 is
uniformly bounded yielding the uniform bound for ÿε.

As in the proof of Theorem 1 we introduce the time-dependent density
operator

ρε = 〈 · , ψε〉ψε ∈ L∞([0, T ],B(H−,H+)) ∩ C([0, T ],J1(H )).

The uniform bounds of Lemma 8 directly imply the following lemma.

Lemma 9. There is a subsequence of ε, denoted by ε again, and functions
y0 ∈ C1,1([0, T ],Rn) and ρ0 ∈ L∞([0, T ],B(H−,H+)) such that:

(i) yε → y0 in C1([0, T ],Rn),

(ii) ÿε
∗
⇀ ÿ0 in L∞([0, T ],Rn),

(iii) ρε
∗
⇀ ρ0 in L∞([0, T ],J1(H )),

(iv) ρεσ
∗ ∗
⇀ ρ0σ

∗ in L∞([0, T ],J1(H+)),

(v) σ∗ρε
∗
⇀ σ∗ρ0 in L∞([0, T ],J1(H−)),

(vi) ρεH(yε)
∗
⇀ ρ0H(y0) in L∞([0, T ],J1(H+)),

(vii) H(yε)ρε
∗
⇀ H(y0)ρ0 in L∞([0, T ],J1(H−)).

Proof. The extended Arzelà-Ascoli theorem, Principle I.4, yields the asser-
tion about yε. Virtually the same proof as of Lemma 2 gives the assertions
about ρε. The only point to mention is that

σH(yε) → σH(y0) in L∞([0, T ],J1(H+))

and
H(yε)σ → H(y0)σ in L∞([0, T ],J1(H−))

because of the uniform convergence yε → y0.
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Step 2: The Weak Virial Theorem. Also, the analogue of Lemma 3
holds true with literally the same proof.

Lemma 10. (Weak Virial Theorem). There holds the commutativity
relation

ρ0(t)H(y0(t)) ⊂ H(y0(t)) ρ0(t)

for almost all t ∈ [0, T ] as unbounded, densely defined operators in H .

As an immediate corollary we obtain the following analogue of Lemma 4,
again with literally the same proof.

Lemma 11. Let there be essentially no resonances of order two along the
limit y0. Then, for almost all t ∈ [0, T ], one gets the following commuta-
tivity relations in B(H ):

[ρ0(t), Q(y0(t))] = 0, [ρ0(t), Pλ(y0(t))] = 0, λ = 1, . . . , s.

Step 3: Adiabatic Invariance of the Action. We introduce the en-
ergy level probabilities (actions)

θλε = 〈Pλ(yε)ψε, ψε〉, θQε = 〈Q(yε)ψε, ψε〉.
The adiabatic invariance of these quantities follows directly from the com-
mutativity relation Lemma 11.

Lemma 12. Let there be essentially no resonances of order two along the
limit y0. Then, there are the uniform convergences

θλε → θλ0 = 〈Pλ(y∗)ψ∗, ψ∗〉, θQε → θQ0 = 〈Q(y∗)ψ∗, ψ∗〉,
in the space C[0, T ]. If Q(y∗)ψ∗ = 0, then

θQ0 = 0, ρ0Q(y0) = Q(y0)ρ0Q(y0) = 0.

Proof. The proof is virtually the same as of Lemma 5 and Corollaries 1
and 3. We should only mention that one is using the strong convergence

Pλ(yε) → Pλ(y0) in C1([0, T ],K (H )),

which follows from hypothesis (Q3) and yε → y0 in C1([0, T ],Rn).

We need the following generalization of Corollary 3.

Lemma 13. Let there be essentially no resonances of order two along the
limit y0. If Q(y∗)ψ∗ = 0, one gets for a sequence Aε → A0, strongly
converging in L∞([0, T ],B(H )), the weak* convergence

tr(Aερε)
∗
⇀ tr(A0ρ0) in L∞([0, T ], C ).
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In particular, one obtains tr ρ0 = 1 in L∞[0, T ] and, for j = 1, . . . , n, the
abstract limit equation

ÿj0 = − tr(∂jH(y0) · ρ0) in L∞[0, T ]. (IV.10)

Proof. The definition of Q yields

tr(Aερε) = tr(Q(yε)Aερε) +
∑

λ
tr(Pλ(yε)Aερε). (*)

For the compact operators form an ideal in the algebra of bounded oper-
ators, we obtain that Pλ(yε)Aε → Pλ(y0)A0 in L∞([0, T ],K (H )). Thus,
by Lemma B.5,

tr(Pλ(yε)Aερε)
∗
⇀ tr(Pλ(y0)A0ρ0) in L∞([0, T ], C ).

On the other hand, since the norms of the sequence Aε in L
∞([0, T ],B(H ))

are uniformly bounded by some constant K, we obtain the estimate

| tr(Q(yε)Aερε)| ≤ K · ‖Q(yε)ψε‖.

Since
‖Q(yε)ψε‖2 = 〈Q(yε)ψε, ψε〉 = θQε → 0 in C[0, T ],

we finally get, using ρ0Q(y0) = 0,

tr(Q(yε)Aερε) → 0 = tr(Q(y0)A0ρ0) in L∞([0, T ], C ).

The sum in (*) being finite we have thus shown the asserted weak* conver-
gence of the trace expression.

The choice Aε = I leads to 1 = tr ρε
∗
⇀ tr ρ0, i.e., tr ρ0 = 1.

Hypothesis (Q2) makes the choice Aε = ∂jH(yε) admissible; showing
the weak convergence of the force term in the first, Newtonian equation of
the coupling model, Eq. (IV.9),

〈∂jH(yε)ψε, ψε〉 = tr(∂jH(yε)ρε)
∗
⇀ tr(∂jH(y0)ρ0) in L∞[0, T ].

This, together with the weak* convergence ÿε
∗
⇀ ÿ0, yields the asserted

abstract limit equation.

Notice that in this Lemma the values of the sequence Aε are not re-
stricted to the compact operators. This is in sharp contrast to the general
result of Lemma B.5, and only possible because of the specific structure of
the sequence ρε implied by the hypothesis Q(y∗)ψ∗ = 0.

Step 4: Identification of the Limit Mechanical System. First, we
show that the force term of the abstract limit equation (IV.10) is given by
the Born-Oppenheimer potential.
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Lemma 14. Let there be essentially no resonances of order two along the
limit y0. Then, there holds

tr(∂jH(y0) · ρ0) = ∂jUBO(y0).

Proof. Differentiating

H(y)Pλ(y) = ωλ(y)Pλ(y)

with respect to yj yields, by the closedness of H(y) and hypothesis (Q2),
that

∂jH · Pλ +H · ∂jPλ · Pλ = ∂jωλ · Pλ + ωλ · ∂jPλ · Pλ. (*)

Hence, recalling that ∂jH(y) ∈ B(H ), we obtain for ψ ∈H that

∂jPλ(y) · Pλ(y)ψ ∈ D(H0).

Spectral theory of unbounded selfadjoint operators shows that63

Pλ(y0)H(y0) ⊂ H(y0)Pλ(y0) = ωλ(y0)Pλ(y0)

for almost all t ∈ [0, T ]. Thus, evaluating (*) at y = y0 and multiplying
with Pλ(y0) from the left yields

Pλ(y0) · ∂jH(y0) · Pλ(y0) = ∂jωλ(y0) · Pλ(y0).
This way, by well-known properties of the trace and by the commutativity
result Lemma 11, we get

tr(∂jH(y0)ρ0 · Pλ(y0)) = tr(Pλ(y0)∂jH(y0)Pλ(y0) · ρ0)
= ∂jωλ(y0) · tr(Pλ(y0)ρ0)
= θλ0 · ∂jωλ(y0).

By Lemma 12 we have ρ0Q(y0) = 0 which finally shows that

tr(∂jH(y0)ρ0) = tr(∂jH(y0)ρ0 ·Q(y0)) +
∑

λ
tr(∂jH(y0)ρ0 · Pλ(y0))

=
∑

λ
θλ0 · ∂jωλ(y0) = ∂jUBO(y0).

Recall that the limit energy level probabilities θλ0 are constant in time.

Now, to summarize, we have shown that if there were essentially no
resonances of order two along the up to now inaccessible limit y0, the
equality y0 = yBO would hold. As in §II.2.4, one can decide on this equality
by looking at the resonance properties of the accessible function yBO.

63E.g., the particular result [83, Eq. (16), p. 345].
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Lemma 15. If yBO is non-flatly resonant up to order two, there are only
finitely many resonances of order two y0, and one gets

y0 = yBO.

Proof. One proceeds virtually along the same argument as in the proof of
Lemma II.16. The only difference is that it suffices to consider resonances
of order two.

From this lemma we conclude that the limit y0 = yBO is independent
of the subsequence chosen. Thus, by Principle I.5, we may discard all
extractions of subsequences and have proven the uniform convergence yε →
yBO, as was asserted in the statement of Theorem 3.

x2.3. An Example

Illustrating the relation of the quantum-classical coupling model to a full
quantum model, Bornemann, Nettesheim, and Schütte [17] studied
the simple example of a collinear collision of a “classical” particle with a
quantum harmonic oscillator. Actually, this example fits into the frame-
work of Theorem 3.

The Hamiltonian of the one-dimensional harmonic oscillator is given by

H0 = − ∂2

∂x2
+ c x2, c > 0,

on the Hilbert space H = L2(R). The interaction potential with the
classical particle is given by

V (y, x) = a exp(−b|x− y|2)

with some constants a, b > 0. Thus hypotheses (Q1) and (Q2) of §2.1 are
valid. Theorem XIII.16 of [77] tells us that H(y) = H0 + V (y, ·) has a
purely discrete spectrum. Let only finitely many eigenvalues of H(y∗) be
excited by the initial wave function ψ∗. Since H(y) depends on the one-
dimensional parameter y only, these initially excited eigenvalues and the
corresponding eigenspaces vary smoothly in y—at least as long as there are
no resonances, cf. [51]. Thus hypothesis (Q3) will be valid and Theorem 3
is applicable.

x2.4. Remarks on the Born-Oppenheimer Approximation

The time-dependent Born-Oppenheimer approximation can be viewed as
a (partial) semiclassical approximation of a full quantum description of
the underlying two-particle system. Hagedorn [40][41] has studied this
approximation in detail, showing that the order of approximation is given
by O(ε1/2) for Gaussian initial preparations. Recall that ε2 = m/M � 1
denotes the mass ratio of the two particles. This approximation result,
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together with our new limit result Theorem 3, gives a further justification
of the quantum-classical coupling model, different from the one given in
the work of Bornemann, Nettesheim, and Schütte [17].

For approximating the full quantum model by the Born-Oppenheimer
model, one has to exclude any crossings, or resonances, of the energy lev-
els involved. Restricting himself to initial excitations of the ground state,
Hagedorn [42][43] studied normal forms of generic energy crossings. As
discussed for the Hessians in §II.1.7, these normal forms are classified
according to the codimension of the corresponding manifold of resonant
Hamiltonians. Hagedorn has proven that generically there are only 11
distinct types of crossings. Depending on the type, these crossings have
codimension 1,2,3, or 5.

Now, crossings of codimension one correspond to those Born-Oppen-
heimer solutions which we have called “non-flatly resonant up to order
two.” Thus, Theorem 3 is applicable here, showing that the relation of the
Born-Oppenheimer model and the coupling model is not affected by these
crossings.

The only type of a codimension two crossing corresponds to a Hamilto-
nian which is not “smoothly diagonizable” in the excited part of the spec-
trum. Here, the relation between the Born-Oppenheimer and the quantum-
classical coupling model can be affected by Takens chaos. An example for
this to happen which is analogous to the one given in §II.4 can be found
in the work of Bornemann and Schütte [19][88]. In the fields where the
coupling model is currently used, the relevance of this effect has yet to be
studied. There are, however, some indications [88] that this effect reflects
non-adiabatic excitations in a full quantum description of the underlying
system.



Appendix A:

Eigenvalue Resonances of Codimension Two

In this part of the appendix we study a parameter-dependent symmetric
matrix H at a generic eigenvalue resonance.64 Here, the term “generic”
means that the appearance of the resonance is stable with respect to the
most general class of perturbations which preserves the symmetry H =
HT . We remind the reader, that a problem can call for a smaller class of
perturbations that preserves more structural symmetries. An example can
be found in §II.1.7.

The set of matrices that have at least one eigenvalue with multiplic-
ity greater than one has codimension two in the set of all real symmetric
matrices of a certain size. This “loss” of two dimension can be explained
as follows. If we represent a symmetric matrix H by its diagonalization
H = STDS, we understand that one dimension is lost by the eigenvalue
resonance in the diagonal matrix D. Another dimension is lost, however, in
the orthogonal matrix S since the corresponding eigenspace of dimension
two can freely be rotated without changing the resulting matrix H .

A general formula for calculating the codimension of more general res-
onance patterns can be found in the work of von Neumann and Wig-

ner [71].
Transversality theory [4] teaches that we need at least a two-parameter

dependence of H to obtain a generic, i.e., transversal, crossing with the
resonance manifold of codimension two. We can always freeze some of the
parameters and, by standard perturbation theory [51], follow smoothly the
two-dimensional eigenspace that belongs to the resonance. This is because
the resonance is locally separated from the rest of the spectrum.

Thus, it suffices to study a family H(x) of two-by-two matrices that
depends smoothly on two parameters, x = (x1, x2) ∈ R2 . Now, suppose
there is generically a twofold eigenvalue at x = 0. To simplify, we transform
to the trace-free matrix

H0(x) = H(x)− 1
2 trH(x) · I,

leaving the genericity of the eigenvalue resonance untouched. Notice, that
the eigenvectors remain unchanged and the eigenvalues are symmetrized

64“Resonance” stands for a resonance relation of order 2, i.e., for the equality of two
different eigenvalue families at certain parameter values.
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with respect to zero. Thus, H0 has a twofold eigenvalue λ = 0 at x = 0.
We denote the coefficients of H0 by

H0(x) =

(
ξ1(x) ξ2(x)
ξ2(x) −ξ1(x)

)
, x = (x1, x2).

By definition of the term “generic,” there is in the space of coefficients of
symmetric two-by-two matrices a transversal intersection of the hypersur-
face {(ξ1(x),−ξ1(x), ξ2(x)) : x ∈ R2} and the curve {(λ, λ, 0) : λ ∈ R} at
the parameter values (x, λ) = (0, 0). Thus, we have

0 �=
∣∣∣∣∣∣
∂1ξ

1(0) ∂2ξ
1(0) 1

−∂1ξ1(0) −∂2ξ1(0) 1
∂1ξ

2(0) ∂2ξ
2(0) 0

∣∣∣∣∣∣ = −2

∣∣∣∣ ∂1ξ1(0) ∂2ξ
1(0)

∂1ξ
2(0) ∂2ξ

2(0)

∣∣∣∣ .
In other words, by referring to the inverse function theorem, the eigenvalue
resonance is generic if and only if x �→ ξ(x) is a smooth coordinate transfor-
mation that maps a neighborhood of x = 0 bijectively to a neighborhood
of ξ(0) = 0.

We finally show that H0(x) and, a forteriori,H(x) do not have a smooth
spectral decomposition in a neighborhood of x = 0. By what we have seen
it suffices to prove this claim in ξ-coordinates.

The eigenvalues of H0 are λ1(ξ) = −|ξ| and λ2(ξ) = |ξ|. Excluding the
origin ξ = 0 and using polar coordinates,

ξ1 = r cosφ, ξ2 = r sinφ,

yields the corresponding eigenvectors as given by

e1(ξ) =

( − sin(φ/2)
cos(φ/2)

)
, e2(ξ) =

(
cos(φ/2)
sin(φ/2)

)
.

The occurrence of the argument φ/2 shows that these eigenvectors are de-
fined up to a sign only. For a unique and smooth representation we have
to cut the ξ-plane along a half-axis, e.g., along φ = 3π/2. The eigenvec-
tors cannot, however, be smoothly continued beyond that cut, but instead
change their mutual roles there. Summarizing, we have proven the follow-
ing theorem.65

Theorem A.1. A parameter-dependent family of real symmetric matrices
does not have a smooth spectral decomposition in a neighborhood of a
generic eigenvalue resonance of codimension two.

65The matrixH0(ξ) is just the famous example of Rellich [80, §2][51, Chap. 2, Exam-
ple 5.12] for a smooth symmetric matrix which is not smoothly diagonizable. The study
above shows that this example not only occurs naturally but, in a way, unavoidably.



Appendix B:
Advanced Tools from Functional Analysis

x1. Weak* Convergence of Operator-Valued
Functions

This part of the appendix collects all those facts about trace-class-operator-
valued functions that are applied to the time-dependent density operators
in Chapter IV. In particular, we prove an extraction principle, Theo-
rem B.3, by using general facts about Lebesgue-Bochner spaces. As far
as we know, there is no explicit reference for Theorem B.3 in the accessible
literature. Though not difficult at all, the material of §B.1.5 seems to be
entirely new.

x1.1. Trace Class Operators

Here, we recall the basic facts about compact operators and trace class
operators on a Hilbert spaceH . If not stated otherwise, these facts can be
found in the textbooks of Reed and Simon [78, Chap. VI.5–6][76, p. 41ff],
or in either one of the monographs of Ringrose [81], Schatten [85], or
Simon [92].

We consider a separable, complex Hilbert space H , the inner product
〈·, ·〉 of which is linear in the first factor and conjugate linear in the second.
Three important spaces of linear endomorphisms on H are

• the space B(H ) of bounded operators,

• the space K (H ) of compact operators,

• the space F (H ) of operators of finite rank.

There are the inclusions F (H ) ⊂ K (H ) ⊂ B(H ). For any compact
operator A ∈ K (H ) there exists a unique decreasing sequence {λj(A)} of
nonnegative real numbers with λj(A) → 0, and two orthonormal sets {ψj},
{φj} in H , such that

A =
∞∑
j=1

λj(A) 〈 · , ψj〉φj . (B.1)
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This sum converges in the operator norm. The numbers λj(A) are called
the singular values of A, and Eq. (B.1) the singular value decomposition or
canonical form of A. In particular, we obtain

K (H ) = F (H )
B(H )

. (B.2)

A compact operator A belongs to the trace class J1(H ) if and only if the
singular values {λj(A)} are summable, {λj(A)} ∈ �1. This space J1(H )
is complete with respect to the trace class norm

‖A‖J1 =

∞∑
j=1

λj(A), A ∈J1(H ).

The operators of finite rank are dense in J1(H ),

J1(H ) = F (H )
J1(H )

. (B.3)

The trace class constitutes a two-sided operator ideal in B(H ): for each
A ∈J1(H ) and B ∈ B(H ) we obtain AB,BA ∈J1(H ) with

‖AB‖J1 ≤ ‖A‖J1 · ‖B‖, ‖BA‖J1 ≤ ‖A‖J1 · ‖B‖. (B.4)

The trace is defined as a linear form on J1(H ) by

trA =
∑
j

〈Aφj , φj〉, A ∈J1(H ),

for every orthonormal basis {φj} ofH . The sum converges absolutely and
its value is independent of the chosen basis. Important properties of the
trace are

trA∗ = trA, | trA| ≤ tr |A| = ‖A‖J1(H ), A ∈J1(H ), (B.5)

and
tr(AB) = tr(BA), A ∈J1(H ), B ∈ B(H ).

For operators of rank one, we trivially get

tr(〈 · , ψ〉φ) = 〈φ, ψ〉, ‖〈 · , ψ〉φ‖J1 = ‖〈 · , ψ〉φ‖ = ‖φ‖ · ‖ψ‖. (B.6)

The J1-norm is obtained from the fact that there is only one nonzero
singular value λ1 = ‖φ‖ · ‖ψ‖. The Cauchy-Schwarz inequality yields the
expression for the operator norm.

Eqs. (B.4) and (B.5) show in particular that

(i) for every A ∈ J1(H ) the map B �→ tr(AB) is a continuous linear
form on K (H ),
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(ii) for every B ∈ B(H ) the map A �→ tr(AB) is a continuous linear
form on J1(H ).

In fact, all elements of the dual spaces K ∗(H ) andJ ∗
1 (H ) are obtained

this way: the above mappings induce natural isomorphisms

K ∗(H ) =J1(H ), J ∗
1 (H ) =B(H ). (B.7)

Notice, however, that there exists no predual space of K (H ) for infinite
dimensional H .

We close the collection of facts about compact operators and trace class
operators with an easy consequence of the density properties (B.2) and
(B.3).

Lemma B.1. The Banach spaces K (H ) and J1(H ) are separable.

Proof. Let {χj} be a countable dense set of H . We define the separable
space

FS = span{〈 · , χi〉χj : i, j ∈ N}.
The norm formula (B.6) shows that every rank one operator, and therefore
every operator of finite rank, can be approximated arbitrarily well by ele-
ments of FS—both with respect to the operator norm and the J1-norm.
Thus, using (B.2) and (B.3), we obtain

K (H ) = FS
B(H )

, J1(H ) = FS
J1(H )

,

which proves the assertions.

x1.2. Lebesgue-Bochner Spaces

Let Ω ⊂ Rd be a bounded open set endowed with the Lebesgue measure.
If X is a Banach space and 1 ≤ p ≤ ∞, then Lp(Ω,X ) stands for the
Lebesgue-Bochner space of p-summable functions on Ω which have values
in X . A definition of these spaces can be found in Diestel’s and Uhl’s

survey on vector measures, [24, Chap. IV, §1]. We recall two important
facts.

Theorem B.1. If X is separable, the space L1(Ω,X ) is separable.

Proof. According to [98, §11, Theorem 4], the Lebesgue measure on Ω is
separable. Therefore, one can construct a countable set of simple functions
which is dense in L1(Ω,X ). The proof of this fact is literally the same as
of [98, Chap. 4, §20, Theorem 1], with the only exception that one has to
take as the set of coefficients a countable dense subset of X instead of the
rational complex numbers.



��� Advanced Tools from Functional Analysis �Appendix B

Theorem B.2. If the dual space X ∗ is separable, there is a natural iso-
morphism

L1(Ω,X )∗ = L∞(Ω,X ∗).

Proof. The Dunford-Pettis theorem, [24, Chap. III, §3, Theorem 1], states
that a separable dual space X ∗ has the Radon-Nikodým property. A the-
orem of Bochner and Taylor, [24, Chap. IV, §1, Theorem 1], shows that
L1(Ω,X )∗ = L∞(Ω,X ∗) if and only if X ∗ has the Radon-Nikodým prop-
erty.

x1.3. Spaces of Trace-Class-Operator-Valued Functions

There is an extraction principle for the space L∞(Ω,J1(H )) of trace-class-
operator-valued functions which is completely analogous to the extraction
Principle I.3 for L∞(Ω, C ). We continue to use the notation of §§B.1.1
and B.1.2.

Theorem B.3. There is a natural isomorphism

L1(Ω,K (H ))∗ = L∞(Ω,J1(H )).

In particular, we obtain that a sequence {Xε} of L∞(Ω,J1(H )) converges

weakly* to X0 ∈ L∞(Ω,J1(H )), Xε
∗
⇀ X0, if and only if∫

Ω

tr(Xε(t) · Y (t)) dt →
∫
Ω

tr(X0(t) · Y (t)) dt, Y ∈ L1(Ω,K (H )).

Let {Xε} be a bounded sequence in the space L∞(Ω,J1(H )). Then,
there is a subsequence {ε′} and a function X0 ∈ L∞(Ω,J1(H )), such

that Xε′
∗
⇀ X0. Principle I.5 is applicable to the sequence {Xε}.

Proof. Lemma B.1 and Theorems B.1–B.2, as well as the natural isomor-
phism (B.7), show that, first, the space L1(Ω,K (H )) is separable and,
second, there is a natural isomorphism L1(Ω,K (H ))∗ = L∞(Ω,J1(H )).
This natural isomorphism leads directly to the given characterization of
the weak*-convergence in L∞(Ω,J1(H )).

The Alaoglu theorem [83, Theorem 3.15] states that a closed ball in
L∞(Ω,J1(H )) is compact with respect to the weak*-topology. Since the
predual space L1(Ω,K (H )) is separable, the weak*-topology is metrizable
on closed balls [83, Theorem 3.16]. Hence, bounded sequences have weak*-
convergent subsequences and Principle I.5 is applicable.

The reader should notice that this theorem is not a trivial corollary
from the fact that K ∗(H ) = J1(H ). For instance, the space B(H ),
belonging to an infinite dimensional Hilbert space H , lacks the Radon-
Nikodým property, cf. [24, Chap. VII, §7], and therefore we have

L1(Ω,J1(H ))∗ �= L∞(Ω,B(H )),
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despite the fact that J ∗
1 (H ) = B(H ).

There is a simple but extremely useful criterion for testing weak* con-
vergence in L∞(Ω,J1(H )).

Lemma B.2. Let Xε be a sequence in L∞(Ω,J1(H )). There is the

weak* convergence Xε
∗
⇀ X0 in L∞(Ω,J1(H )) if and only if both of

the following conditions are satisfied:

(i) the sequence is bounded in L∞(Ω,J1(H )),

(ii) for all scalar functions χ ∈ L1(Ω) and elements φ, ψ ∈H there is the
convergence∫

Ω

χ(t)〈Xε(t)φ, ψ〉 dt →
∫
Ω

χ(t)〈X0(t)φ, ψ〉 dt.

Proof. By the very definition66 of the Bochner integral, simple functions
are dense in L1(Ω,K (H )). Since the operators of finite rank are dense in
K (H ), Eq. (B.2), we can restrict ourselves to simple functions having op-
erators of finite rank as values. Thus, it suffices to test bounded sequences
with all the functions of the form

Y = χ 〈 · , ψ〉φ ∈ L1(Ω,K (H )),

where χ ∈ L1(Ω) is a characteristic function, and φ, ψ ∈H . The necessity
part of the proof follows as usual from the uniform boundedness principle,
[83, Theorem 2.5].

Principle I.1 generalizes with virtually the same proof:

Lemma B.3. Let {Xε} be a sequence in C1(Ω,J1(H )) such that

Xε → 0 in C(Ω,J1(H )).

Then, if and only if the sequence {∂Xε} is bounded in L∞(Ω,J1(H )),
there holds

∂Xε
∗
⇀ 0 in L∞(Ω,J1(H )).

Using the ideal properties, Eq. (B.4), we can also generalize Principle I.2
using virtually the same proof:

Lemma B.4. Let there be the convergences Xε
∗
⇀ X0 in L∞(Ω,J1(H ))

and Yε → Y0 in L∞(Ω,B(H )). Then, there holds

Xε · Yε ∗
⇀ X0 · Y0, Yε ·Xε

∗
⇀ Y0 ·X0 in L∞(Ω,J1(H )).

66Cf. [24, Definition II.2.1]
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If we restrict the values of the test sequence Yε to be compact operators,
we can prove the weak* convergence of the traces:

Lemma B.5. Let there be the convergences Xε
∗
⇀ X0 in L∞(Ω,J1(H ))

and Yε → Y0 in L∞(Ω,K (H )). Then, there holds

tr(Xε · Yε) ∗
⇀ tr(X0 · Y0) in L∞(Ω, C ).

Proof. Given a function χ ∈ L1(Ω, C ), the Hölder inequality shows the
strong convergence χYε → χY0 in L1(Ω,K (H )). Theorem B.3 yields the
convergence∫
Ω

χ(t) · tr(Xε(t) · Yε(t)) dt =
∫
Ω

tr(Xε(t) · χ(t)Yε(t)) dt

→
∫
Ω

tr(X0(t) · χ(t)Y0(t)) dt =
∫
Ω

χ(t) · tr(X0(t) · Y0(t)) dt,

which proves the assertion.

Further, one can show that weak*-convergence preserves certain struc-
tural information about the operator values.

Lemma B.6. Assume that Xε
∗
⇀ X0 in L∞(Ω,J1(H )). Then, there are

the following implications:

(i) If the values of Xε are nonnegative operators, a.e. in Ω, then the
same holds for the limit X0.

(ii) If the values of Xε are selfadjoint operators, a.e. in Ω, then the same
holds for the limit X0.

Proof. Suppose that the values of Xε are nonnegative operators, a.e. in
Ω. For a given element ψ ∈ H we define Y ≡ 〈 ·ψ〉ψ ∈ L∞(Ω,K (H )).
We have

χε(t) = tr(Xε(t) · Y (t)) = 〈Xε(t)ψ, ψ〉 ≥ 0, a.e. in Ω.

By Lemma B.5, the real-valued functions χε converge weakly* in L∞(Ω,R)
to χ0,

χ0(t) = tr(X0(t) · Y (t)) = 〈X0(t)ψ, ψ〉.
Since Ω is bounded, this implies the weak convergence χε ⇀ χ0 in L

2(Ω,R).
Here, the norm-closed convex cone of nonnegative functions is weakly
closed. Thus, the limit χ0 must be nonnegative. This proves the non-
negativity of the values of X0, a.e. in Ω.

Now, suppose that the values of Xε are selfadjoint operators, a.e. in Ω.
For given two elements φ, ψ ∈H , we define Y ≡ 〈 · , ψ〉φ ∈ L∞(Ω,K (H ))
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and Z ≡ 〈 · , φ〉ψ ∈ L∞(Ω,K (H )). Since the values of Xε are selfadjoint,
a.e. in Ω, we obtain

tr(Xε · Y ) = 〈Xεφ, ψ〉 = 〈Xεψ, φ〉 = tr(Xε · Z),
Lemma B.5 allows to pass to the limit in L∞(Ω, C ). Since complex conju-
gation is weakly*-continuous in L∞(Ω, C ), we obtain

〈X0φ, ψ〉 = tr(X0 · Y ) = tr(X0 · Z) = 〈X0ψ, φ〉,
which implies that the values of X0 are selfadjoint, a.e. in Ω.

x1.4. The Trace is Not Weakly* Sequentially Continuous

According to the estimate (B.5), the trace extends naturally as a linear
operator

tr : L∞(Ω,J1(H )) → L∞(Ω, C ),

continuous in the norm topologies. This implies continuity in the weak
topology [25, Theorem V.3.15], but not, however, in the weak* topology.
In fact, if H is infinite dimensional, the trace is not weakly* sequentially
continuous—which is the source of considerable difficulties in Chapter IV.67

Lemma B.7. Let H be an infinite dimensional Hilbert space with an
orthonormal basis {φn}. The sequence Xn ≡ 〈 · , φn〉φn fulfills

Xn
∗
⇀ 0 in L∞(Ω,J1(H )), but trXn ≡ 1 in L∞(Ω, C ).

Proof. Since the trace class norm of Xn(t) is uniformly bounded,

‖Xn(·)‖J1 = trXn(·) = 1,

we get by Theorem B.3 that there is a subsequence n′ and a limit X∞ ∈
L∞(Ω,J1(H )), such that

Xn′
∗
⇀ X∞ in L∞(Ω,J1(H )).

For a given vector ψ ∈H , we test this weak*-convergence with the function

Y = 〈 · , X∞ψ〉ψ ∈ L1(Ω,K (H )).

and obtain that∫
Ω

〈Xn′(t)ψ,X∞(t)ψ〉 dt =

∫
Ω

tr(Xn′(t) · Y (t)) dt

→
∫
Ω

tr(X∞(t) · Y (t)) dt =

∫
Ω

‖X∞(t)ψ‖2 dt.
67Lemma B.5 would yield the weak*-continuity of the trace, if the identity operator

on H were compact. However, the identity operator is compact if and only if H is
finite dimensional.
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Parseval’s equality shows that an orthonormal basis converges weakly to
zero, φn ⇀ 0. Thus, we get

〈Xn(t)ψ,X∞(t)ψ〉 = 〈ψ, φn〉〈φn, X∞(t)ψ〉 → 0, a.e. in Ω.

Hence, by Lebesgue’s theorem of dominated convergence, we obtain∫
Ω

‖X∞(t)ψ‖2 dt = 0,

which implies X∞ = 0. By Principle I.5, we can discard the extraction of
subsequences and have thus proven that Xn

∗
⇀ 0 in L∞(Ω,J1(H )).

x1.5. Trace Class Operators on Rigged Hilbert Spaces

In Chapter IV we have to work in a scale of Hilbert spaces rather than
a single space. Here, we will discuss the underlying relation of the corre-
sponding trace class operators.

Let there be a separable Hilbert H+, densely embedded in H ,

H+ ↪→H .

The corresponding inner product will be denoted by 〈·, ·〉H+
. Each element

φ ∈ H defines by ψ �→ 〈ψ, φ〉 a continuous linear form on H+. That way
one obtains a dense embedding,68

H ↪→H− =H ∗
+ ,

into the dual space H− of H+, being a separable Hilbert space as well.
Using density and uniform continuity arguments, the inner product 〈·, ·〉 of
H extends uniquely to an sesquilinear form on H+ ×H−, giving the dual
pairing of the two spaces which is conjugate linear in the second argument.
The norm

‖φ‖H− = sup
ψ∈H+

〈φ, ψ〉
‖ψ‖H+

ψ ∈H−

fulfills the parallelogram equality and stems thus from an inner product
〈·, ·〉H− on H−. Any such triple

H+ ↪→H ↪→H−

of Hilbert spaces is called a rigging of H , or sometimes, a Gelfand triple.
Having such a triple in mind, the space H is called a rigged Hilbert space.
The Riesz representation theorem, [78, Theorem II.4], shows that there is
an unitary operator

σ :H− →H+,

68The Hahn-Banach separation theorem, [83, Theorem 3.4], shows that H ↪→ H−
is an embedding because H+ ⊂ H is dense, and it is dense because H+ ↪→ H is an
embedding.
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defined by
〈φ, σψ〉H+

= 〈φ, ψ〉, φ ∈H+, ψ ∈H−.

The inverse of σ is given by the adjoint operator

σ∗ :H+ →H−,

which satisfies

〈σ∗φ, ψ〉H− = 〈φ, ψ〉, φ ∈H+, ψ ∈H−.

This map σ will be called the Riesz representation map of the rigging. The
natural embedding H+ ↪→H− will be abbreviated by ι.

The Riesz map σ provides a convenient way to view operators defined
on H− as operators on H+ and vice versa: For A ∈ B(H−) we define

Aσ = Aισ ∈ B(H−), σA = σAι ∈ B(H+).

Likewise, for A ∈ B(H+) we define

Aσ = ιAσ ∈ B(H−), σA = σιA ∈ B(H+).

These mappings restrict to trace class operators.

Lemma B.8. The mapping A �→ Aσ is norm continuous fromJ1(H−) to
J1(H−), and from J1(H+) to J1(H−). Correspondingly, the mapping
A �→ σA is norm continuous fromJ1(H−) toJ1(H+), and fromJ1(H+)
to J1(H+).

Proof. Let A ∈ J1(H−) be given. By the ideal property, Eq. (B.4), we
obtain

‖Aσ‖J1(H−) ≤ ‖A‖J1(H−)‖ισ‖B(H−) ≤ ‖ι‖ · ‖A‖J1(H−).

Taking the singular value decomposition

A =
∑
k

λk 〈 · , ψk〉H−φk

we obtain

σA =

(∑
k

λk 〈 · , σψk〉H+
σφk

)
◦ σι.

Since {σφk} and {σψk} are orthonormal in H+, the first term of the right
hand side represents the singular value decomposition of an operator in
J1(H+) yielding

‖σA‖J1(H+) ≤
∑
k

λk · ‖σι‖B(H+) ≤ ‖ι‖ · ‖A‖J1(H−).
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Now, let A ∈ J1(H+) be given. Again, the ideal property, Eq. (B.4),
yields

‖σA‖J1(H+) ≤ ‖σι‖B(H+)‖A‖J1(H+) ≤ ‖ι‖ · ‖A‖J1(H+).

The singular value decomposition

A =
∑
k

λk 〈 · , ψk〉H+
φk

transforms as

Aσ = ισ ◦
(∑

k

λk 〈 · , σ∗ψk〉H−σ
∗φk

)
.

Since {σ∗φk} and {σ∗ψk} are orthonormal in H−, the second term of the
right hand side represents the singular value decomposition of an operator
in J1(H−) yielding

‖Aσ‖J1(H+) ≤ ‖ισ‖B(H−)

∑
k

λk ≤ ‖ι‖ · ‖A‖J1(H+),

which completes the proof.

The thus introduced maps extend naturally to norm continuous maps
on the spaces L∞(Ω,J1(H±)). This does not automatically imply that
these maps are weakly* sequentially continuous, as the counterexample of
§B.1.4 has shown. However, nothing pathological happens here.

Lemma B.9. Assume that Xε
∗
⇀ X0 in L∞(Ω,J1(H±)). Then, there is

Xσ
ε

∗
⇀ Xσ

0 in L∞(Ω,J1(H−)), σXε
∗
⇀ σX0 in L∞(Ω,J1(H+)).

Proof. Consider a sequence Xε
∗
⇀ X0 in L∞(Ω,J1(H−)). Lemma B.4

yields
Xσ
ε = Xε ισ

∗
⇀ X0 ισ = Xσ

0 in L∞(Ω,J1(H−)).

Because of the continuity in norm, the sequence σXε is bounded in the
space L∞(Ω,J1(H+)). For χ ∈ L1(Ω) and φ, ψ ∈H+ we obtain∫

Ω

χ(t)〈σXε(t)φ, ψ〉H+
dt =

∫
Ω

χ(t)〈σXε(t)φ, ψ〉H+
dt

=

∫
Ω

χ(t)〈Xε(t)φ, σ
∗ψ〉H− dt

→
∫
Ω

χ(t)〈X0(t)φ, σ
∗ψ〉H− dt

=

∫
Ω

χ(t)〈σX0(t)φ, ψ〉H+
dt.
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Hence, Lemma B.2 implies σXε
∗
⇀ σX0 in L∞(Ω,J1(H+)).

Now, consider a sequenceXε
∗
⇀ X0 in L

∞(Ω,J1(H+)). By Lemma B.4
we get

σXε = σιXε
∗
⇀ σιX0 = σX0 in L∞(Ω,J1(H+)).

Because of the continuity in norm, the sequence Xσ
ε is bounded in the space

L∞(Ω,J1(H−)). For χ ∈ L1(Ω) and φ, ψ ∈H− we obtain∫
Ω

χ(t)〈Xσ
ε (t)φ, ψ〉H− dt =

∫
Ω

χ(t)〈Xε(t)σφ, ψ〉H− dt

=

∫
Ω

χ(t)〈σXε(t)σφ, σψ〉H+
dt

→
∫
Ω

χ(t)〈σX0(t)σφ, σψ〉H+
dt

=

∫
Ω

χ(t)〈Xσ
0 (t)φ, ψ〉H− dt.

Hence, Lemma B.2 implies Xσ
ε

∗
⇀ Xσ

0 in L∞(Ω,J1(H−)).

We finish our study of trace-class-operator valued functions by the fol-
lowing lemma.

Lemma B.10. Let there be a sequence {Xε} in L∞(Ω,B(H−,H+)) with
the following three properties:

(i) Xεσ
∗ ∗
⇀ X+

0 in L∞(Ω,J1(H+)),

(ii) {Xε|H } is bounded in L∞(Ω,J1(H )),

(iii) {σ∗Xε} is bounded in L∞(Ω,J1(H−)).

Then, there is Xε|H ∗
⇀ X0|H in L∞(Ω,J1(H )) and σ∗Xε

∗
⇀ X−

0 in
L∞(Ω,J1(H−)) with

X0 = X+
0 σ = σX−

0 ∈ L∞(Ω,B(H−,H+)).

Proof. Let χ ∈ L1(Ω) be given. For φ, ψ ∈H we obtain∫
Ω

χ(t)〈Xε(t)φ, ψ〉 dt =

∫
Ω

χ(t)〈Xε(t)σ
∗ · σφ, σψ〉H+

dt

→
∫
Ω

χ(t)〈X+
0 (t) · σφ, σψ〉H+

dt

=

∫
Ω

χ(t)〈X+
0 (t)σφ, ψ〉 dt.
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By Lemma B.2, this shows X0 = X+
0 σ. On the other hand, for φ, ψ ∈H−

we obtain∫
Ω

χ(t)〈σ∗Xε(t)φ, ψ〉H− dt =

∫
Ω

χ(t)〈Xε(t)σ
∗ · σφ, σψ〉H+

dt

→
∫
Ω

χ(t)〈X+
0 (t) · σφ, σψ〉H+

dt

=

∫
Ω

χ(t)〈σ∗X+
0 (t)σφ, ψ〉H− dt.

By Lemma B.2, this shows X−
0 = σ∗X+

0 σ.

x2. Semi-Bounded Operators and Coercive Quadratic
Forms

Quadratic forms present a convenient way for constructing Hamiltonians
in quantum mechanics; an excellent account of this technique is provided
by the textbook [91] of Simon. We restrict ourselves to the very basic facts
which in a way are variations on the two themes “Friedrichs extension” and
“Lax-Milgram theorem.”

Given a rigged Hilbert space H with the rigging H+ ↪→H ↪→H−, as
defined in §B.1.5, we consider quadratic forms

a :H+ ×H+ → C ,

linear in the first, conjugate linear in the second argument. The space H+

is called the form domain of a. The quadratic form a is called symmetric,
if

a(φ, ψ) = a(ψ, φ), φ, ψ ∈H+.

The quadratic form a is called H+-coercive, if it is continuous and there
are constants γ > 0 and κ ∈ R such that

a(φ, φ) ≥ γ〈φ, φ〉H+
− κ〈φ, φ〉.

Notice, that a coercive form is automatically symmetric if H is complex.
This way, the inner product a(φ, ψ) + κ〈φ, ψ〉 becomes equivalent to the
original inner product 〈φ, ψ〉H+

of H+.
There is a one-to-one correspondence of semi-bounded selfadjoint op-

erators and coercive quadratic forms on H which we will describe now:
Given a coercive form a, there is a unique selfadjoint operator A : D(A) ⊂
H →H with domain D(A) ⊂H+ having the following two properties:

(i) A extends to a bounded linear operator A :H+ →H−,

(ii) A represents the form a, i.e, a(φ, ψ) = 〈Aφ,ψ〉 for all φ, ψ ∈H+.
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The selfadjoint operator A is semi-bounded,

〈Aφ, φ〉 ≥ −κ‖φ‖2, φ ∈ D(A).

We say that A is associated to a and callH+ the form domain of A. On the
other hand, given a semi-bounded selfadjoint operator A onH , there exists
a unique rigging H+ ↪→ H ↪→ H−, and a unique H+-coercive quadratic
form a associated to A. Proofs for all these claims can be found in [76,
§VIII.6].

In a way which we do not explain here, one can associate a specific
symmetric quadratic form a to a given selfadjoint operator A, such that

a(φ, ψ) = 〈Aφ,ψ〉, φ, ψ ∈ D(A).

The form domain of a will be called the form domain of A as well. However,
without semi-boundedness, A does not extend to the form domain H+ in
general. Nevertheless, one formally writes 〈Aφ,ψ〉 = a(φ, ψ) if φ, ψ ∈H+.
Details can be found in [76, Example VIII.6.2].

An important tool for constructing selfadjoint operators is given by the
“KLMN theorem,” the letters of the acronym standing for Kato, Lions,

Lax, Milgram, and Nelson, cf. [76, Theorem X.17].

Theorem B.4. Let A be a nonnegative selfadjoint operator on H with
form domain H+. Suppose that B is a selfadjoint operator with a form
domain containing H+ such that

|〈Bφ, φ〉| ≤ α〈Aφ, φ〉 + β〈φ, φ〉, φ ∈H+,

for some α < 1 and β ∈ R. Then there exists a unique selfadjoint operator
C with form domain H+ and

〈Cφ, ψ〉 = 〈Aφ,ψ〉 + 〈Bφ,ψ〉 φ, ψ ∈H+.

The operator C is semi-bounded with bound −β, i.e.,
〈Cφ, φ〉 ≥ −β‖φ‖2, φ ∈ D(C).

One writes for short: C = A+B, defined as the sum of quadratic forms.

x2.1. Rollnik-Potentials

A measurable function V : R3 → C , obeying

‖V ‖2R =

∫
R3

∫
R3

|V (x)| |V (y)|
|x− y|2 dx dy < ∞,

belongs to the Rollnik class R. This class is a Banach-space with norm
‖ · ‖R, cf. [91, §I.2]. There is the continuous embedding

L3/2(R3 ) ↪→ R,
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cf. [91, Theorem I.1]. For instance, the central potential V (x) = −|x|−α
fulfills V ∈ R + L∞(R3 ) if and only if 0 < α < 2 which is the physically
reasonable bound. This fact is one of the main reasons for considering
potentials in R + L∞(R3 ) instead of just L2(R3 ) + L∞(R3 ).

Now, if V ∈ R + L∞(R3 ), one can define the two-body Hamiltonian

H = −Δ+ V,

as the sum of quadratic forms by referring to the KLMN theorem, cf. [91,
Corollary II.8]. The thus obtained Hamiltonian is semi-bounded, selfad-
joint on L2(R3 ) with form domain H1(R3 ). The corresponding rigging of
L2(R3 ) is thus given by the Sobolev spaces,

H1(R3 ) ↪→ L2(R3 ) ↪→ H−1(R3 ),

and the unbounded selfadjoint operator H extends as a bounded linear
operator to

H : H1(R3 ) → H−1(R3 ).

For the purposes of Chapter IV, we have to study a parameter-dependent
situation. Let Ω ⊂ R

d be a bounded domain. Given functions

V1 ∈ Ck(Ω,R), V2 ∈ Ck(Ω, L∞(R3 )),

we define the parameter dependent Hamiltonian

H(t) = −Δ+ V1(t) + V2(t), t ∈ Ω,

as above as the sum of quadratic forms. Going through the details of the
proof of [91, Corollary II.8], one obtains the following facts: The family of
selfadjoint operators H(t) extends to the Sobolev space H1(R3 ) in such a
way that

H ∈ Ck
(
Ω,B

(
H1(R3 ), H−1(R3 )

))
.

The associated quadratic form h(t;φ, ψ) is uniformlyH1-coercive, i.e., there
are constants γ > 0 and κ ∈ R such that

h(t;φ, φ) ≥ γ‖φ‖2H1 − κ‖φ‖2L2 ∀t ∈ Ω, ∀φ ∈ H1(R3 ).



Appendix C:

Asymptotic Studies of Two Model Problems

In this part of the appendix we study the singular limit of two model
problems asymptotically. We will use the tools of the perturbation theory
of integrable Hamiltonian systems as they are presented, for instance, in the
survey ofArnold,Kozlov, andNeishtadt [6, Chap. 5]. This asymptotic
study here serves a twofold reason. First, we want to show the fundamental
differences in method and scope between an asymptotic approach and that
approach we have pursued in this monograph: being oblivious to the micro-
scales by using weak convergences. Second, we want to convince the reader
that our method is much easier to handle, especially in the presence of
resonances. Even for these rather simple model problems formulas easily
mess up and, to the best of the author’s knowledge, no-one has ever tried to
follow them in the more general case which has been subject of Chapter II.

x1. The Model Problem of the Introduction

To begin, we will discuss the introductory model problem of §I.2.1 using
the notation introduced there. Additionally, we will denote by (η, ζ) the
canonical momenta corresponding to the positions (y, z). This way, the
equations of motion, Eq. (I.4), together with the velocity relations

ẏε = ηε, żε = ζε,

are given by the canonical equations of motion belonging to the energy
function

Eε =
1
2 |ηε|2 + 1

2 |ζε|2 + 1
2ε

−2
∑
λ ω

2
λ(yε)(z

λ
ε )

2.

We introduce particular action-angle variables (θε, φε) for the fast, normal
degrees of freedom (zε, ζε),

69

zλε = ε

√
2θλε
ωλ(yε)

sin(ε−1φλε ), ζλε =
√
2θλε ωλ(yε) cos(ε

−1φλε ).

69Such a particular choice presumes quite a substantial amount of insight into the
underlying problem.
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This transformation yields the one-forms

dzλε =

√
2θλε
ωλ(yε)

cos(ε−1φλε ) dφ
λ
ε + ε

√
1

2θλε ωλ(yε)
sin(ε−1φλε ) dθ

λ
ε

− ε
∑
j

∂jωλ(yε)

√
θλε

2ω3
λ(yε)

sin(ε−1φλε ) dy
j
ε ,

and

dζλε = − ε−1
√
2θλε ωλ(yε) sin(ε

−1φλε ) dφ
λ
ε +

√
ωλ(yε)

2θλε
cos(ε−1φλε ) dθ

λ
ε

+
∑
j

∂jωλ(yε)

√
θλε

2ωλ(yε)
cos(ε−1φλε ) dy

j
ε .

Hence, we obtain∑
λ

dzλε ∧ dζλε =
∑
λ

dφλε ∧ dθλε +
∑
λ,j

θλε
∂jωλ(yε)

ωλ(yε)
cos(2ε−1φλε ) dφ

λ
ε ∧ dyjε

+ ε
∑
λ,j

∂jωλ(yε)

2ωλ(yε)
sin(2ε−1φλε ) dθ

λ
ε ∧ dyjε

− ε
∑
λ,j,k

θλε
∂jωλ(yε) · ∂kωλ(yε)

2ω2
λ(yε)

sin(ε−1φλε ) cos(ε
−1φλε ) dy

j
ε ∧ dykε .

Symmetry considerations show that the last term is zero. However, for
obtaining a transformation being symplectic on the phase-space as a whole,
we additionally have to transform the remaining momenta,

ηjε = pjε + ε
∑
λ

θλε · ∂jωλ(yε)
2ωλ(yε)

sin(2ε−1φλε ).

This transformation results in the one-form

dηjε = dpjε +
∑
λ

θλε · ∂jωλ(yε)
ωλ(yε)

cos(2ε−1φλε ) dφ
λ
ε

+ ε
∑
λ

∂jωλ(yε)

2ωλ(yε)
sin(2ε−1φλε ) dθ

λ
ε

+ ε
∑
λ,k

θλε

(
∂k∂jωλ(yε)

2ωλ(yε)
− ∂jωλ(yε) · ∂kωλ(yε)

2ω2
λ(yε)

)
sin(2ε−1φλε ) dy

k
ε ,
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and therefore∑
j

dyjε ∧ dηjε =
∑
j

dyjε ∧ dpjε −
∑
λ,j

θλε
∂jωλ(yε)

ωλ(yε)
cos(2ε−1φλε ) dφ

λ
ε ∧ dyjε

− ε
∑
λ,j

∂jωλ(yε)

2ωλ(yε)
sin(2ε−1φλε ) dθ

λ
ε ∧ dyjε

+ ε
∑
λ,j,k

θλε

(
∂k∂jωλ(yε)

2ωλ(yε)
− ∂jωλ(yε) · ∂kωλ(yε)

2ω2
λ(yε)

)
sin(2ε−1φλε ) dy

j
ε ∧ dykε .

Again, for reasons of symmetry, the last term is zero. Altogether, these
lengthy but straightforward calculations have proven that the transforma-
tion (yε, ηε; zε, ζε) �→ (yε, pε;φε, θε) is symplectic indeed,∑

j

dyjε ∧ dηjε +
∑
λ

dzλε ∧ dζλε =
∑
j

dyjε ∧ dpjε +
∑
λ

dφλε ∧ dθλε .

The energy transforms to the expression

Eε =
1
2 |pε|2 +

∑
λ

θλε ωλ(yε) + ε
∑
j,λ

pjεθ
λ
ε · ∂jωλ(yε)
2ωλ(yε)

sin(2ε−1φλε )

+ 1
8ε

2
∑
j

(∑
λ

θλε · ∂jωλ(yε)
ωλ(yε)

sin(2ε−1φλε )

)2

.

Thus, by the canonical formalism, the equation of motion take the form

φ̇λε =
∂Eε
∂θλε

, θ̇λε = −∂Eε
∂φλε

, ẏjε =
∂Eε

∂pjε
, ṗjε = −∂Eε

∂yjε
,

i.e., after some calculation,

φ̇λε = ωλ(yε) + ε
∑
j

pjε · ∂jωλ(yε)
2ωλ(yε)

sin(2ε−1φλε ) + O(ε2),

θ̇λε = −
∑
j

pjεθ
λ
ε · ∂jωλ(yε)
ωλ(yε)

cos(2ε−1φλε ) + ε
∑
μ

F 1
λμ(yε, pε, θε)

· (sin (2ε−1(φμε − φλε )
)
+ sin

(
2ε−1(φμε + φλε )

))
,

ẏjε = pjε + ε
∑
λ

θλε · ∂jωλ(yε)
2ωλ(yε)

sin(2ε−1φλε ),

ṗjε = −
∑
λ

θλε · ∂jωλ(yε) + ε
∑
λ

F 2
jλ(yε, pε, θε) sin(2ε

−1φλε ) + O(ε2).
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Here, we abbreviate by F 1
λμ(y, p, θ) and F

2
jλ(y, p, θ) certain smooth expres-

sions in the variables y, p and θ. The initial values, as given in Eq. (I.5),
transform to

φε(0) = 0, θλε (0) = θλ0 =
|uλ∗ |2

2ωλ(y∗)
, yε(0) = y∗, pε(0) = w∗.

Perturbation theory now proceeds by eliminating the fast dependence on
the angle variables of the equations of motion for increasing order of ε.
We will see that we can eliminate the dependence of the O(1)-terms in
general, but that a resonance condition will be necessary for eliminating
the dependence of the O(ε)-terms.

A First Order Approximation. For eliminating the fast dependence
on the angle variables of the O(1)-terms we introduce the transformed
action variables

Θλε = θλε + ε
∑
j

pjεθ
λ
ε · ∂jωλ(yε)
2ω2

λ(yε)
sin(2ε−1φλε ), Θε(0) = θ0.

Now, the equations of motion take the simple form

φ̇λε = ωλ(yε) + O(ε),

Θ̇λε = O(ε),

ẏjε = pjε + O(ε),

ṗjε = −∑λΘ
λ
ε · ∂jωλ(yε) + O(ε).

A comparison with the limit system

φ̇λ0 = ωλ(y0), φ0(0) = 0,

Θ̇λ0 = 0, Θ0(0) = θ0,

ẏj0 = pj0, y0(0) = y∗,

ṗj0 = −∑λΘ
λ
0 · ∂jωλ(y0), p0(0) = w∗,

(C.1)

reveals, for times t = O(1), that there are the asymptotic estimates

φε = φ0 +O(ε), Θε = θ0 +O(ε), yε = y0 +O(ε), pε = ẏ0 +O(ε),

i.e., after transforming back,

θε = θ0 +O(ε), yε = y0 +O(ε), ẏε = ẏ0 +O(ε).

We observe that the equations (C.1) are just the homogenized equations
of motion as introduced in Theorem I.1, i.e., there holds y0 = yhom. This
way, we have given a second, independent proof of Theorem I.1 with an
additional error estimate. However, the reader should notice that the ar-
gument is not as straightforward as in §I.2 and the calculations are much
more involved.
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A Second Order Approximation. Additional elimination of the de-
pendence on the angle variables in the O(ε)-terms requires the assumption
that there are no resonances of order two,

ωλ(y) �= ωμ(y), y ∈ R
n , λ �= μ.

This assumptions enables us to transform the action variables to

Θλε = θλε + ε
∑
j

pjεθ
λ
ε · ∂jωλ(yε)
2ω2

λ(yε)
sin(2ε−1φλε ) + ε2

∑
μ�=λ

F 1
λμ(yε, pε, θε)

· 1
2

(
cos
(
2ε−1(φμε − φλε )

)
ωμ(yε)− ωλ(yε)

+
cos
(
2ε−1(φμε + φλε )

)
ωμ(yε) + ωλ(yε)

)
with initial value

Θε(0) = θ0 +O(ε2).

Likewise, we transform the angle variables to

Φλε = φλε + ε2
∑
j

pjε · ∂jωλ(yε)
4ω2

λ(yε)
cos(2ε−1φλε ), Φε(0) = O(ε2).

This way we get the following equations of motion:

Φ̇λε = ωλ(yε) + O(ε2),

Θ̇λε = εF 3
λ(yε, pε,Θε) sin(2ε

−1Φλε ) + εF 4
λ(yε, pε,Θε) sin(4ε

−1Φλε ) +O(ε2),

ẏjε = pjε + ε
∑
λ F

5
jλ(yε, pε,Θε) sin(2ε

−1Φλε ) + O(ε2),

ṗjε = −∑λΘ
λ
ε · ωλ(yε) + ε

∑
λ F

6
jλ(yε, pε,Θε) sin(2ε

−1Φλε ) + O(ε2).

Here, we use F 3
λ(y, p,Θ), F 4

λ(y, p,Θ), F 5
jλ(y, p,Θ), and F 6

jλ(y, p,Θ) to ab-
breviate certain expressions smoothly dependent on y, p, and Θ. This
system is now in such a form that we can completely eliminate the fast
dependence on the angle variables of the O(ε)-terms. Upon introducing
the transformed variables

Iλε = Θλε + ε2
F 3
λ(yε, pε,Θε)

2ωλ(yε)
cos(2ε−1Φλε ) + ε2

F 4
λ(yε, pε,Θε)

4ωλ(yε)
cos(4ε−1Φλε ),

Y jε = yjε + ε2
∑
λ

F 5
jλ(yε, pε,Θε)

2ωλ(yε)
cos(2ε−1Φλε ),

P jε = pjε + ε2
∑
λ

F 6
jλ(yε, pε,Θε)

2ωλ(yε)
cos(2ε−1Φλε ),

with initial values

Iε(0) = θ0 +O(ε2), Yε(0) = y∗ +O(ε2), Pε(0) = w∗ +O(ε2),
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we obtain the following simple equations of motion:

Φ̇λε = ωλ(Yε) + O(ε2),

İλε = O(ε2),

Ẏ jε = P jε + O(ε2),

Ṗ jε = −∑λ I
λ
ε · ∂jωλ(Yε) + O(ε2).

A comparison with the limit system of Eq. (C.1) yields, for times t = O(1),
the estimates

Φε = φ0 +O(ε2), Iε = θ0 +O(ε2), Yε = y0 +O(ε2), Pε = ẏ0 +O(ε2).

Expressing these estimates in the original variables we have finally proven
that

φε = φ0 +O(ε2),

θλε = θλ0

⎛⎝1 − ε
∑
j

ẏj0 · ∂jωλ(y0)
2ω2

λ(y0)
sin(2ε−1φλ0 )

⎞⎠ + O(ε2),

yε = y0 + O(ε2),

ẏjε = ẏj0 + ε
∑
λ

θλ0 · ∂jωλ(y0)
2ωλ(y0)

sin(2ε−1φλ0 ) + O(ε2),

zλε = ε

√
2θλ0

ωλ(y0)
sin(ε−1φλ0 ) + O(ε2),

żλε =
√
2θλ0ωλ(y0) cos(ε

−1φλ0 ) + O(ε).

Remark C.1. These asymptotic expressions nicely show that there is a
strong convergence żε → 0, or ε−1zε → 0, if and only if θ0 = 0. The latter
condition is equivalent to u∗ = 0, i.e., that the initial velocity is tangential
to the constraint manifold N = {x = (y, z) : z = 0}. This observation is
in perfect accordance with Lemma II.17. In the case θ0 = 0 the estimates
above improve to

θε = θ0 +O(ε2), yε = y0 +O(ε2), ẏε = ẏ0 +O(ε2).

These latter estimates can also be found in the work of Lubich [66].

x2. Quantum-Classical Coupling (Finite
Dimensional)

To end with, we will discuss the finite dimensional version of the quantum-
classical coupling model of §III.3 using the notation introduced there. This
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time, we define the phase-space coordinates (yε, ηε; zε, ζε) by
70

ψε =
ε−1zε + iζε√

2
, ηε = ẏε.

The quantum-classical coupling equations are the canonical equations of
motion, Eq. (III.9), belonging to the energy function

Eε =
1
2 |ηε|2 + 1

2 〈H(yε)ζε, ζε〉+ 1
2ε

−2〈H(yε)zε, zε〉.
We will assume right from the beginning that all eigenvalues of H(y) are
simple and that there are no resonances of order two,

ωλ(y) �= ωμ(y), y ∈ R
n , λ �= μ.

Because H(y) is assumed to be real symmetric, there is a family of real
orthonormal eigenvectors (e1(y), . . . , er(y)),

H(y)eλ(y) = ωλ(y)eλ(y), 〈eλ(y), eμ(y)〉 = δλμ.

This normalization yields important anti-symmetry relations of the deriva-
tives ∂jeλ(y), specifically

〈eλ(y), ∂jeμ(y)〉 = −〈eμ(y), ∂jeλ(y)〉,
〈∂jeλ(y), ∂keμ(y)〉 = −〈∂keλ(y), ∂jeμ(y)〉

+ terms symmetric in j and k.

(C.2)

As before in §C.1.1, we introduce particular action-angle variables (θε, φε)
for the fast, normal degrees of freedom (zε, ζε),

zε = ε
∑
λ

√
2θλε cos(ε

−1φλε ) eλ(yε), ζε = −
∑
λ

√
2θλε sin(ε

−1φλε ) eλ(yε).

This transformation yields the one-forms

dzλε = −
∑
μ

√
2θμε sin(ε

−1φμε ) e
λ
μ(yε) dφ

μ
ε

+ ε
∑
μ

1√
2θμε

cos(ε−1φμε ) e
λ
μ(yε) dθ

μ
ε

+ ε
∑
μ,j

√
2θμε cos(ε

−1φμε ) ∂je
λ
μ(yε) dy

j
ε ,

and
dζλε = −ε−1

∑
μ

√
2θμε cos(ε

−1φμε ) e
λ
μ(yε) dφ

μ
ε

−
∑
μ

1√
2θμε

sin(ε−1φμε ) e
λ
μ(yε) dθ

μ
ε

−
∑
μ,j

√
2θμε sin(ε

−1φμε ) ∂je
λ
μ(yε) dy

j
ε .

70I.e., we ignore the constant γ of Eq. (III.8) which has been introduced for getting
particular initial values in §III.3 only.
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Hence, by using the normalization 〈eλ, eμ〉 = δλμ, we obtain∑
λ

dzλε ∧ dζλε =
∑
λ

dφλε ∧ dθλε

+
∑
λ,μ,j

2
√
θλε θ

μ
ε cos

(
ε−1(φλε − φμε )

) 〈eλ(yε), ∂jeμ(yε)〉 dφλε ∧ dyjε

+ ε
∑
λ,μ,j

√
θμε
θλε

sin
(
ε−1(φλε − φμε )

) 〈eλ(yε), ∂jeμ(yε)〉 dθλε ∧ dyjε

+ ε
∑
λ,μ,j,k

√
θλε θ

μ
ε sin

(
ε−1(φλε − φμε )

) 〈∂jeλ(yε), ∂keμ(yε)〉 dyjε ∧ dykε .
However, for obtaining a transformation being symplectic on the phase-
space as a whole, we additionally have to transform the remaining mo-
menta,

ηjε = pjε + ε
∑
λ,μ

√
θλε θ

μ
ε sin

(
ε−1(φλε − φμε )

) 〈eλ(yε), ∂jeμ(yε)〉. (C.3)

By the first of the anti-symmetry relations in Eq. (C.2), this transformation
results in the one-form

dηjε = dpjε +
∑
λ,μ

2
√
θλε θ

μ
ε cos

(
ε−1(φλε − φμε )

) 〈eλ(yε), ∂jeμ(yε)〉 dφλε
+ ε
∑
λ,μ

√
θμε
θλε

sin
(
ε−1(φλε − φμε )

) 〈eλ(yε), ∂jeμ(yε)〉 dθλε
+ ε
∑
λ,μ,k

√
θλε θ

μ
ε sin

(
ε−1(φλε − φμε )

) (〈∂keλ(yε), ∂jeμ(yε)〉
+ 〈eλ(yε), ∂k∂jeμ(yε)〉

)
dykε .

Hence, by using the second of the anti-symmetry relations in Eq. (C.2), we
have∑

j

dyjε ∧ dηjε =
∑
j

dyjε ∧ dpjε

−
∑
λ,μ,j

2
√
θλε θ

μ
ε cos

(
ε−1(φλε − φμε )

) 〈eλ(yε), ∂jeμ(yε)〉 dφλε ∧ dyjε

− ε
∑
λ,μ,j

√
θμε
θλε

sin
(
ε−1(φλε − φμε )

) 〈eλ(yε), ∂jeμ(yε)〉 dθλε ∧ dyjε

− ε
∑
λ,μ,j,k

√
θλε θ

μ
ε sin

(
ε−1(φλε − φμε )

) 〈∂jeλ(yε), ∂keμ(yε)〉 dyjε ∧ dykε .
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Altogether, these lengthy but straightforward calculations have proven that
the transformation (yε, ηε; zε, ζε) �→ (yε, pε;φε, θε) is symplectic indeed,∑

j dy
j
ε ∧ dηjε +

∑
λ dz

λ
ε ∧ dζλε =

∑
j dy

j
ε ∧ dpjε +

∑
λ dφ

λ
ε ∧ dθλε .

The energy transforms to the expression

Eε =
1
2 |pε|2 +

∑
λ

θλε ωλ(yε)

+ ε
∑
λ,μ,j

pjε

√
θλε θ

μ
ε sin

(
ε−1(φλε − φμε )

) 〈eλ(yε), ∂jeμ(yε)〉
+ 1

2ε
2
∑
j

⎛⎝∑
λ,μ

√
θλε θ

μ
ε sin

(
ε−1(φλε − φμε )

) 〈eλ(yε), ∂jeμ(yε)〉
⎞⎠2

.

Thus, by the canonical formalism, the equation of motion take the form

φ̇λε =
∂Eε
∂θλε

, θ̇λε = −∂Eε
∂φλε

, ẏjε =
∂Eε

∂pjε
, ṗjε = −∂Eε

∂yjε
,

i.e., after some calculation,

φ̇λε = ωλ(yε) + ε
∑
μ�=λ,j

pjε

√
θμε

θλε
sin
(
ε−1(φλε − φμε )

) 〈eλ(yε), ∂jeμ(yε)〉
+ O(ε2),

θ̇λε = −2
∑
μ�=λ,j

pjε

√
θλε θ

μ
ε cos

(
ε−1(φλε − φμε )

) 〈eλ(yε), ∂jeμ(yε)〉
+ ε

∑
μ1,μ2
μ1 �=μ2

F 1
λμ1μ2

(yε, pε, θε) sin
(
ε−1(φμ1

ε − φμ2
ε )
)

+ ε
∑

μ1,μ2,μ3
λ �=μ2,λ �=μ3

μ1 �=μ2,μ1 �=μ3

F 2
λμ1μ2μ3

(yε, pε, θε) sin
(
ε−1(φλε + φμ1

ε − φμ2
ε − φμ3

ε )
)
,

ẏjε = pjε + ε
∑
λ,μ

√
θλε θ

μ
ε sin

(
ε−1(φλε − φμε )

) 〈eλ(yε), ∂jeμ(yε)〉,
ṗjε = −

∑
λ

θλε · ∂jωλ(yε) + ε
∑
λ,μ

F 3
jλμ(yε, pε, θε) sin

(
ε−1(φλε − φμε )

)
+ O(ε2).

Here, we abbreviate by F 1
λμ1μ2

(y, p, θ), F 2
λμ1μ2μ3

(y, p, θ), and F 3
jλμ(y, p, θ)

certain smooth expressions in the variables y, p and θ. The initial values,
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as given in Eq. (III.6), transform as follows. First, we represent the initial
excitations using polar coordinates,

〈ψ∗, eλ(y∗)〉 =
√
θλ0 · exp (−iφλ∗) , λ = 1, . . . , r.

Next, we obtain

φε(0) = εφ∗, θε(0) = θ0, yε(0) = y∗, pε(0) = w∗ +O(ε).

A First Order Approximation. Now, for eliminating the fast depen-
dence on the angle variables of the O(1)-terms we introduce the transformed
action variables

Θλε = θλε + 2ε
∑
μ�=λ,j

pjε
√
θλε θ

μ
ε

ωλ(yε)− ωμ(yε)
sin
(
ε−1(φλε − φμε )

) 〈eλ(yε), ∂jeμ(yε)〉,
(C.4)

with initial value Θε(0) = θ0+O(ε). Since we have excluded any resonance
of order two, this transformation is well-defined. The equations of motion
take the simple form

φ̇λε = ωλ(yε) + O(ε),

Θ̇λε = O(ε),

ẏjε = pjε + O(ε),

ṗjε = −∑λΘ
λ
ε · ∂jωλ(yε) + O(ε).

A comparison with the limit system

φ̇λ0 = ωλ(y0), φ0(0) = 0,

Θ̇λ0 = 0, Θ0(0) = θ0,

ẏj0 = pj0, y0(0) = y∗,

ṗj0 = −∑λΘ
λ
0 · ∂jωλ(y0), p0(0) = w∗,

(C.5)

reveals, for times t = O(1), that there are the asymptotic estimates

φε = φ0 +O(ε), Θε = θ0 +O(ε), yε = y0 +O(ε), pε = ẏ0 +O(ε),

i.e., after transforming back,

θε = θ0 +O(ε), yε = y0 +O(ε), ẏε = ẏ0 +O(ε).

We observe that Eq. (C.5) is just another form of the time-dependent Born-
Oppenheimer model which has been introduced in Theorem III.1. Thus,
there holds y0 = yhom.
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A Second Order Approximation. Elimination of the term

ε
∑

F 2
λμ1μ2μ3

(yε, pε, θε) sin
(
ε−1(φλε + φμ1

ε − φμ2
ε − φμ3

ε )
)
,

which appears in the differential equation for the action variables, requires
the assumption that there are no symmetric resonances of order four, i.e.,

ωμ1(y) + ωμ2(y) �= ωμ3(y) + ωμ4(y), y ∈ R
n ,

for
μ1 �= μ3, μ1 �= μ4, μ2 �= μ3, μ2 �= μ4.

In fact, this assumptions enables us to eliminate all the O(ε)-terms. We
omit the details, which are completely analogously to what we have done
in §C.1.1. However, recalling Eqs. (C.3) and (C.4), it should be clear that
we finally obtain the asymptotic estimates

φε = φ0 +O(ε2),

θλε = Θλ0 − 2ε
∑
μ�=λ,j

ẏj0
√
θλ0 θ

μ
0

ωλ(y0)− ωμ(y0)
sin
(
ε−1(φλ0 − φμ0 )

) 〈eλ(y0), ∂jeμ(y0)〉
+ O(ε2),

yε = y0 + O(ε2),

ẏjε = ẏj0 + ε
∑
λ,μ

√
θλ0 θ

μ
0 sin

(
ε−1(φλ0 − φμ0 )

) 〈eλ(y0), ∂jeμ(y0)〉 + O(ε2),

ψε =
∑
λ

√
θλ0 exp

(−iε−1φλ0
)
eλ(y0) + O(ε).

This time, however, we have to deal with the O(ε)-perturbations of the
initial values explicitly. To be specific, the constants Θ0 are given by the
values

Θλ0 = θλ0 + 2ε
∑
μ�=λ,j

wj∗
√
θλ0 θ

μ
0

ωλ(y∗)− ωμ(y∗)
sin
(
φλ∗ − φμ∗

) 〈eλ(y∗), ∂jeμ(y∗)〉.
Further, y0 and φ0 are defined as the solutions of the time-dependent Born-
Oppenheimer model,

ÿ0 = −
∑
λ

Θλ0 · gradωλ(y0), φ̇λ0 = ωλ(y0),

with the initial values φ0(0) = εφ∗, y0(0) = y∗, and

ẏj0(0) = wj∗ − ε
∑
λ,μ

√
θλ0 θ

μ
0 sin

(
φλ∗ − φμ∗

) 〈eλ(y∗), ∂jeμ(y∗)〉.
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Remark C.2. There are three immediate observations. First, if the initial
wave function ψ∗ is real, i.e., the initial vector of angles satisfies φ∗ = 0,
the constants and initial values above simplify to

Θ0 = θ0, φ0(0) = 0, ẏ0(0) = w∗.

Second, if just one eigenstate, for instance the ground-state, is excited
initially, we obtain the yet improved estimates

θε = Θ0 +O(ε2), ẏε = ẏ0 +O(ε2).

Finally, in the course of this asymptotic study only differences of the fre-
quencies ωλ have appeared in the denominators of the expressions. Thus,
there is no need to assume that H is uniformly positive definite. This is in
perfect accordance with the more general results of Chapter IV.



Appendix D:

The Weak Virial Theorem and Localization
of Semiclassical Measures

In this final part of the appendix we sketch the relation of our results to
the advanced analytical tools developed for the study of oscillations and
concentration effects in nonlinear partial differential equations, in particu-
lar to cope with nonlinear expressions of only weakly converging sequences.
This way we give our results a broader perspective and, hopefully, clarify
the possible impact of these tools.

Let xε ⇀ x0 be a sequence of vector-valued functions that depend on
an argument t ∈ Ω ⊂ Rd . The weak convergence is understood to hold in
L2(Ω,Rm ). For describing the weak limits of nonlinear expression in xε,
two major tools have been invented:

• Young measure [28, §1.E.3] describes, or better, encodes all limits of
nonlinear substitutions f(xε), f ∈ C(Rm ). The difficulty with this
tool lies in the fact, that besides existence there is not much known
about how to systematically obtain information on this measure.

• H-measure invented by Tartar [95][96] and, independently, by Gé-

rard [37] who uses the name microlocal defect measure instead. This
measure encodes all limits of certain quadratic pseudodifferential ex-
pression of xε. There is a systematic way, called localization principle,
how to obtain knowledge about this measure from any differential
equation involving xε. For differential equations that explicitly in-
volve a scale-parameter ε a variant of those measures applies, called
semiclassical measure [36][97] or Wigner measure [65].

Thus, the tool of choice for the study of the quadratic quantities in Chap-
ter II is the semiclassical measure. We will show that the localization prin-
ciple obtained from the differential equation (II.25) just yields the weak
virial theorem, Eq. (II.27).

To begin, we recall the basic properties of the semiclassical measure as
introduced by Gérard [36, Prop. 3.1 and Eqs. (3.11), (3.12)].

Theorem D.1. Let xε be a bounded sequence in L2(Ω,Rm ). After ex-
tracting a subsequence, for which we still keep the index ε, there exists a
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Radon measure μ on T ∗Ω = Ω× Rd whose values are nonnegative Hermi-
tian matrices such that the following property holds: Given scalar symbols
p, q ∈ S (T ∗Ω,R), there is

p(t, εD)xε ⊗ q(t, εD)xε ⇀

∫
Rd

p(t, τ) · q(t, τ) μ(dτ) (D.1)

vaguely in the space of matrix-valued Radon measures. Here, D = −i∂
and the integral denotes the projection of the measure pq̄μ onto Ω. As
a consequence, we obtain the following localization principle: Given a
matrix-valued symbol P ∈ C∞(T ∗Ω,Rn×m ) that is a polynomial in the
dual variable τ , there holds

P (x, εD)xε → 0 strongly in L2(Ω,Rn ) ⇐⇒ Pμ = 0. (D.2)

We now turn back to the setting of §II.2, i.e., the proof of the homog-
enization result Theorem II.1. Let μ be a semiclassical measure belonging
to the sequence ηε = ε−1zε, which is bounded in L∞([0, T ],Rr ). Thus, by
the basic property (D.1) we have, weakly* in L∞([0, T ],Rr ),71

ΣεG
−1
ε = ηε ⊗ ηε

∗
⇀ Σ0G

−1
0 =

∫
R

μ(dτ),

ΠεG
−1
ε = żε ⊗ żε = εDtηε ⊗ εDtηε

∗
⇀ Π0G

−1
0 =

∫
R

τ2 μ(dτ).

The differential equation (II.25) for the normal motion can be rewritten as

(−ε2D2
t +H(y0))ηε = O(ε) in L∞([0, T ],Rr ).

Accordingly, by the localization principle (D.2),

(−τ2I +H(y0))μ = 0.

Integration with respect to the dual variable τ and multiplication by G0

from the right yields∫
R

τ2 μ(dτ) = H(y0)

∫
R

μ(dτ), resp. Π0 = H(y0)Σ0,

i.e., the weak virial theorem, Eq. (II.27).
This new proof of the weak virial theorem, though surely far too com-

plicated for the purposes of Chapter II, tells us two interesting things: first,
the result is by no means an accident but systematically connected with the
differential equation (II.25) of the normal motion, and second, it is but one
example of a whole family of similar results. For instance, the correspond-
ing equi-partitioning of energy in Example I.1 is a direct consequence of
the div-curl lemma of compensated compactness theory, which can likewise
be obtained by the localization principle of H-measures [95, §1.3][37, §2].

71Strictly speaking, before applying (D.1) we first have to cut-off infinity in the dual
variable; afterwards we remove the cut-off by taking a limit: Choose χ ∈ C∞

c (R) equal
to 1 in a neighborhood of 0 and put χk(τ) = χ(τ/k). Now, replace ηεby χk(εDt)ηε,
apply (D.1), and take the limit k → ∞.
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