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Abstract

We present a graph-theoretic model for the frequency assignment problem in Cellular
Phone Networks: Obeying several technical and legal restrictions, frequencies have to be
assigned to transceivers so that interference is as small as possible. This optimization
problem is NP-hard. Good approximation cannot be guaranteed, unless P = NP .

We describe several assignment heuristics. These heuristics are simple and not too
hard to implement. We give an assessment of the heuristics’ efficiency and practical
usefulness. For this purpose, typical instances of frequency assignment problems with up
to 4240 transceivers and 75 frequencies of a German cellular phone network operator are
used. The results are satisfying from a practitioner’s point of view. The best performing
heuristics were integrated into a network planning system used in practice.

Keywords: Frequency Assignment Problem, Cellular Phone Network, Heuristics,
Graph Coloring

Mathematics Subject Classification (1991): 90B12 05C15 90C60 68Q25

1 Introduction

High quality frequency assignments are crucial for the successful operation of todays heavily
loaded cellular phone networks. Computing such assignments is difficult, whatever (reason-
able) interpretation of high quality one has in mind. Our version of high quality focusses on
minimizing interference. The mathematical formulation of this frequency assignment problem
shows that it is a challenging generalization of several coloring problems in graph theory.

A variety of problems have been studied so far under the name of “frequency assignment”
(the alternative term “channel assignment” is also in use). Hale [19] stated several frequency
assignment problems as (generalized) graph coloring problems. Interference information is
employed to derive a graph, sometimes called conflict graph, which has to be colored with as
few channels or with channels from an as narrow interval as possible. Additional restrictions
sometimes apply. Much work has been done in this direction [1, 6, 10, 11, 13, 14, 19, 21, 22, 30].
However, these approaches do generally not lead to satisfactory frequency assignments for
cellular phone networks where the interval of available channels is given.

∗This work is done in cooperation with E-Plus Mobilfunk GmbH, Germany. E-Plus operates a GSM1800
network. GSM1800 is a sibling of the GSM standard, the main difference between the two being the frequency
band used.

∗∗Konrad-Zuse Zentrum für Informationstechnik Berlin (ZIB), Takustr. 7, D-14195 Berlin, Germany. Email:
{borndoerfer, eisenblaetter, groetschel, martin}@zib.de.
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Interference minimization in mobile systems networks with a fixed spectrum of available
channels is a more recent development [1, 7, 14, 15, 21, 22, 28, 30]. In this paper, we focus on
fast and simple assignment heuristics. The heuristics developed are intended to be routinely
used by practitioners to plan frequency assignments for cellular phone networks. All heuris-
tics proposed have been implemented using C++ and publicly available software libraries such
as the Library of Efficient Data structures and Algorithms (LEDA) [26]. Five real-world net-
works of different size and structure are used to evaluate the performance. Huge interference
reductions are achieved in comparison to assignments practically used, while, at the same
time, speeding up the planning process considerably.

Several of the heuristics have been integrated into a network planning software system
used at E-Plus.

2 Problem Description

The connection between a cellular phone user and his or her party is maintained by radio
signals of some frequency. The radio signals of the cellular phone are received and propagated
into a cable-based network by a nearby base transceiver station (BTS). This BTS is also used
for the communication in the reverse direction. A BTS operates one or more elementary
transceivers. Elementary transceivers are called TRXs in GSM-terminology [25] and will be
represented by carriers in the mathematical model below.

Like a radio station, every TRX is assigned an operating frequency, whereas cellular
phones may tune to various frequencies, just like radio sets. Similar to other radio based
systems, the TRXs do not use arbitrary frequencies. The available radio spectrum is seg-
mented into uniformly sized frequency slots which are called channels in this article. Each
TRX operates on some channel. Between two TRXs using the same or adjacent channels sig-
nificant interference may occur. This interference is called co-channel and adjacent-channel
interference, respectively. The stronger the interference is the worse is the link quality. Inter-
ference exceeding some threshold is considered intolerable. To avoid intolerable interference,
a minimum channel spacing between potentially interfering TRXs is introduced. A param-
eter, called separation, is set to one if the same channel must not be used for both TRXs.
In case neither the same nor adjacent channels may be used, the separation parameter is set
to two. For TRXs associated to one BTS an even larger separation may be necessary. The
co- and adjacent channel interference predictions as well as the separation parameters are
given between pairs of TRXs. We assume that these parameters are specified in three square
matrices (the co-channel interference matrix, the adjacent-channel interference matrix, and
the separation matrix ) with rows and columns indexed by the TRXs.

Cellular phone network operators have a relatively small radio spectrum of 50 or 75
channels, say, at their disposal to operate some thousands TRXs. Some channels may even
be locally blocked, i.e., they may not be used at any TRX of some BTS.

Our version of the frequency assignment problem is as follows:

Given are a list of TRXs, a range of channels, for each TRX a list of lo-
cally blocked channels, and the separation, the co-channel interference, and the
adjacent-channel interference matrix.

An assignment of channels to the TRXs has to be computed such that each
TRX receives a locally not blocked channel, all separation requirements are met,
and the sum over all interferences occurring between pairs of TRXs is minimal.

2



Frequency assignments have to be computed on several occasions: the network is expanded
or modified, a BTS is replaced by a different one with significantly different transmission
power, or the interference predictions are corrected.

We give a mathematical formulation of the frequency assignment problem: Let (V,E)
be an undirected graph. The nodes of the graph are the carriers representing the TRXs. The
spectrum C is an interval of non-negative integers representing the range of channels. For
every carrier v, a set Bv ⊆ C of blocked channels is specified. The channels in C \Bv are called
available at carrier v. Bv may be empty. Three functions, d : E → Z+, c

co : E → [0, 1], and
cad : E → [0, 1] with cad ≤ cco, are specified on the edge set. For an edge vw ∈ E, d(vw) gives
the separation necessary between channels assigned to v and w. cco(vw) and cad(vw) denote
the co-channel and adjacent-channel interference, respectively, which may occur between v
and w. We will refer to the 7-tuple N = (V,E,C, {Bv}v∈V , d, cco, cad) as carrier network.

A frequency assignment or simply an assignment for N is a mapping y : V → C. An
assignment is feasible if every carrier v ∈ V is assigned an available channel (from C \ Bv)
and all separation requirements are met, i.e., |y(v) − y(w)| ≥ d(vw) for all vw ∈ E.

Definition 1 Given a carrier network N , we call the optimization problem

min
y feasible

∑
vw∈E:

y(v)=y(w)

cco(vw) +
∑

vw∈E:
|y(v)−y(w)|=1

cad(vw) (FAP)

frequency assignment problem.

The objective is to determine a feasible assignment that minimizes the total of co- and
adjacent-channel interferences. Feasible assignments are a generalization of list colorings and
are related T-colorings of graphs in the following way.

For a list coloring problem, a graph and lists of colors for every vertex are given. The task
is to find a proper coloring of the graph using a color from its list for every vertex. Since an
available channel has to be picked for every carrier, feasible assignments are list colorings.

T-colorings were introduced in [10]. Given an undirected graph G and a finite set T of
non-negative integers containing 0. A T-coloring of G is a labeling f of the vertices of G with
non-negative integers so that |f(v) − f(w)| �∈ T for all edges vw in G. In our case, there is a
minimal distance required between adjacent carriers, expressed by the separation parameter.
Every edge may thus have a different “T-set”, but all those sets are restricted to be either
empty or of the form {0, . . . , k}, for some non-negative integer k.

3 Computational Complexity

For every q ∈ Q+ , we associate a decision problem q–FAP with the frequency assignment
problem FAP:

Given a carrier network N , decide whetherN has a feasible assignment
of cost no more than q.

(q–FAP)

To discuss complexity issues we make the standard assumption that all numbers appearing
as input data for FAP and q–FAP are rational and that they are encoded in binary form.
It is easily observed that q–FAP is in NP. This together with the fact that GRAPH K-
COLORABILITY (see [17], GT4) can be reduced to q–FAP yields the following result.
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Theorem 2 For every q ∈ Q+ , the decision problem q–FAP is NP-complete.

The standard notion of polynomial time approximation, see [4, 12, 27], for example, re-
quires that a feasible solution can be produced in time polynomially bounded in the input
size. FAP does not lend itself to approximation in this sense, since the proof of the preceding
theorem reveals that finding a feasible assignment is already NP-complete.

Corollary 3 The problem of deciding whether an instance of FAP has a feasible solution is
NP-complete.

Furthermore, it is also hard to find good approximate solutions for instances of FAP where
obtaining a feasible solution is easy. More precisely, this can be stated in the following way.

Theorem 4 Let N be an instance of FAP for which feasible solutions can be obtained in time
polynomial in the input size. Then, unless P = NP , there exists an 0 < ε < 1 such that the
cost of an optimal assignment cannot be approximated within a factor of |V |ε, where V is the
set of carriers in N .

This statement can be proved using a reduction of the MINIMUM GRAPH COLORING
problem to FAPand thereby extending a result on the hardness of approximating MINIMUM
GRAPH COLORING [3] to FAP.

4 Heuristics

As stated in the previous section, the frequency assignment problem belongs to the class
of hard combinatorial problems. That is, one should not expect that a polynomial-time
algorithm will always produce a feasible assignment. Even if a feasible assignment is produced,
it is not guaranteed that its cost is close to optimal, e.g., within a small constant factor.

In this section, we describe some heuristics which can be used in practice to compute
frequency assignments. Recall that our focus is on fast algorithms. We distinguish starting
and improvement heuristics.

Starting heuristics compute a frequency assignment from scratch, step-wise extending an
initially empty assignment to a complete assignment. Thus, as we go along, we are dealing
with partial frequency assignments. A partial frequency assignment is a mapping y : A → C
that is defined on a subset A of the carrier set V . In case A = V , a partial assignment is just
an ordinary frequency assignment.

Improvement heuristics take a (feasible) assignment as input and try to improve it. Neither
the assignment to be improved nor the assignments obtained in the course of computation
are required to be feasible.

4.1 T-coloring

This starting heuristic [18] is a modification of a procedure used by Costa [9] in the context
of T-colorings (see [10, 19]). The underlying algorithmic idea was first used in Bŕelaz’s
DSATUR [5] to compute ordinary graph colorings with few colors. This heuristic is the only
one that does not try to minimize the cost of an assignment, but focusses on computing some
feasible solution (which will tend to use few different channels).
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Input: G = (V,E), C, Bv for all v ∈ V, minimal distances d
Output: a feasible assignment y or a message that none was found

// Initialization
for all v ∈ V do

// ”saturation degree” = # of forbidden channels at carrier v
satdeg[v] := |Bv|

// ”spacing degree” = sum over all d(vw), vw ∈ E with w unassigned
spadeg[v] := sum over all d(vw) with vw ∈ E

// end for

// Assigning
U := V
while U �= ∅ do

let v ∈ U be a carrier whose satdeg[v] is maximal and among
those one with maximal spadeg[v] (ties are broken arbitrarily)

U := U \ {v}
let y(v) be the available channel of least index at v
if no such available channels exists then

return “no feasible assignment found”
for all w ∈ U with vw ∈ E do

update satdeg[w], spadeg[w]
// end while

return y

Figure 1: Pseudo code for the T-coloring heuristic

Figure 1 gives a sketch of the algorithm. For each carrier not yet assigned, the saturation
degree keeps track of how many channels are no longer available. The spacing degree is
intended to represent how much impact assigning all the still unassigned neighbors of a
carrier would have on its assignability. If the impact is very large, it should rather become
assigned before most of its neighbors are. For similar reasons, carriers with high saturation
degree should be assigned as soon as possible. The first forall-loop does the initialization.
Assigning channels to carriers is done in the while-loop. Which carrier to assign next is
determined by the saturation and spacing degrees.

The T-coloring heuristic is implemented using binary heaps for book-keeping which carrier
to assign next. The running time obtained this way is O(|C||E| + |E| log |V |). The space
requirement of the heuristic is O(|C||V |+ |E|).

4.2 Dual Greedy

The dual greedy is a starting heuristic that tries to avoid major decisions [20, 23]. Instead
of going ahead assigning a channel to some carrier right away, it tries to identify what would
be a particularly bad combination of a carrier and a channel. We will call a carrier-channel
combination (v, f) an available combination if channel f is available at carrier v. Starting
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Input: (V, E, C, {Bv}v∈V , d, cco, cad), control parameters M and W
Output: assignment y

// Initialization
U := set of all available combinations (v, f)
for all (v, f) in U do

penalty[v,f] := 0

while U �= ∅ do
// Assigning
for all (v, f) in U that are the only combination in U involving v do

for all
combinations (w, g) in U where
vw ∈ E and ((f = g and cco(vw) > 0) or

(|g − f | = 1 and cad(vw) > 0) or
(|g − f | < d(vw)))

do
penalty[w,g] := penalty[w,g] + W

set y(v) := f and remove (v, f) from U
// end for

// Eliminating combinations
if U �= ∅ then

delete a combination (v, f) of highest weight∑
(w,f)∈V :

w∈δ(v)∧d(vw)=0

cco(vw) +
∑

(w,f±1)∈V :
w∈δ(v)∧d(vw)≤1

cad(vw) +
∑

(w,g)∈V :
w∈δ(v)∧|f−g|<d(vw)

M + penalty[v, f ]

from U
// end while

return y

Figure 2: Pseudo code for the Dual Greedy heuristic
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from all available combinations of carriers and channels, the algorithm works its way through
all of those, eliminating one “worst looking” combination at a time. For each carrier the last
remaining carrier-channel combination is used to make an assignment.

Figure 2 shows a formulation of the algorithm in pseudo-code. One way to determine a
weight of a carrier-channel combination is displayed together with the pseudo-code. Such a
weighting is used as a measure for “badness” of a combination. The displayed measure is not
the best performing weighting procedure investigated. We chose it for the sake of an easy
exposition.

This approach hinges on identifying bad carrier-channel combinations. The successful
application of the dual greedy requires extensive analysis of appropriate strategies to find bad
combinations. Good strategies are problem dependent [20].

Fibonacci Heaps (see [8], for example) are used to keep track of bad carrier-channel combi-
nations. Using those heaps, the dual greedy heuristic runs in O(|C|2|V | log(|C||V |)+ |C|2|E|)
time and uses O(|C||V |+ |E|) space.

4.3 DSATUR With Costs

This starting heuristic is another modification of Bŕelaz’s DSATUR [5] incorporating ideas of
Costa [9]. While in the setting of Brélaz and Costa the objective is to obtain an ordinary
coloring using few colors or a T-coloring using a small interval of channels, respectively, our
goal is to compute a feasible assignment using a given interval of channels incurring little
cost.

A matrix cost, with rows indexed by the carriers in V and columns indexed by the chan-
nels in C, is used to record the cost of the different available combinations. First, we invalidate
all entries corresponding to unavailable combinations of channels by an appropriately chosen
entry BLOCKED.

Input: (V, E, C, {Bv}v∈V , d, cco, cad)
Output: an assignment y, possibly infeasible

// Initialization
for all v ∈ V do

initialize cost[v][f] to 0 if f is in C \ Bv, and to BLOCKED otherwise
insert v into the heap with key |Bv|

// Assigning
while the heap is not empty do

extract a carrier v with maximum key from the heap
let y(v) be a non-blocked channel f of least value from row cost[v]
update cost-matrix by adding Δ(v, f)
update the keys of all carriers still in the heap

return y

Figure 3: DSATUR With Costs

A non-blocked channel is bad for a carrier if its matrix entry is at least as large as BAD,
which is another suitably chosen constant. For every still unassigned carrier, a heap-entry is
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maintained. As the key for the heap serves the number of blocked or bad channels times BAD
plus the sum over all non-blocked, non-bad row entries of the matrix cost. That is

key(v) = |Bv| · BAD+
∑

f∈C\Bv

h(costv,f ) with h(c) :=

{
BAD if c ≥ BAD,

c otherwise.

While the heap is not empty, a carrier v with maximum key is extracted and assigned its
least costly available channel f . Such a channel may induce separation violations. But in
that case (and if BAD was chosen big enough) all other available channels do, too. Next, all
rows indexed by carriers adjacent to v are updated as well as the carriers’ heap keys. The
latter only happens in case they are still unassigned. Formally, a matrix Δ(v, f) is added to
cost, where

Δw,g(v, f) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

BAD if vw ∈ E, g ∈ C \ Bw, |f − g| < d(vw),

cco(vw) if vw ∈ E, d(vw) = 0, f = g ∈ C \ Bw,

cad(vw) if vw ∈ E, d(vw) ≤ 1, f ± 1 = g ∈ C \ Bw,

0 otherwise.

This heuristic is implemented using a Fibonacci heap for determining the carrier to assign
next. The minimum-cost channel for a carrier is searched for in the corresponding row of the
matrix cost. The running time obtained is O(|C||E| + |V | log |V |), assuming |V | = O(|E|).
The space requirement is O(|V ||C|+ |E|).

It turns out that the choice of the first carrier to assign has considerable impact on the
quality of the assignment obtained. No generally good rule could be identified as to which
carrier to start with. One might start with each carrier in turn, and pick the best assignment
obtained. A running time reducing option is to choose some set of start-carriers at random
and then pick the best assignment computed this way.

4.4 Iterated 1-OPT

This improvement heuristic uses a neighborhood structure defined on the set of all assign-
ments. Two assignments are considered adjacent if one can be obtained from the other by
changing the channel of a single carrier. Given this neighborhood structure, an assignment y,
and a carrier v, a 1-opt step determines a least costly neighbor y′ of y. If y′ is at most as costly
as y, y′ becomes the current assignment. Otherwise, the assignment remains unchanged. An
assignment y is considered less costly than an assignment y′ if y implies fewer constraint
violations, or, if both assignments violate equally many (or no) constraints, causes less inter-
ference than y′. To be more precise, we introduce some notation concerning the cost and the
infeasibility of (partial) frequency assignments. This notation simplifies the formulation of
the heuristic. We define the cost of a carrier-channel combination (v, f), v ∈ V , f ∈ C, with
respect to the partial assignment y on A, denoted by yA, as

c(yA; (v, f)) :=
1

2

∑
w∈δ(v)∩A:
f=yA(w)

cco(vw) +
1

2

∑
w∈δ(v)∩A:

|f−yA(w)|=1

cad(vw),
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Input: (V, E, C, {Bv}, d, cco, cad), partial assignment yA
Output: assignment y’

// Initialization
y’ := y
A’ := A
order all carriers in A decreasingly according to
infeas(yA; (v, y(v))) and c(yA; (v, y(v)))

put all unassigned carriers to the front

// perform a pass
for every carrier v in V in the above order do

if v �∈ A’ then
add v to A’

set y’(v) to a channel f so that (v, f) is minimal among all available
combinations with respect to infeas(y′A′ ; (v, f)) and c(y′A′ ; (v, f))

return y’

Figure 4: Pseudo code for a pass of the Iterated 1-OPT heuristic

where δ(v) denotes the set of nodes incident to v in (V,E). The infeasibility of a carrier-
channel combination (v, f), v ∈ V , f ∈ C, with respect to yA is defined as

infeas(yA; (v, f)) :=
∑

w∈δ(v)∩A:
|f−yA(w)|<d(vw)

1 +

{
1 f ∈ Bv,

0 otherwise.

Iterated 1-OPT is an improvement heuristic that repeatedly selects a carrier and performs
a 1-opt step. A sequence of 1-opt steps where every carrier is selected once is called a pass.
Clearly, there is some freedom in selecting which carrier of the not yet examined ones to
consider next. Experiments have shown that the following approach produces reasonably
good results: The carriers are ordered decreasingly according to the infeasibility and the cost
that the current carrier-channel combination incurs. Figure 4 gives a formulation of one pass
of the algorithm.

Fibonacci Heaps are used to determine which carrier to consider next and what channel
to assign to that carrier. The running time of a pass is O(|C||E| log |C|+ |V | log |V |) and the
space required is O(|C||V |+ |E|).

Conceivably, several consecutive passes are capable of improving an assignment. The
following mechanism aims at this phenomenon. A percentage is specified by which the next
assignment has to outperform the previous one. If the latest assignment fails to achieve
this goal, no further pass is performed. This variant is called (multi-pass) Iterated 1-OPT
heuristic.

The repeated application of this heuristic will lead to an assignment that cannot be further
improved by 1-opt steps. Such assignments are not necessarily optimal. The algorithm might
be trapped in a local minimum.

We have also experimented with more complex exchange techniques such as “k-opt” and
tested randomized exchange and search methods that also allow a cost or infeasibility increase.
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These are often capable of producing better solutions, however, in general after very long
running times, that are not acceptable for our industry partner.

4.5 Min-Cost Flow

The improvement heuristic called MCF tries to modify an assignment y yielding an assignment
y′ while obeying the following condition.

For a fixed linear order on the set V :

∀vw ∈ E with v < w :
(y(v) ≤ y(w) ⇒ y′(v) ≤ y′(w))

∧
(y(v) > y(w) ⇒ y′(v) ≥ y′(w))

If a frequency assignment does not use all of the available channels, the Min-Cost Flow
heuristic is likely to produce an assignment of lower cost by utilizing more of the channels
available. (One might think in terms of making the histogram of the number of times a channel
is used look more evenly.) A min-cost flow problem—giving the heuristic its name—is solved
on a directed graph derived from the graph (V,E). The functions d, cco, and cad are used to
compute cost coefficients and arc capacities, respectively. The dual variables associated to a
min-cost flow are integral and correspond to a frequency assignment. Assuming Bv = ∅ for
all v ∈ V and 2 cad(vw) ≤ cco(vw) for all vw ∈ E with d(vw) = 0, it can be proved that MCF
computes an optimal assignment y′ among all assignments satisfying the above condition.
Details about this procedure will appear elsewhere.

The auxiliary directed graph is easily constructed in O(|E|) time. The min-cost flow
problem is solved using a Network Simplex Method implementation [24]. This algorithm has
space requirement O(|E|) but its worst-case running time is exponential in the input size.
Although there are strongly polynomial min-cost flow algorithms (see [2]), we have chosen
this implementation of the Network Simplex Algorithm since it turned out to be very fast in
practice.

4.6 Tightening a separation

As before, let N = (V,E,C, {Bv}v∈V , d, cco, cad) denote a carrier network. Let v and w be
adjacent carriers. The value d(vw) is the minimal separation necessary between the channels
assigned to v and w. So, if d(vw) ≥ 1, the same channel must not be given to both carriers.
Hence d(vw) ≥ 1 debars co-channel interference between v and w. Similarly, if d(vw) ≥ 2,
no adjacent-channel interference can occur between v and w in a feasible assignment. An
approach to control interference is to exclude assignments causing large interference between
pairs of carriers. To achieve this goal, a threshold t is introduced. The threshold is used to
produce a problem which prescribes a sufficiently large separation between carriers that may
cause interference exceeding t:

dt(vw) :=

⎧⎪⎨
⎪⎩
max{1, d(vw)} if cco(vw) > t ∧ cad(vw) < t,

max{2, d(vw)} if cad(vw) > t,

d(vw) otherwise.
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The carrier network Nt = (V,E,C, {Bv}v∈V , dt, cco, cad) is obtained from N by tightening
the separation with t. A feasible assignment for Nt may incur interference, but none exceeding
the threshold t. Thus, feasible assignments for the original problem may be infeasible for the
modified problem. Since an assignment causing high interference between some pair of carriers
might save considerably between others, it may be the case that no optimal assignment for the
original problem is feasible for the modified one. Despite this fact, tightening the separation
often works well in conjunction with the heuristics. By applying the heuristics described
above to Nt for different threshold values, solutions of varying quality are usually obtained.
Depending on the heuristic and the problem instance at hand, a suitable threshold value may
be determined by some search routine.
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Original 23.7416 23.2958 0.4458 8 6 21 —

+ (MCF 1-OPT)* 2.3729 2.1756 0.1974 0 0 0 2.84

RANDOM 54.1935 53.3958 0.7977 52 0 0 0.01

+ (MCF 1-OPT)* 2.6981 2.3785 0.3197 0 0 0 5.21

T-coloring 5.0286 4.6600 0.3686 0 0 0 0.27

+ (MCF 1-OPT)* 1.7982 1.7007 0.0976 0 0 0 2.25

DSATUR 0% 1.2755 1.2440 0.0315 0 0 0 0.31

+ (MCF 1-OPT)* 1.2232 1.1944 0.0288 0 0 0 2.28

DSATUR 1% 1.0761 1.0377 0.0384 0 0 0 0.62

+ (MCF 1-OPT)* 1.0430 1.0056 0.0374 0 0 0 2.20

DSATUR 5% 1.1059 1.0549 0.0510 0 0 0 4.83

+ (MCF 1-OPT)* 1.0547 1.0116 0.0431 0 0 0 2.36

DSATUR 10% 0.9799 0.9433 0.0366 0 0 0 7.65

+ (MCF 1-OPT)* 0.9701 0.9347 0.0354 0 0 0 2.16

DSATUR 25% 0.9799 0.9433 0.0366 0 0 0 22.02

+ (MCF 1-OPT)* 0.9701 0.9347 0.0354 0 0 0 2.21

Table 2: Assignments computed for Problem k with 50 channels. The separation is tightened
with a threshold of 0.035.

5 Computational Experiments

In the following, computational results on 5 problem instances, named k, a, f, l, and h, are
shown. These instances stem from real-world cellular phone networks. The chosen instances
differ in size as well as in structure. Table 1 lists several parameters of the instances. Following
the name of the problem instance, the next 10 columns display properties of the underlying
graph G = (V,E). No edge vw ∈ E satisfies d(vw) = cco(vw) = cad(vw) = 0. The remaining
8 columns show features of d, cco, and cad, in particular, the size of the supports. Almost
all sets Bv of locally blocked channels are empty. Therefore, no detailed information on the
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Original 1.1564 1.0973 0.0591 0 3 0 —

+ (MCF 1-OPT)* 0.6066 0.5464 0.0602 0 0 0 1.99

RANDOM 54.9708 54.4163 0.5545 118 0 0 0.02

+ (MCF 1-OPT)* 0.8791 0.8092 0.0699 0 0 0 1.79

T-coloring 0.9135 0.8845 0.0290 0 0 0 0.16

+ (MCF 1-OPT)* 0.1623 0.1427 0.0196 0 0 0 2.01

DSATUR 0% 0.0292 0.0226 0.0066 0 0 0 1.48

+ (MCF 1-OPT)* 0.0223 0.0223 0.0000 0 0 0 1.42

DSATUR 1% 0.0318 0.0304 0.0015 0 0 0 0.34

+ (MCF 1-OPT)* 0.0258 0.0244 0.0015 0 0 0 1.48

DSATUR 5% 0.0209 0.0209 0.0000 0 0 0 2.82

+ (MCF 1-OPT)* 0.0189 0.0189 0.0000 0 0 0 1.43

DSATUR 10% 0.0261 0.0235 0.0026 0 0 0 7.09

+ (MCF 1-OPT)* 0.0248 0.0222 0.0026 0 0 0 1.57

DSATUR 25% 0.0177 0.0177 0.0000 0 0 0 15.13

+ (MCF 1-OPT)* 0.0175 0.0175 0.0000 0 0 0 1.46

Table 3: Assignments computed for Problem a with 30 channels. The separation is tightened
with a threshold of 0.01.

Bv’s is given. The size of the spectrum for problems k and f is 50, for a it is 30, and 75 for
problems h and l.

Every carrier network is either connected or has one major component. The density, the
diameter of the major component, and its clique number all indicate that the graph is very
far from being planar. In all problems but a, the maximum clique exceeds the spectrum size.
This does not necessarily imply that no feasible assignment exists, but the fact can be used
to derive a lower bound on the interference in feasible assignments.

Each instance was supplied by E-Plus together with a (partial) frequency assignment.
This assignment was either manually or automatically generated using a commercial pro-
gram for solving the frequency assignment problem. This program implements the algorithm
described in [16].

In Tables 2, 3, 4, 5, and 6 the quality of the supplied assignment is shown for comparison.
The first column in each table lists the source of the frequency assignment. In rows headed
by a ‘+’, the preceding assignment was used to improve on. In columns two, three, and four
the interference incurred is listed, with the third and fourth column breaking the total up
into co-channel and adjacent-channel interference. The column titled “separation violations”
contains the number of violated minimal distance constraints. The next two columns show
the number of invalidly assigned and unassigned carriers. A feasible assignment has to have
zeros in all three columns that were mentioned last. Finally, the rightmost column lists the
time consumed to run the starting or improvement heuristic, respectively. The computations
were performed on a SUN SPARCstation 20-501.

13



Assignment to
ta
l

in
te
rf
er
en
ce

co
-c
ha
nn
el

in
te
rf
er
en
ce

ad
ja
ce
nt
-c
ha
nn
el

in
te
rf
er
en
ce

se
pa
ra
ti
on

vi
ol
at
io
ns

in
va
lid

as
si
gn
m
en
ts

un
as
si
gn
ed

ca
rr
ie
rs

ti
m
e
[s
ec
s]

Original 52.1004 40.8344 11.2661 0 0 3 —

+ (MCF 1-OPT)* 23.6927 19.6156 4.0771 0 0 0 51.43

RANDOM 616.9697 578.5104 38.4593 808 0 0 0.13

+ (MCF 1-OPT)* 22.1688 18.2175 3.9513 0 0 0 49.06

T-coloring 84.5410 61.5274 23.0136 0 0 0 2.83

+ (MCF 1-OPT)* 18.8387 15.2667 3.5720 0 0 0 213.75

DSATUR 0% 9.4011 8.1711 1.2299 0 0 0 19.71

+ (MCF 1-OPT)* 8.9613 7.8807 1.0806 0 0 0 134.50

DSATUR 1% 8.8580 7.6198 1.2382 0 0 0 96.37

+ (MCF 1-OPT)* 8.5398 7.3106 1.2291 0 0 0 89.31

DSATUR 5% 8.9662 7.7877 1.1784 0 0 0 471.20

+ (MCF 1-OPT)* 8.6693 7.4998 1.1695 0 0 0 127.46

DSATUR 10% 8.8684 7.8654 1.0030 0 0 0 1011.78

+ (MCF 1-OPT)* 8.7380 7.7631 0.9749 0 0 0 134.88

DSATUR 25% 8.7733 7.6393 1.1340 0 0 0 2342.90

+ (MCF 1-OPT)* 8.5808 7.4550 1.1258 0 0 0 87.53

Table 4: Assignments computed for Problem f with 50 channels. The separation is tightened
with a threshold of 0.05.

“RANDOM” is a trivial starting heuristic which randomly assigns an available channel to
every carrier. Possible separation constraint violations are of no concern. “(MCF 1-OPT)*”
stands for alternatingly applying MCF and Iterated 1-OPT until no more improvement is
obtained during Iterated 1-OPT. The percentage listed following “DSATUR” tells how many
of the carriers were checked out as a starting node for applying DSATUR With Costs. On
calling DSATUR With Costs a threshold to tighten the separation is supplied. The value
of this parameter is given in the annotation to every table listing computational results. A
summary of the performance of the heuristics is given below.

5.1 T-coloring

The T-coloring heuristic mostly succeeds in computing a feasible frequency assignment. These
assignments are typically of inferior quality, although the quality may be affected by the
threshold used for tightening the separation. The assignments tend to use only frequencies
from an initial segment of the interval of available frequencies. Thus, large improvements are
possible when applying MCF and Iterated 1-OPT.

5.2 Dual Greedy

The dual greedy heuristic turned out to be an overall failure. Extensive experiments did
not show any regularity as to how the parameters of the heuristic could be tuned to achieve
feasible assignments of competitive quality. In order to increase the performance, a special
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Original 89.1725 74.8875 14.2849 0 0 10 —

+ (MCF 1-OPT)* 32.5201 24.4670 8.0531 0 0 0 25.06

RANDOM 506.5964 467.6431 38.9533 1040 0 0 1.26

+ (MCF 1-OPT)* 32.5016 23.3914 9.1102 0 0 0 107.14

T-coloring 175.0639 123.5290 51.5349 0 0 0 1.48

+ (MCF 1-OPT)* 25.0412 17.6132 7.4280 0 0 0 133.14

DSATUR 0% 17.0741 12.2901 4.7841 1 0 0 31.51

+ (MCF 1-OPT)* 16.8456 12.1753 4.6702 0 0 0 194.40

DSATUR 1% 15.0838 10.9065 4.1773 0 0 0 175.15

+ (MCF 1-OPT)* 14.9117 10.7065 4.2052 0 0 0 167.80

DSATUR 5% 14.8636 10.6555 4.2081 0 0 0 685.24

+ (MCF 1-OPT)* 14.6246 10.4734 4.1512 0 0 0 165.14

DSATUR 10% 14.7445 10.3496 4.3949 0 0 0 1237.07

+ (MCF 1-OPT)* 14.5592 10.1898 4.3694 0 0 0 164.40

DSATUR 25% 14.1321 10.2416 3.8905 0 0 0 3284.12

+ (MCF 1-OPT)* 13.9559 10.0677 3.8882 0 0 0 168.83

Table 5: Assignment computed for Problem l with 75 channels. The separation is tightened
with a threshold of 0.1.

implementation of a heap operation, namely of change key, is used. The amortized running
time of this operation is still O(logn), but time savings of roughly 25% are achieved [20].
Still, the running time is prohibitive. Further performance monitoring did not reveal patho-
logical behavior of individual routines which would recommend them for fine tuning. No
computational results for the dual greedy heuristic are included here.

5.3 DSATUR With Costs

This is the best starting heuristic considered. It produces assignments of comparatively
excellent quality in little running time. Running this heuristic for some random starting node
usually irons out the lack of a good deterministic choice for the carrier to start assigning
with. Selecting 3 to 5% randomly as starting nodes will do most of the time. Quite often,
the obtained frequency assignments can be further improved by MCF and Iterated 1-OPT.
However, it does not seem to pay to perform an Iterated 1-OPT run for every starting node.
Finally, experiments support that an aggressive choice of the separation threshold is advisable.
That is, the threshold should be chosen as low as possible while maintaining feasibility for
some (randomly chosen) starting points.

5.4 Iterated 1-OPT

In several cases, Iterated 1-OPT does succeed in improving over results obtained by any of
the starting heuristics. Depending on the quality of the initial assignment, the improvement
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Original 167.1547 137.7719 29.3828 0 0 0 —

+ (MCF 1-OPT)* 83.4942 69.2971 14.1971 0 0 0 141.92

RANDOM 1216.0486 1146.1457 69.9030 1117 0 0 1.73

+ (MCF 1-OPT)* 86.5573 70.90 31 15.6542 0 0 0 715.81

T-coloring 79.4230 65.8120 13.6109 0 0 0 3.93

+ (MCF 1-OPT)* 79.1824 65.4874 13.6950 0 0 0 661.68

DSATUR 0% 47.6638 39.9521 7.7116 0 0 0 85.65

+ (MCF 1-OPT)* 44.8170 37.1074 7.7096 0 0 0 995.12

DSATUR 1% 45.4530 38.0736 7.3794 0 0 0 399.09

+ (MCF 1-OPT)* 43.8773 36.5236 7.3538 0 0 0 663.49

DSATUR 5% 46.0968 38.4557 7.6410 0 0 0 2276.10

+ (MCF 1-OPT)* 44.9377 37.3064 7.6313 0 0 0 991.11

DSATUR 10% 45.7894 38.2648 7.5246 0 0 0 5271.92

+ (MCF 1-OPT)* 44.6267 37.1624 7.4643 0 0 0 936.36

DSATUR 25% 45.8451 38.2032 7.6419 0 0 0 10961.89

+ (MCF 1-OPT)* 44.8259 37.2771 7.5489 0 0 0 658.62

Table 6: Assignments computed for Problem h with 75 channels. The separation is tightened
with a threshold of 0.1.

ranges from minor to huge. The running time observed is slightly inferior to a single run of the
DSATUR With Costs. This may be explained by a more detailed analysis of the operations
performed by either heuristic in the implementation used.

5.5 Min-Cost Flow

Considering the nature of changes MCF is capable to perform on an assignment, it does
not come by surprise that improvements are typically small. The main purpose of MCF
is to escape from local minima of the neighborhood structure underlying the Iterated 1-
OPT heuristic. This goal is achieved often enough to recommend MCF in combination with
Iterated 1-OPT. Taking into account the huge min-cost flow problems that have to be solved,
the MCF-implementation shows good performance.

6 Conclusions

Interference minimization of some sort is present in several of the approaches to frequency
assignment problems published so far. To our knowledge, this paper is one of the first to make
overall interference minimization the objective and to report detailed computational results.

We investigated several primal heuristics. Due to their modest space requirements and
acceptable to very good running times, these heuristics are suitable for industrial application.
Our results show that DSATUR With Costs applied to a small percentage (3–5% is a good
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choice) of randomly selected carriers as starting points is a powerful starting heuristic. Iterated
1-OPT proved capable to still improve on those assignments in reasonable time. Finally, by
using MCF we are able to bring in a global optimization aspect that is helpful for escaping
local minima of the neighborhood structure underlying the Iterated 1-OPT heuristic.

Assignment k‡ a‡ f ‡ l‡ h

DSATUR 5% + (MCF 1-OPT)∗ 95.61% 98.37% 83.36% 83.60% 73.12%

Table 7: Improvement of assignment quality relative to the original interference. A ’‡’ ap-
pended to the instance name expresses that the original assignment is not feasible.

We were able to drastically improve on the original assignment. Table 7 shows the quality
achieved by DSATUR 5% followed by an alternating sequence of MCF and Iterated 1-OPT.
This combination of heuristics was chosen since it produces competitive results in reasonable
running times which suits it well for practice.

From experiments with various other parameter settings and other rather time consuming
methods such as randomized local search procedures not documented here (see [29]), we
know that the best values displayed in our tables are not optimal. Improvements are not
easily obtained, though.

All of our computational experiments were performed on carrier networks that stem from
a E-Plus’ cellular phone network. E-Plus has integrated the well-performing heuristics pre-
sented here into their software system, thereby enhancing its network-management system
with respect to frequency assignment considerably.
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