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ABSTRACT

We present a self–adaptive finite element method to solve combustion prob-
lems in 1D, 2D, and 3D. An implicit time integrator of Rosenbrock type is
coupled with a multilevel approach in space. A posteriori error estimates are
obtained by constructing locally higher order solutions involving all variables
of the problem. Adaptive strategies such as step size control, spatial refine-
ment and coarsening allow us to get economically an accurate solution. Various
examples are presented to demonstrate practical applications of the proposed
method.

INTRODUCTION

In the numerical simulation of combustion problems much attention has to be
paid to different time scales forced by ignition or propagation processes, and to
an efficient spatial resolution of steep solutions often arising when thin flame
fronts propagate through the computational domain. In this situation, adaptive
methods, such as step size control, spatial refinement and coarsening, or moving
meshes are attractive to get an accurate solution economically [14, 4, 12, 10, 15].
One of the main questions in the area of adaptive algorithms is how to deter-
mine where small time steps and spatial refinement are necessary, and where
large time steps and coarse meshes are sufficient. In addressing this issue, two
approaches are mostly applied. The first is to use special engineering knowledge
about physical and chemical properties of the model equations. Unfortunately,
those criteria often request a tuning process for each new application.
The second approach is to use a posteriori estimates. Here the goal is to capture
local discretization errors involving all variables of the model equations. Higher
order solutions are constructed both in time and space [1, 7, 13], which can be
utilized to adjust the time step and the local spatial resolution in order to keep
the numerical error below a prescribed tolerance. This methodology is quite
general, it can be applied to a large class of combustion problems governed by
the same model.
Guided by this mathematical approach, we present an adaptive finite element
method coupled with an implicit time integrator of Rosenbrock type. The
algorithm has demonstrated its reliability for a variety of practical relevant un-
steady problems. Selected examples including 1D, 2D, and 3D problems will be
presented to illustrate practical applications of our mesh quality control tech-
niques.
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The implementation of adaptive finite element codes employing multilevel tech-
niques require modern software design and programming languages. Dynamic
tree structures are used to manage grid enhancement and robust coarsening as
well. Our code KARDOS is based on the programming environment KASKADE
[6] which is available at ftp://ftp.zib.de/pub/kaskade.

ADAPTIVE TIME AND SPACE DISCRETIZATION

Many combustion phenomena are set up by time–dependent systems of PDEs
of the following type

H(x, t, u)ut−∇· (D(x, t, u)∇u) = F (x, t, u,∇u)

x ∈ Ω ⊂ �n, t > 0, n = 1, 2, 3
(1)

with additional boundary and initial conditions. The heat capacity matrix H
and the diffusion matrix D may be singular, the right–hand side vector F de-
scribes some coupling of the components.
In the following we shortly outline the time–space adaptive algorithm imple-
mented in the programming package KARDOS.
We first discretize in time using one–step methods of Rosenbrock type that are
accepted to integrate stiff equations efficiently for moderate accuracy require-
ments [2, 13]. Starting with the solution uk at time tk, the solution uk+1 at the
advanced time tk+1 = tk+τk is computed by the following linear combination of
uk and different intermediate stage values lj

uk+1 = uk +
s∑

j=1

bjlj , (2)

with suitable chosen real values for the coefficients bj . Each of these functions
lj is the solution of a linear elliptic problem. Replacing the coefficients bj in

(2) by different coefficients b̂j a second solution ûk+1 of inferior order can be
obtained. The difference ‖uk+1−ûk+1‖ =: εk satisfactorily estimates the error
introduced by the temporal discretization, and can be utilized to propose a new
time step

τk+1 =
τk
τk−1

(
TOLt εk−1

εk εk

)1/(p+1)

τk . (3)

Here, p is the local order of the solution ûk+1. This step size selection guaran-
tees an error control with respect to a desired tolerance TOLt [9].
The elliptic subproblems for the lj are discretized by an adaptive multilevel
finite element method [3, 5, 6]. We consider conforming partitions of the com-
putational domain Ω into intervals, triangles, or tetrahedra. The weak solu-
tions of the elliptic problems are approximated in the finite dimensional space
of piecewise linear continuous functions. Starting with an initial mesh G0

k at
time tk, we successively improve the spatial discretization by local refinement
until a prescribed tolerance TOLx is reached.
The necessary estimation process is based on local quantities computed as ap-
proximate residuals on small subdomains employing quadratic finite elements.
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In the one–dimensional case one estimates the error within each element, in
the two– and three–dimensional case each of those subdomains is the union of
all triangles or tetrahedra having one common edge. Imposing homogeneous
Dirichlet boundary conditions, the local spatial error can be represented by only
one degree of freedom at the midpoint of the corresponding edge.
We end up with a nested sequence G0

k, G1
k, . . . , Gn

k of triangulations. To
compute the solution uk+1 at time tk+1 we choose a new initial mesh G0

k+1

derived from Gn
k by coarsening. Degrees of freedom are only removed in such

regions where the local errors are small enough. If necessary this mesh is again
improved analyzing the new solution uk+1. For a more detailed description see
[13].

SELECTED PROBLEMS

1D–Example: Bubble Reactor [12].

We consider a gas–fluid system where the phase boundaries change their shapes
and sizes in time. Fig. 1 (left) shows a vertical and cylindrical bubble reactor
in section. Different gaseous chemicals stream in at the lower end of the reactor
filled with a fluid. The bubbles rise to the top dissolving and reacting with
each other. Bubble reactors are used in practice to form a synthesis process of
different chemicals.
The reaction takes place in the outer shell of each bubble. In an 1D–model it
is assumed that the width of this shell stays equal although the radius of the
bubble decreases. Fig. 1 (right) shows the temporal grid evolution taking the
height in the reactor as time axis.
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Fig. 1: Bubble reactor (left: cut through reactor, right: mesh evolution)

Initially, the reaction front finds its way into the bubble shell with a high speed
forcing small time steps. After that the concentration of the reactant decreases
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and the front propagates in the other direction. Finally, the reaction stops when
the top of the reactor is reached. This simulation is used to determine the right
dimension of such a reactor.

2D–Example: Non–Uniformly Packed Solid Reactor [8].

This application is constituted by solid–solid alloying reactions. The particular-
ity of such a process is that convection is impossible and that the macroscopic
diffusion for the species in solids is in general negligible with respect to heat
conductivity. The ignition takes place at the left boundary in a small domain.
The reactor is non–uniformly packed with solid forcing a strongly increased
flame velocity close to the outer border. This is illustrated for the concentra-
tion of the reactant in Fig. 2 where the light color corresponds to intermediate
stages of combustion. The corresponding adaptive mesh is well fitted to this
solution state.

Fig. 2: Non–uniformly packed reactor (left: concentration of reactant, right:
adaptive mesh)

3D–Example: Thermo–Diffusive Flame Propagation [11].

This problem describes the propagation of a three–dimensional premixed flame
in a gaseous mixture with non adiabatic walls. The thermo–diffusive model is
used to decouple the reaction–diffusion process from the hydrodynamical flow.
The thermal reaction is formulated for nondeformable materials of constant
density. The flame extinguishes if the heat loss at the wall is to strong. Other-
wise, the time–dependent flame eventually converges to a steady non adiabatic
curved flame. Fig. 3 shows two snapshots from an adaptive 3D–mesh at dif-
ferent times. They illustrate the high resolution of the flame inside the tube
and show special refinement regions at the boundary where the flame is cooled.
This picture gives an impression of saving in terms of computational work in
3D with respect to uniform methods.
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Fig. 3: Adaptive grids for a propagating flame front

Acknowledgement. The authors are indebted to P. Deuflhard for his con-
tinuing support of this project.

REFERENCES

[1] R. E. Bank, R. K. Smith, A Posteriori Error Estimates Based on Hierar-
chical Bases, SIAM J. Numer. Anal. 30, 921–935 (1993)

[2] F. A. Bornemann, An Adaptive Multilevel Approach to Parabolic Problems,
IMPACT Comput. Sci. Engrg. 2, 279–317 (1991)

[3] F. A. Bornemann, B. Erdmann, R. Kornhuber, Adaptive Multilevel Meth-
ods in Three Space Dimensions, Int. J. Numer. Meth. Engrg. 36, 3187–3203
(1993)

[4] A. Dervieux, B. Larrouturou, R. Peyret, On Some Adaptive Numerical
Approaches of Thin Flame Propagation Problems, Computers & Fluids,
17, 39–60 (1989)

5



[5] P. Deuflhard, P. Leinen, H. Yserentant, Concepts of an Adaptive Hierar-
chical Finite Element Code, IMPACT Comput. Sci. Engrg. 1, 3–35 (1989)

[6] B. Erdmann, J. Lang, R. Roitzsch, KASKADE – Manual. Technical Report
TR 93–5, Konrad–Zuse–Zentrum für Informationstechnik Berlin, Germany
(1993)

[7] J. E. Flaherty, P. Moore, Space–time adaptive hp–refinement methods for
parabolic systems, Appl. Numer. Math. 16, 317–341 (1995)

[8] J. Froehlich, J. Lang, Twodimensional Cascadic Finite Element Compu-
tations of Combustion Problems, to appear in Comp. Meth. Appl. Mech.
Engrg. (1997)

[9] K. Gustafsson, Control theoretic techniques for stepsize selection in explicit
Runge–Kutta methods, ACM Trans. Software 17, 533–554 (1991)

[10] W. Huang, Y. Ren, R. D. Russell, Moving mesh methods based on moving
mesh partial differential equations, J. Comp. Phys. 113, 279–290 (1994)

[11] J. Lang, B. Erdmann, R. Roitzsch, Three-Dimensional Fully Adaptive So-
lution of Thermo–Diffusive Flame Propagation Problems, Proceedings of
the 10th Int. Conf. on Numerical Methods in Thermal Problems, Pineridge
Press (1996)

[12] J. Lang, High–Resolution Self–Adaptive Computations on Chemical
Reaction–Diffusion Problems with Internal Boundaries, Chem. Engrg. Sci.
51, 1055–1070 (1996)

[13] J. Lang, Adaptive FEM for Reaction–Diffusion Equations, to appear in
Appl. Numer. Math. (1997)

[14] M. D. Smooke, On the use of adaptive grids in premixed combustion,
AIChE 32, 1233ff (1986)

[15] P. A. Zegeling, Moving–Grid Methods for Time–Dependent Partial Differ-
ential Equations, Phd thesis, University of Amsterdam (1992)

6


