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Abstract
This paper deals with a general mixed integer knapsack polyhedron for
which we introduce and analyze a new family of inequalities. We discuss
the value of this family both from a theoretic and a computational point
of view.
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1 Introduction

Various classical combinatorial optimization problems become today tractable
with polyhedral methods. Indeed, the last decade has emerged a large number
of results that play the basis of modern cutting plane algorithms for many
combinatorial optimization problems. On the other hand, quite little research
has been carried out that deals with a polyhedral study of general mixed integer
programming models of the form

max cTx+ dT y : Ax+By ≤ α, x ∈ Zn, y ∈ Rq ,

with matrices A ∈ Zm×n, B ∈ Zm×q and vectors α ∈ Zm, c ∈ Zn and d ∈ Zq.
For quite a long time, Gomory cutting planes [G60] have been and still are the
main ingredient for current cutting plane implementations.

The situation changes when we restrict our attention to general mixed 0/1
programming problems, i.e., problems for which all integer variables are bounded
by zero and one. For such problems, the disjunctive programming approach (see,
for instance [B75]), the method of lift and project (see, for instance [BCC93])
and flow cover inequalities introduced in [PRW85] support the cutting plane
phase of current solvers for mixed integer programming problems.

This paper is an extension of a paper of the second author about the 0/1
knapsack polytope [W97]. We deal with the polyhedron associated with the
feasible solutions of a general mixed integer knapsack problem in which all
variables may have arbitrary, but finite bounds. We introduce in Section 2
our model and the family of weight inequalities that turn out to be valid for
this model. Section 3 deals with an analysis of weight inequalties in special
cases. We present a family of knapsack polyhedra for which essentially weight
inequalities are sufficient to describe the associated polyhedron. Computational
experiments with this family of inequalities are reported in Section 4.
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2 The Family of Weight Inequalities

Let N,Q be mutually disjoint finite subsets of N \ {0} of cardinality n and
q, respectively. For given vectors a ∈ Nn , b ∈ Nq , u ∈ Nn+q and a number
α ∈ N \ {0}, we investigate

X(N,Q) := { (x, y) ∈ Zn× Rq :∑
i∈N aixi +

∑
i∈Q biyi ≤ α

0 ≤ (x, y) ≤ u },
(2.1)

where we use the notation (x, y) to abbreviate (xT , yT )T . By definition, the
members in X(N,Q) are feasible solutions of the mixed integer knapsack prob-
lem with general lower and upper bounds on the variables,

max cTx+ dT y : (x, y) ∈ X(N,Q).

In this section we study the polyhedron conv(X(N,Q)). There is one ele-
mentary family of inequalities that is valid for conv(X(N,Q)) that under certain
assumptions suffices to describe conv(X(N,Q)). We call this family weight in-
equalities.

Definition 2.1. For T ⊆ N and S ⊆ Q such that
∑

i∈T aiui +
∑

i∈S biui < α,
we denote by

r(T, S) := α−
∑

i∈T

aiui −
∑

i∈S

biui

the residual knapsack capacity of the feasible solution (x, y) ∈ X(N,Q) with
xi := ui for all i ∈ T , yi := ui for all i ∈ S, xi, yi := 0, otherwise. The weight
inequality with respect to T, S is the inequality

∑

i∈T

aixi +
∑

i∈S

biyi +
∑

i∈N\T
(ai − r(T, S))+xi ≤ α− r(T, S),

where v+ := max{0, v} for v ∈ R.

The name weight inequality reflects that the coefficients of the variables in
T ∪ S equal their original weights. The coefficients of the (rational) variables
in Q \ S are zero. Likewise, the coefficient of an (integer) variable i in N \ T
is zero, if the weight ai is smaller than r(T, S). Otherwise, it is the weight ai
reduced by the value r(T, S) > 0.

Example 2.1. Consider the convex hull of tuples of vectors (x, y) ∈ {0, 1}6 ×
[0, 1]2 that satisfy

x1 + x2 + x3 + x4 + 3x5 + 4x6 + 2y1 + 3y2 ≤ 4

Setting T := {2, 3, 4}, S = ∅, we obtain that r(T, S) = 1. Then a1−r(T, S) = 0,
a5 − r(T, S) = 2 and a6 − r(T, S) = 3. The weight inequality associated with
T, S reads

x2 + x3 + x4 + 2x5 + 3x6 ≤ 3.

For T := {1}, S = {1}, the weight inequality associated with T, S reads

x1 + 2y1 + 2x5 + 3x6 ≤ 3.
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Weight inequalities are valid for the mixed integer knapsack polyhedron
conv(X(N,Q)).

Proposition 2.1. For T ⊆ N , S ⊆ Q such that
∑

i∈T aiui +
∑

i∈S biui < α,
the weight inequality with respect to T, S is valid for conv(X(N,Q)).

Proof. Let (x, y) ∈ X(N,Q). If
∑

i∈N\T : ai>r(T,S) xi = 0, then by definition,

∑

i∈T

aixi +
∑

i∈S

biyi +
∑

i∈N\T
(ai − r(T, S))+xi ≤ α− r(T, S).

Otherwise,
∑

i∈N\T : ai>r(T,S) xi ≥ 1 holds. We obtain

∑
i∈T aixi +

∑
i∈S biyi +

∑
i∈N\T (ai − r(T, S))+xi ≤∑

i∈N aixi +
∑

i∈Q biyi − r(T, S)
∑

i∈N\T : ai>r(T,S) xi ≤
α− r(T, S).

This proves the statement.

The family of weight inequalities subsume various preprocessing operations
that software packages have sometimes incorporated for tightining integer pro-
gramming formulations.

One such example is the following coefficient-reduction operation. For u, α ∈
N, u < α consider the feasible set

F := {x ∈ Z2 : 0 ≤ x1 ≤ u, 0 ≤ x2 ≤ 1, x1 + αx2 ≤ α}.
It is easy to see that this feasible set has an equivalent formulation as

F = {x ∈ R2 : 0 ≤ x1 ≤ u, 0 ≤ x2 ≤ 1, x1 + ux2 ≤ u}.
The inequality x1 + ux2 ≤ u is a weight inequality (w.r.t. T = {1}, S = ∅) that
is valid for conv(F). In fact, this operation of tightining coefficients generalizes
to the following situation.

Consider the constraint
∑

i∈R

xi +
∑

j∈F

αxj ≤ α, (2.2)

where F is a subset of 0/1 variables, R is a subset of integer variables, each
variable i ∈ R having an upper bound ui and

∑
i∈R ui < α. The constraint

(2.2) may be replaced by

∑

i∈R

xi +
∑

j∈F

(
∑

i∈R

ui)xj ≤
∑

i∈R

ui. (2.3)

The inequality (2.3) is a weight inequality for

P := conv{x ∈ ZR× {0, 1}F : x satisfies (2.2)}.
In fact, P may be described as

P = conv{x ∈ ZR× {0, 1}F : x satisfies (2.3)}.
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Investigating the latter formulation, one recognizes that all the facets of P are
induced by the family of weight inequalities,

xi +
∑

j∈F

uixj ≤ ui for all i ∈ R. (2.4)

This system of inequalities together with lower and upper bound constraints on
the variables describes P .

A special case of this latter preprocessing operation may also be found under
the name probing.

3 A Family of Mixed Integer Knapsack Polyhe-
dra

Having introduced weight inequalities for a general mixed integer knapsack prob-
lem, we indicate in this and the subsequent section that these inequalities are
useful, at least in special cases. This section is devoted to this question from a
more theoretical point of view. We demonstrate that there is a family of general
mixed integer knapsack problems for which weight inequalities are needed in or-
der to describe the associated polyhedron. This family of problems is defined
as follows.

Let N1, N2, Q be mutually disjoint finite subsets of N \ {0} of cardinality n1,
n2 and q, respectively. Let n = n1 + n2. For α ∈ N \ {0} and given vectors
a ∈ Nn such that ai = 1 for all i ∈ N1 and ai ≥ �α

2 	+1 for all i ∈ N2, b ∈ Nq and
u ∈ Nn+q , we study the mixed integer knapsack polyhedron conv(X(N1∪N2, Q))
defined in (2.1).

Theorem 1. The system of all weight inequalities w.r.t. subsets T, S of N1 and
Q, respectively, the set of all lower and upper bounds, and the two inequalities

∑
i∈N2

xi ≤ 1∑
i∈N1

xi +
∑

i∈N2
aixi +

∑
i∈Q biyi ≤ α

describe conv(X(N1 ∪N2, Q)) if ai = 1 for all i ∈ N1 and ai ≥ �α
2 	+ 1 for all

i ∈ N2.

Proof. Obviously, the system of inequalities is valid for conv(X(N1 ∪ N2, Q)),
see Proposition 2.1. It remains to show that it suffices to describe conv(X(N1∪
N2, Q)). To see this, first notice that conv(X(N1 ∪N2, Q)) is full dimensional.
Let the inequality cTx + dT y ≤ γ induce a facet F of conv(X(N1 ∪ N2, Q)).
We assume that cTx + dT y ≤ γ is not a positive multiple of one of the non-
negativity constraints, the upper bound constraints and the knapsack inequality.
Since a, b > 0, we have that ci, dj ≥ 0 for all i ∈ N1 ∪ N2, j ∈ Q. We define
T := {i ∈ N1 : ci > 0} and S := {i ∈ Q : di > 0}. There are three claims that
we need in order to show the statement,

1.
∑

i∈T ui +
∑

i∈S biui < α;

2. The vector (x0, y0) with x0
i := ui for all i ∈ T ∪ S, x0

i := 0, otherwise is
contained in F ;
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3. ci = 0 for all i ∈ N1 \ T , ci = 0 for all i ∈ {j ∈ N2 : aj ≤ r(T, S)} and
di = 0 for all i ∈ Q \ S.

Claim 1 follows by noting that if
∑

i∈T ui +
∑

i∈S biui ≥ α would hold,
then every point in X(N1 ∪N2, Q) ∩ F would satisfy the equation

∑
i∈N1

xi +∑
i∈N2

aixi+
∑

i∈Q biyi = α. (Recall that ai = 1 for all i ∈ T .) This contradicts
our assumption that F is not induced by the original knapsack inequality.

Note that Claim 1 implies (x0, y0) ∈ X(N1 ∪N2, Q) and r(T, S) > 0.
We may assume that Claim 2 holds, for if not, then every integral point in

F would satisfy the equation
∑

i∈N2
xi = 1. Therefore, F must be the facet

induced by this inequality.
Denoting by ei the i-th unit vector we derive from Claims 1 and 2 that

(x0, y0) + ei ∈ X(N1 ∪ N2, Q) for all i ∈ N1 \ T and for all i ∈ {j ∈ N2 :
aj ≤ r(T, S)}. Moreover, (x0, y0) + ei ∈ F . Accordingly, (x0, y0) + 1

bi
ei ∈

X(N1 ∪N2, Q) and (x0, y0) + 1
bi
ei ∈ F for all i ∈ Q \ S. This shows Claim 3.

We define a function f : N2 �→ R+ by setting

f(i) := min
∑

j∈T cjzj +
∑

j∈S djtj ,

s.t.
∑

j∈T zj +
∑

j∈S bjtj = ai − r(T, S),

0 ≤ zj ≤ uj , zj ∈ Z for all j ∈ T,
0 ≤ tj ≤ uj, tj ∈ Q for all j ∈ S.

(3.1)

Note that a solution of problem (3.1) attains the minimal value (w.r.t. c, d)
by which the solution (x0, y0) must be decreased in order to obtain a feasible
solution with xi = 1. We show

4. ci = f(i) for all i ∈ N2.

To see that ci ≤ f(i), let (z, t) be a solution of the program (3.1). The vector
(xi, yi) defined as xi

j = x0
j − zj for all j ∈ T , xi

j = 0 for all j ∈ N2 \ {i}, xi
i = 1,

yij = y0j − tj for all j ∈ S and yij = 0 for all j ∈ Q \S satisfies the condition that

(xi, yi) ∈ X(N1 ∪N2, Q). This implies that ci ≤ f(i).
To see that ci ≥ f(i) note that F is a facet. Therefore, there exists, for every

i ∈ N2, a feasible point (x, y) ∈ F such that xi = 1. We may assume that xj = 0
for all j ∈ N1 ∪N2 with cj = 0. Accordingly, we can assume that yj = 0 for all
j ∈ Q such that dj = 0. Since (x0, y0) ∈ F , cT (x−x0)+dT (y−y0) = 0. Setting
zj := x0

j −xj for all j ∈ T and tj := y0j − yj for all j ∈ S, we obtain that (z, t) is

a feasible solution of (3.1). Taking into account that both (x, y) and (x0, y0) are
feasible solutions contained in F , we obtain ci =

∑
j∈T cjzj +

∑
j∈S djtj ≥ f(i).

It follows that every x in F∩X(N1∪N2, Q) also satisfies the weight inequality
associated with T, S as an equation. Since F is a facet, the inequality cTx +
dT y ≤ γ (after appropriate scaling) must coincide with the weight inequality
with respect to T, S.

In the more general case when we neglect the condition that ai ≥ �α
2 	 + 1

for all i ∈ N2, the associated polyhedron conv(X(N1∪N2, Q)) is not necessarily
described only by weight inequalities. However, weight inequalities are still
needed in a minimal description of conv(X(N1 ∪N2, Q)), because they induce
facets. This follows from

Proposition 3.1. Let conv(X(N,Q)) be the mixed integer knapsack polyhedron
defined in (2.1). A weight inequality w.r.t. subsets T, S of N and Q defines a
facet of conv(X(N,Q)) if r(T, S) > 0 and ai = 1 for all i ∈ T .
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4 Experiments with Weight Inequalities

In this section we investigate whether weight inequalities occur in real world
models and examine to which extend they help in solving practical problems
faster. We use the library of mixed integer programs MIPLIB1 as our test set.
To answer both questions we have incorporated weight inequalities into a general
mixed integer programming solver, called SIP. SIP is an LP-based branch-and-
bound algorithm and is currently under our development; a description of its
features will be published in a forthcoming paper. Input of our computational
tests are the MIPLIB problems, presolved by SIP. We interpret each single in-
equality of the constraint system as a mixed integer knapsack problem. To
meet the requirements in (2.1) all coefficients have to be positive, which can
easily be obtained by complementing variables. In addition, all variables with a
non-zero coefficient in the particular inequality must have finite lower and up-
per bounds. Moreover, we require that the support of the inequality is at least
three, otherwise a complete description of the mixed integer knapsack polytope
associated with this inequality is already obtained after presolve, see the dis-
cussions in Section 2. Finally, we do not consider inequalities whose coefficients
are solely 0,±1. For convenience we call inequalities satisfying all these require-
ments feasible. It turns out that 48 out of 68 MIPLIB problems contain feasible
inequalities. For each of these 48 instances and for each feasible inequality we
try to derive weight inequalities that cut off the current optimal LP solution.
To do so, we must solve the following separation problem.

Problem 4.1. Given a ∈ Nn , b ∈ Nq , α ∈ N and (x, y) ∈ Qn+q . Decide whether
(x, y) satisfies all weight inequalities of conv(X(N,Q)). If not, find one that is
violated by (x, y).

Problem 4.1 turns out to be NP-hard. Therefore, we developed a heuristic
which proceeds along the following lines.

Algorithm 4.2.

1. Sort the components of the vector ((x∗, y∗)−u)◦ (a, b) in increasing order,
where (x∗, y∗) is the current optimal LP solution, and for vectors v, w the
symbol v ◦ w denotes the vector with components viwi.

2. Construct sets T ⊆ N and S ⊆ Q following the order of Step 1 in a greedy
fashion as long as

∑
i∈T uiai +

∑
i∈S uibi < α.

3. Check whether the weight inequality w.r.t. S, T is violated.

We have experimented with different strategies to determine sets S and T .
The ordering of the variables according to their contribution to the slack of the
inequality (= left hand side - right hand side) as outlined in Step 1 turned out
to perform best. First test runs with this heuristic show that many inequalities
are found whose slack is positive. The question arises which of these inequalities
should be added to the current LP. Taking all with positive slack is not a good
choice, since weight inequalities tend to have high coefficients. We performed
several tests on how to accomplish this fact and our final choice fell on the
following. We add a violated inequality to the LP if the slack divided by the
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Example SIP with kn SIP with kn + wi

B&B kn Time B&B kn wi Time

bell3b 14301 0 125.6 10948 0 111 98.4
bell5 2456 0 15.1 8542 0 15 39.5
enigma 7224 2625 156.7 3631 1425 1 64.1
gt2 68547 0 623.9 264 0 1 2.5
mitre 1143 2325 2756.1 673 2117 741 1930.2
noswot 99366 0 3600.0 95418 0 540 3600.0

Table 1: A comparison of SIP with and without weight inequalities

absolute value of the largest coefficient is at least ε = 0.05. Table 4 shows some
results.

We made the following comparison. We used SIP with default settings of
the parameters and turned on the options strong branching and knapsack sepa-
ration; strong branching is a branching strategy introduced by CPLEX2 that is in
particular useful for difficult MIP problems; separation of knapsack inequalities
is applied to all inequalities containing only 0/1 variables. (How these inequali-
ties are separated is of no importance for this test.) We compared the strategy
to the one where we separate weight inequalities in addition. We tested both
alternatives for all 48 MIPLIB problems that contain feasible inequalities. For
just the six problems that we list in Table 4, a significant difference in time
or solution quality occured. Columns 2 through 4 show the number of branch-
and-bound nodes, the number of added knapsack inequalities, and the time
(measured on a SUN Enterprise 3000) needed to solve the problem using SIP

without weight inequalities. Columns 5 through 8 present the corresponding
numbers when weight inequalities are separated. Column 7 contains informa-
tion about the number of weight inequalities added to the linear programs. We
stoped after 3600 CPU seconds. Within this time limit we could not solve exam-
ple noswot to optimality. For problem noswot weight inequalities help to find
a significantly better solution, a phenomenon we do not have an explanation
for. For the other five models we find the optimal solution with any of the two
strategies. With the exception of bell5 it pays to incorporate weight inequalities.
The most impressive example is gt2 where just one weight inequality speeds up
the solution time enormously. The conclusion we draw from our computational
experiences is that in general weight inequalities do not produce significantly
worse results (in time and quality). On the other hand, there are examples
like gt2 and mitre where weight inequalities help to solve general mixed integer
programming problems much faster.
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