X

VAN

KA

XX XXX
KXY XXX
NAX XX XA

@
a

XX
e

<]

=

‘
[(X
\ \/

/\

Konrad-Zuse-Zentrum fiir Informationstechnik Berlin
Takustr. 7, D-14195 Berlin - Dahlem

Rainald Ehrig

Ulrich Nowak
Peter Deuflhard

Massively Parallel Linearly-Implicit Extrapolation Algorithms
as a Powerful Tool in Process Simulation

Preprint SC 97-43 (September 1997)

Massively Parallel Linearly-Implicit Extrapolation Algorithms
as a Powerful Tool in Process Simulation

Rainald Ehrig Ulrich Nowak Peter Deuflhard

Abstract

We study the parallelization of linearly—implicit extrapolation codes for the
solution of large scale PDE systems and differential algebraic equations on dis-
tributed memory machines. The main advantage of these algorithms is that
they enable adapativity both in time and space. Additive Krylov—Schwarz
methods yield high parallel perfomance for such extrapolation methods. Our
approach combines a slightly overlapping domain decomposition together with
a polynomial block Neumann preconditioner and a reduced system technique.
Furthermore we get important advantages through the explicit computation of
the matrix—products of the preconditioner and the matrix of the linear sys-
tem. The parallel algorithms exhibit scalability up to 64 processors already for
medium—sized test problems. We show that the codes are really efficient in large
application systems for chemical engineering problems.

CONTENTS

Contents

Introduction
General concepts

A step by step development of a parallel solver

3.1 Block Jacobi and block Neumann preconditioner
3.2 Explicit computation of the matrix product Py, A
3.3 Overlapping domain decomposition

3.4 The reduced system technique

Numerical Results
4.1 Results for an aerosol formation problem

4.2 Results for the adaptive program PDEX1IM

Parallel implementation issues

5.1 An heuristic scalability analysis 0.

Conclusions

References

11
11
12

13
14

15

16

1 INTRODUCTION 4

1 Introduction

Many challenging applications in the engineering sciences lead to large systems of
PDEs, which have to be solved together with complex constraints, like balance condi-
tions or transfer equations as examples. Such differential algebraic equations (DAES),
which can be understood as differential equations on manifolds, have an increasing
importance in the field of mechanical and chemical engineering, besides many others.
The DAEs arising in such applications can mostly be written as

Bt,y)y' = f(t.y), ylto) =%, y€R", (1)

with an in general singular matrix—pencil B(¢,y). We will concentrate here on DAEs
resulting from a space discretization of PDEs by the method of lines in the 1D-case.

Since most real world problems possess multiple time scales, we have to use implicit
methods. A suitable algorithmic framework is the linearly-implicit Euler discretization

Y1 = Yk + (Byr) — hA) " hf (yx) (2)

with A = (f(y) — By'),, the Jacobian of the residual of (1). Combined with ex-
trapolation this one-step method permits an adaptive stepsize and order control and
is well established in a wide area of applications (codes LIMEX and PDEX1M), see
DEUFLHARD [1], DEUFLHARD, LANG AND NOWAK [2] and NOWAK [3]. Within the
extrapolation one computes for a basic stepsize H approximations T for y(to + H)
using the described discretization with stepsizes h; = H/n;,j =1,..., jmaz. Then the
extrapolation tableau recursively defines higher order approximations 7’ ;. As usual
the subdiagonal differences ¢; = ||T;; — T} j_1|| are taken as error estimates.

The efficiency of any serial or parallel implementation of the algorithms almost solely
depends on the performance of two computational kernels: the evaluation of the Jaco-
bian and particularly of the solution of the linear systems. In the following we describe
the general concepts of a parallel extrapolation algorithm, targeted to a distributed
memory architecture. Then we describe the steps leading to a highly scalable parallel
solver and demonstrate the efficiency of our methodology.

2 General concepts

At first sight, a simple and promising method is to compute the approximations 7'; ;
independently on different processors, but this approach would restrict the number
of processors to the maximal order attainable by the extrapolation method. Further-
more we could not use the advanced order and stepsize control techniques, as in this
procedure the order j,,.. is determined within the current step. Nevertheless this
parallelization strategy is studied by some authors (BURRAGE [4], RAUBER [5]).

3 A STEP BY STEP DEVELOPMENT OF A PARALLEL SOLVER 5

A more general applicable and commonly used strategy is the domain decomposition
method, which does not involve any limitation to the number of processors. The
realization of a domain decomposition algorithm refers directly to properties of the
underlying physical problem. It presupposes that the solution on the entire domain
can be obtained from solutions on suitably selected subdomains. Within the linearly—
implicit extrapolation methods then it is required that the function f in the right—
hand side of the DAE can be evaluated locally. This assumption is fulfilled for most
problems resulting from a discretization of PDEs by the method of lines. If we could
solve efficiently and in parallel the linear systems arising in the extrapolation, the whole
extrapolation scheme can straightforward be parallelized, assigning the processors to
different parts of the approximations 7} ;. Apart from the exchange of boundary
values, which is necessary for the evaluation of f on the processor boundaries, the
extrapolation only requires global reduction routines in the computation of the error
estimates.

3 A step by step development of a parallel solver

Given the distributed evaluation and storage of the Jacobian we have to search for a
solution methodology, which likewise uses this partitioning. Parallel direct methods,
even if one uses specialized algorithms for banded systems referring to the domain
decomposition, are not competitive for higher numbers of processors, due to the im-
balance of computation and communication. In contrast to this the partitioned matrix
and vector storage for iterative solvers enables a quite effective parallel matrix by vec-
tor multiplication, which needs only some “small” data exchanges of the right—hand
side vector between neighbouring processors. So as usual the right choices of a parallel
preconditioner and an iterative solver decide, whether the battle for low computational
cost and scalable parallelism can be won.

As a test problem we use throughout this chapter a system of 11 PDEs, which models
the startup phase of an automobile catalytic converter (NOWAK [3] and EIGENBERGER
AND NIEKEN [7]), with strongly varying time-dependent chemical dynamics and stiff-
ness. The speedups are always measured by comparison with our fastest sequential
implementation. The communication bases on the Cray shared memory access rou-
tines. All solvers are implemented on a Cray T3D using complete LU factorizations
on the subdomains. As iterative solver we used GMRES, but other iterative methods
as BICGSTAB are likewise effective.

3.1 Block Jacobi and block Neumann preconditioner

Standard sequential preconditioners such as ILU or SSOR are in most cases not ap-
propriate in the parallel world. Their major bottleneck are the backsolves involving

3 A STEP BY STEP DEVELOPMENT OF A PARALLEL SOLVER 6

triangular distributed matrices. An alternative technique targeted more specifically at
parallel environments is the block Jacobi preconditioner, or so—called additive Schwarz
procedure. This very simple but highly scalable approach uses complete or incomplete
factorizations on the subdomains assigned to the processors, which can be computed
and applied completely in parallel.

An extension of the block Jacobi approach is polynomial preconditioning. Hereby the
preconditioner is constructed as a polynomial over A, usually of low degree, which ap-
proximates the inverse of A. The application of such preconditioners can be computed
as a sequence of matrix by vector multiplications and is therefore quite effective. As
an example one gets for a truncated Neumann-series expansion

AV~ (21 — P;LA) Pyl = Pyew - (3)
This preconditioner was introduced by DuBOIS ET AL. [8] and later studied by DA
CUNHA ET AL. [9]. Obviously Py, requires one more matrix by vector multiplication
and one additional application of the block Jacobi preconditioner.

Time (sec.) Speedup
500 T T T T 32 T T T T

450 block Jacobi — -
200 . block Neumann ---- | 16 .
350 : -

300
250
200
150
100
50

1 2 4 8 16 32 1 2 4 8 16 32
Processors Processors

Figure 1: Performance results for the block Jacobi and Neumann preconditioner

The results of applying both the block Jacobi or Neumann preconditioner are at
first glance not encouraging, see Fig. 1. One obtains only a speedup of about 2.3
with 16 processors, the number of iterations needed by GMRES increases rapidly
with the number of processors. For the block Jacobi the solution exhibits spurious
oscillations around the processor boundaries, which indicates that the coupling across
the boundaries is not enough considered, whereas the block Neumann method shows
a satifying robustness.

The block preconditioners can also be defined through other mathematical approaches.
First the classical Richardson matrix—iteration produces as iterates exactly the values
of the truncated Neumann series. Thus the (block) Jacobi preconditioner is the first,
the (block) Neumann preconditioner is the second Richardson iterate. The application

3 A STEP BY STEP DEVELOPMENT OF A PARALLEL SOLVER 7

of these preconditioners within an iterative method can therefore be seen as a nested
iterative scheme, the inner iterations are the steps of the Richardson algorithm.

Furthermore the approximations x9; of the Neumann series expansion are also obtain-
able by a Newton algorithm applied to the vector-valued equivalent of the function
f(z) = 1/x — a (PAN AND SCHREIBER [10]). The different interpretations suggest a
variety of modifications and strategies especially for higher—dimensional cases.

3.2 Explicit computation of the matrix product P; A

One common property of the block Jacobi and Neumann approach used in iterative
solvers is the repeated application of the operator Pj,. A. Therefore we analyze the
structure of this product in more detail. Since we use exact LU factorizations on the

subdomains, we can depict the matrix multiplication schematically as in Fig. 2. Herein

Figure 2: Schematic representation of the matrix product Pj,. A on 4 processors

the E; and F; are defined by E; = A;'B; and F; = A;'C;, the diagonal elements of
P;L A are equal to 1. Each of the matrices E; and F; covers m (or (m + 1)/2, if
A is block-tridiagonal) vectors of the length n/p, with n the size of the system and
m the upper and lower bandwidth. The structure of P;,. A resembles to the Schur
complement technique. Indeed our algorithm can be understood as a generalized
Schur complement method with block Gaussian elimination but without labeling the
interface nodes last. The matrices F; and F; are computable completely in parallel,
once computed the application of the whole operator P, A is reduced to some “small”
matrix by vector multiplications, which are also fully parallelizable, provided that the
local updates of the right-hand side vector are already done. So the computation of
the matrices E; and F; is very efficient, as illustrated by the performance results in

Fig. 3.

3 A STEP BY STEP DEVELOPMENT OF A PARALLEL SOLVER 8

Time (sec.) Speedup
400 T T T T 32 T T T T
350 | block Jacobi —
block Neumann ---- 16 - i
300 N
250 gk i
200
150 4r T
100
)L i
50 B .
0 | | | | 1 | | | |
1 2 4 8 16 32 1 2 4 8 16 32
Processors Processors

Figure 3: Performance results for the block Jacobi and Neumann preconditioner using
explicit computation of P, A

3.3 Overlapping domain decomposition

A reasonable preconditioner should suppress artificial effects of the domain decom-
position. A powerful and well-known technique for this is to work with a slightly
overlapping domain decomposition. Such methods define some gridpoints as overlap
region or interface and apply the iterative solution algorithms on the subdomains as
before, but the overlap region must be treated in a special manner. Usually when
applying the preconditioner to a distributed vector, the values on the overlap region

Time (sec.) Mean nr. of iterations
100 T T T 35 T T T

block Jacobi —
80 H block Neumann ---- |

10 F e -
20 b
5 - .
0 | | | 0 | | |
0 5 10 15 20 0 5 10 15 20
Nr. of overlapping gridpoints Nr. of overlapping gridpoints

Figure 4: Performance results as a function of the size of the overlap region for the
block Jacobi and Neumann preconditioner with averaging on 32 processors

are averaged from the values computed by the local solvers. Other methods are the
exchange of the overlapping data or the definition of artificial boundary conditions

3 A STEP BY STEP DEVELOPMENT OF A PARALLEL SOLVER 9

on the interfaces. The advantage of averaging is that the vectors used to iterate are
consistent on all processors. The algorithmic realization of these operators needs no
additional calls of communication routines, only the amount of data exchanged be-
tween neighbouring processors increases depending on the size of the interface region.

Applying the overlapping domain decomposition gives a remarkable rise of efficiency
especially for the block Jacobi preconditioner, see Fig. 4. With a definition of 5
gridpoints as overlap region the computing times and the number of iterations for
GMRES is reduced by approximately 50%. Even if a further increase of the overlap
region reduces the iterations somewhat more, the increasing overhead for the solution
of the linear systems inhibits a further speedup. The results are less dramatic for the
block Neumann preconditioner, which itself does not ignore the coupling between the
subdomains, one obtains a reduction for the global computing time of about 25% and
for the iterations of about 50%.

3.4 The reduced system technique

In this section we will analyze in more detail the linear systems which are the result
of the explicit formation of P A on p processors. Let E;, F; be the submatrices
introduced in 3.2. Then we partition the matrices Es, ..., F, and Fy,..., F,_; into
their first m, middle n/p — 2m, and last m rows. Similarly we divide £ into its first
n/p —m and last m and F,_; into its first m and last n/p —m rows and equivalently
the vectors = and b, see Fig. 5.

Ey| X11 by
Ei3 X13 bis
Faz By X2 by
Fos Ex . X2 - b23
Fa2 Ea X3z2 ba.

Fa3 Es3 X33 b 33

|Fa | Xa1 ba

F43 X43 b 43

Figure 5: Partitioning of the linear system P;. Az = b on 4 processors

Now we can split up the whole linear system in a set of equations with the unknowns
T13, Ta1, T23, - - -, Tp1 OPerating only of the processor boundaries. These equations build
the so—called reduced system of order 2m(p — 1) and is much smaller than the original

3 A STEP BY STEP DEVELOPMENT OF A PARALLEL SOLVER 10

system. It can be solved completely independent of the set of remaining equations
with the unknowns x11, 22, 32, . .., Tp_12, Tp3. This system can be solved afterwards
using the solutions of the reduced system by some inexpensive matrix by vector mul-
tiplications. The reduced system itself is a distributed block tridiagonal matrix with
blocks of order 2m, the possible combination with an overlapping domain decompo-
sition leads to slightly greater blocks. To solve this system we use again iterative
methods, but now all vectors used by these algorithms, e.g. the distributed Krylov
vectors in GMRES are very short, their length is only of the order of the reduced
system. The convergence properties of an iterative method applied to the full matrix—
product or the reduced system are very similar. The eigenvalues of the reduced system
are eigenvalues of P;,. A as well, and this matrix has the additional eigenvalue 1.

Time (sec.) Speedup
700 T T T T T 64 T T T T T
641 gridpoints — |
600 i, 1283 gridpoints ---- 32 1
500 B 16 L i
40 F N .
8 r B
300
200 4r |
100 2r 1
0 1) | | | |
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Processors Processors

Figure 6: Performance results with the reduced system technique on two gridsizes

Again there are some related mathematical techniques which we should mention. The
inherent equivalence between these aproaches is not commonly recognized. First the
reduced system method is introduced in detail in [11] to develop parallel direct solu-
tion methods for banded systems. Furthermore BRAKKEE ET AL. [12, 13] investigated
in the context of the 2D Navier—Stokes equation domain decomposition methods and
derived a so—called interface—equation in connection with exact subdomain solutions,
which is completely equivalent to the reduced system. In a more general manner,
BRAMLEY AND MENKOV [14] have examined low rank off-diagonal block precondi-
tioners. They studied approximations for a sparse matrix which can be written as
B =D+ UVT, U and V matrices composed of only a “few” vectors. Our approch
can be embedded in their terminology, since one easily constructs “small” matrices U
and V with P;,L A= 1+ UVT. Then I + VTU is exactly the reduced system.

Applying the described reduced system technique combined with an overlapping do-
main decomposition we once more obtain a substantial gain of performance, see Fig. 6.
Because the iterations now are very cheap, we get the minimal computing time, if the
overlap region consists of a single grid point. Fig. 6 demonstrates now clearly the
scalability of our step—by—step evolved algorithm already for the only medium-—sized
testproblem.

4 NUMERICAL RESULTS 11

4 Numerical Results

In this section we demonstrate the performance and scalability of our approaches when
applied to large and difficult problems from chemical engineering.

4.1 Results for an aerosol formation problem

The purpose of the program SENECA (Simulation with Extrapolation methods and
NEwton techniques of Chemical and technical processes with Aerosol formation), a
joint project with the University Karlsruhe, is a general tool to simulate stationary
and instationary processes in chemical equipments including aerosol formation. The
models include the description of the formation and growth of fog droplets by hetero-
geneous condensation of mixtures, supersaturation in the gas phase and coagulation
processes and has been successfully applied e.g. to absorption processes for hydrochlo-
ric acid in industrial exhaust purification plants. We refer to SCHABER AND K ORBER
[15, 16] for a detailed description.

Time (sec.) Speedup
3000 T T T T 32 T T T T
LIMEX SHMEM —
2500 total program SHMEM ---- 16 L
LIMEX MPI -----
2000 | total program MP| -~]
8 F _
1500 j ~
4 B -
1000 |
500 -) 2 J
0 ! I I | 1 L | | | |
1 2 4 8 16 32 1 2 4 8 16 2

Processors Processors

Figure 7: Performance results for the aerosol formation problem

The equations for the involved thermodynamical processes and for the aerosol growth
lead to a system of coupled hyperbolic and parabolic PDEs which has to be solved
together with nonlinear equations for heat and mass transfer as well as for the volume,
mass and energy balances. The space discretization of the PDEs yields a set of DAES,
which can be integrated by the extrapolation code LIMEX.

The modelling of the distribution of droplet sizes by a discrete set of classes requires
the rebuilding of the whole system of PDEs after every time-step. Thus the number of
PDEs and gridpoints and therefore also the size of the linear systems changes after each
integration step. Due to the spatially changing distribution of droplets the number of
ODEs assigned to each gridpoint are in general very different, this can lead to severe
load balancing problems, if the actual grid is not appropriate partitioned. Furthermore

4 NUMERICAL RESULTS 12

the underlying upwind-discretization results in structural non-symmetric block tetra—
diagonal linear systems. Regardless of these difficulties, all algorithmic strategies we
have developed can be applied without any principial changes. Within the program
package, the LIMEX code is only one of many subroutines, even if by far the most
time consuming one. We have made no attempts to parallelize the whole package.
In order to be consistent, we therefore have to distribute the solution vector over all
processors after each integration step.

We present in Fig. 7 the performance results on a Cray T3E for a medium problem
size. Hereby the mean gridsize, averaged over the whole integration is about 150, the
size of the linear systems is about 8000. The block sizes fluctuate between 10 and 46.
We have included the results for a MPI-based implemetation, but the differences are
not very significant.

The results clearly show the value of the parallel extrapolation method within appli-
cation specific codes for the integration of large systems of DAEs. Even if the number
of processors is still limited by the only medium-sized grids, the attainable speedup
already enables the computation of much more complex problems. So effective parallel
codes as presented in this paper, may be a powerful tool to allow realistic simulation
of aerosol formation and growth in whole chemical equipments.

4.2 Results for the adaptive program PDEX1M

We demonstrate finally, that the algorithmic approaches are even successfully appli-
cable in the adaptive solver PDEX1M for parabolic differential equations (NOWAK
[3]). This algorithm is fully adaptive in space and time. The number of grid points
required for a certain solution accuracy as well as the distribution of grid points and
the time steps are automatically adjusted, based on the relative errors for the time and
space discretization. These errors are estimated at each time step via extrapolation

Time (sec.) Speedup
900 T T T T 32 T T T T
800 Int. on all proc. total —
coarse grid ——- L i
700 fine grid ----- 7 16
600 sequential part -
500 - 8r |
400 | Al |
300 k.
200 5L _
100
0 | | | B = | | | |
1 2 4 8 16 32 1 2 4 8 16 32
Processors Processors

Figure 8: Performance results of PDEX1M for the catalytic ignition

5 PARALLEL IMPLEMENTATION ISSUES 13

and used for a local regridding procedure. Based on the local errors estimates global
error norms are computed which enables a separate error control in space and time.
The program incorporates advanced techniques like moving grid options.

We present in Fig. 8 preliminary results (the interpolation between the different grids
is not yet fully parallelized) of an example from the University Stuttgart, where based
on this code the application package PDEXPACK has been developed, NOWAK ET
AL. [6]. Tt simulates the catalytic ignition during methane oxidation on platinum.

To get a high parallel performance our implementation allows to integrate on the
coarse resp. fine grid using different processor sets in the relation 2:1. Then one can
obtain a better scalability even for medium grid sizes. This expectation is indeed
partially fulfilled for our test problem, see Fig. 9.

Time (sec.) Speedup
900 T T T T 32 T T T T

800 Int. on subsets: total — P
700 | e o 16 P
600
500
400
300
200
100

0]]]] i 1]]]]
1 2 4 8 16 32 1 2 4 8 16 32
Processors Processors

Figure 9: Performance results of PDEX1M using different processor sets for coarse
and fine grid integration

5 Parallel implementation issues

We implemented our algorithms on the Cray T3D with 256 processors (64 MB mem-
ory) and the Cray T3E with 128 processors (128 MB) at the Konrad—Zuse—Zentrum.
Each processor is assigned to one subdomain and the information pertaining the inte-
rior of the subdomain is uniquely owned by that processor and is not availabe to any
other processor except by explicit message passing. The order and stepsize control are
done by all processors simultaneously.

All message passing calls are implemented through the shared memory access commu-
nication routines (SHMEM library) from Cray Research Inc. We wrote a small library
containing only two types of routines: global reductions needed in inner products as
an example and local exchange operations between neighbouring processors. These
local exchanges can be coded synchronous, then they act as synchronization point,

5 PARALLEL IMPLEMENTATION ISSUES 14

or asynchronous, requiring some more buffering to be safe. We did not found large
differences in respect to the overall computing times between both approaches. Up
to 32 processors the synchronous exchanges are slightly faster, from 64 processors the
asynchronous ones. Both variants of the local exchange routines use only the routine
shmem_put, which is the fastest point-to-point communication routine on the T3D.
Because the codes itself never calls directly any communication function the programs
can be switched easily to any other message passing library, especially to MPI.

5.1 An heuristic scalability analysis

We conclude this section with an analysis of the scalability of our algorithms, but
not by counting Mflops or computing serial or parallel complexities. This approach
is of very limited value for a whole application code, since it does not refer to the
efficiency of assembly coded linear algebra kernels to the communication performance
of a specific parallel machine. Instead we have measured the computing times of
the main parts of our program to demonstrate the different scalability potential, see
Fig. 10. The application dependent parts scale very well, i.e. the calls of the right hand
side f within the extrapolation and the evaluation of the Jacobian, likewise even the

0.6
0.51
7
-
0.4+ 7 ’
-
0.3
-
0.2
%
0.1_ (
: W7 TN 1
1 2 4 8 16 32 64
Processors
Legend [function-calls [evaluation of the Jacobian
set-up of the preconditioner E solver calls
local exchanges B global reductions

Figure 10: Relative contributions to the computing time

6 CONCLUSIONS 15

computation of the preconditioner, which can be done almost completely in parallel.
An ideal scalability is prevented by the communication calls and in particular by the
iterative solver due to the increasing number of iterations. Indeed with 64 processors
the solver calls predominate the computing time, whereas the application specific parts
become more and more insignificant. This processor number, however, is not a general
limit for the scalability of our methods, as for the medium-sized test problem we have
selected. For larger examples we expect scalability even for higher processor numbers.

We should remark that the parallel efficiency of our codes strongly depends on the
speed of local exchanges and global reductions, the latter mostly only for one single
inner product, whereas other global communication or transfer between not neighbour-
ing processors almost never occur. Indeed the former communication types are used
permanently, in the extrapolation scheme as well during the computation of approxi-
mate solutions by an iterative solver. Therefore the tightly coupled Cray T3D/T3E are
the ideal target machines for parallel extrapolation codes. This is proven evidently by
the fact, that within the GMRES algorithm we get no considerable differences between
the so—called modified Gram—Schmidt orthogonalization, which is numerical more sta-
ble, but needs much more global reductions and the classical counterpart, where all
communication can be done at once. As an counterexample LO AND SAAD [17] re-
ported on clusters of workstations differences of sometimes more than 50% between
the overall performance of the classical resp. modified procedure.

6 Conclusions

We have demonstrated that the parallel extrapolation algorithms open new possibili-
ties for realistic simulations in chemical engineering and other areas as well. We finally
note, that the development of highly scalable and efficient parallel algorithms remains
a mathematical chal lenge, regardless of the existence of parallel toolkits or high—speed
communication libraries.

Our efforts for the development of a highly scalable and efficent solver for large systems
of DAEs are not finished. Some of the open questions will briefly be mentioned.

For the GMRES—-algorithm we should consider, that one solves within the extrapola-
tion scheme many linear systems, some of them with the same matrices, some of them
with matrices different mainly in the diagonal. This situation suggests to reuse the
work done in the preceeding steps, e.g. the already constructed Krylov spaces. Until
now our preliminary approaches did not result in a remarkable gain of performance,
but such methods should get our interest again for higher dimensional problems, where
direct subdomain solutions may be too expensive.

Furthermore we have to consider, that the actual interesting property of the approx-
imate solutions of the linear systems is the error, not the (preconditioned) residual.
So the development of error minimizing iterative methods would be of great value.

6 CONCLUSIONS 16

In many real applications for DAEs, a serious problem is the determination of con-
sistent initial values. To do this likewise in parallel, we have developed a method
of extrapolated Newton—iterations, which can be imbedded in the LIMEX—code and
which is highly efficient in the SENECA package.

All these considerations will influence even the evolution of the sequential algorithmic
counterparts. So the efforts made for a parallel code are always an opportunity to
reflect upon the algorithmic foundations of a given numerical method.

REFERENCES 17

References

[1] P. Deuflhard: Recent Results in Eztrapolation Methods for ODEs. SIAM Review,
27, pp. 55-535 (1985).

[2] P. Deuflhard, J. Lang, U. Nowak: Adaptive Algorithms in Dynamical Process Sim-
ulation. 8th Conference of the European Consortium for Mathematics in Industry;,
Kaiserslautern 1994.

[3] U. Nowak: A fully Adaptive MOL-Treatment of Parabolic 1D-Problems with Ez-
trapolation Techniques. Appl. Num. Math. 20, pp. 129-145 (1996).

[4] K. Burrage: Parallel and Sequential Methods for Ordinary Differential Equations.
Oxford University Press: New York (1996).

[5] T. Rauber, G. Riinger: Load Balancing for Extrapolation Methods on Distributed
Memory Multiprocessors. In: Lecture Notes in Computer Science 817, pp. 277-288,
Athen, July 1994. PARLE 1994, Springer.

[6] U.Nowak, J. Frauhammer, U. Nieken: A fully adaptive algorithm for parabolic par-
tial differential equations in one space dimension. Comp. Chem. Eng. 20, pp. 547—
561 (1996).

[7] G. Eigenberger, U. Nieken: Katalytische Abluftreinigung: Verfahrenstechnische
Aufgaben und neue Losungen. Chem. Ing. Techn. 63(8), (1991)

[8] P.F. Dubois, A. Greenbaum, G.H. Rodrigue: Approzimating the inverse of a
matrix for use in iterative algorithms on vector processors. Computing 22, pp. 257—
268 (1979).

9] R.D. da Cunha, T. Hopkins: A parallel implementation of the restarted
GMRES iterative algorithm for nonsymmetric systems of linear equations.
Adv. Comp. Math. 2, pp. 261-277 (1994).

[10] V. Pan, R. Schreiber: An improved Newton iteration for the generalized inverse
of a matriz, with applications. SIAM J. Sci. Stat. Comput. 12, pp. 1109-1130
(1991).

[11] P. Arbenz, W. Gander: A Survey of Direct Parallel Algorithms for Banded Linear
Systems. Technical Report TR 221, Institute for Scientific Computing, ETH Ziirich
(1994).

[12] E. Brakkee: A domain decomposition method for the advection-diffusion method.
Report 94-08, Faculty of Technical Mathematics and Informatics, Delft University
of Technology, Delft (1991).

REFERENCES 18

[13] E. Brakkee, K. Vuik, P. Wesseling: Domain decomposition for the incompressible
Navier—Stokes equations: solving subdomain problems accurately and inaccurately.
Report 95-37, Faculty of Technical Mathematics and Informatics, Delft University
of Technology, Delft (1995).

[14] R. Bramley, V. Menkov: Low Rank Off-Diagonal Block Preconditioners for Solv-
ing Sparse Linear Systems on Parallel Computers. Tech. Rep. 446, Department of
Computer Science, Indiana University, Bloomington (1996).

[15] K. Schaber: Aerosol Formation in Absorption Processes. Chem. Engng. Sci. 50,
pp. 1347-1360 (1995).

[16] K. Schaber, J. Kérber: Formation of Aerosols in Absorption Processes for Ex-
haust Gas Purification. J. Aerosol. Sci. 22, pp. S501-S504 (1991).

[17] Iterative Solution of General Sparse Systems on Clusters of Workstations. Tech-
nical Report UMSI 96-117, Minnesota Supercomputer Institute, University of Min-
nesota, Minneapolis (1996).

