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Abstract

A ranking of a graph is a coloring of the vertex set with positive integers

such that on every path connecting two vertices of the same color there is

a vertex of larger color. We consider the directed variant of this problem,

where the above condition is imposed only on those paths in which all edges

are oriented in the same direction. We show that the ranking number of a

directed tree is bounded by that of its longest directed path plus one, and

that it can be computed in polynomial time. Unlike the undirected case,

however, deciding whether the ranking number of a directed (and even of an

acyclic directed) graph is bounded by a constant is NP-complete. In fact, the

3-ranking of planar bipartite acyclic digraphs is already hard.
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1 Introduction

Given an undirected graph G, its ranking number χr(G) is the minimum integer k for

which there exists a (vertex) k-ranking , that is a mapping f : V (G)→ {1, 2, . . . , k}
such that every path connecting two vertices u, v of the same rank f(u) = f(v)

contains a vertex w with higher rank, f(w) > f(u).

It is well known and easy to see that for the path P� of length �−1 on � vertices,

χr(P�) = �log ��+ 1

holds, and that the longest k-rankable path P2k−1 = x1x2 . . . x2k−1 admits the unique

optimal ranking f with

f(xi) = max {j : 2j|i }+ 1

for all 1 ≤ i < 2k. (Throughout, log means logarithm of base 2.)

This paper is the first approach to the ranking of directed graphs. The ranking

number of a digraph G is naturally defined as the minimum k such that there exists

a mapping f : V (G)→ {1, 2, . . . , k} with the property that every directed path (i.e.,

path in which all edges are oriented consecutively) connecting two vertices u, v of

the same rank f(u) = f(v) contains a vertex w with higher rank, f(w) > f(u). We

denote the ranking number of a directed graph G again by χr(G).

Obviously, the ranking number of a directed path equals that of the undirected

path of the same length. Directed and undirected rankings, however, have a strik-

ingly different behavior already on trees. For instance, an undirected tree containing

no path longer than t can have as large ranking number as �t/2� + 1. This is far

from being true in the directed case. We shall prove that the ranking number of a

directed tree can exceed that of its longest directed path by at most 1 (Corollary 3),

hence it grows just with log t.

We also consider rankings from the computational complexity point of view.

The problem Ranking takes as input a graph G and a positive integer k, and

asks whether χr(G) ≤ k. It is known that Ranking on undirected graphs is NP-

complete in general, but solvable in polynomial time for every fixed k ; see [1] for

results and further references. For the analogous problem of Directed Ranking,

however, we prove in Theorem 8 that it is NP-complete even if the input is restricted

to fixed k = 3 and to acyclic orientations of planar bipartite graphs. On the other

hand, the 2-rankable directed graphs can be characterized in several different ways,

as shown in Section 5. We also prove that the ranking number of directed trees can

be determined in polynomial time (Section 3).
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2 Upper bound for trees

In this section we prove general bounds on the ranking number of oriented trees

and also on that of orientations of a path of given length. We begin with some

definitions.

Notation. We write p(�) := �log �� + 1 = χr(P�) for the ranking number of the

(directed or undirected) path with � vertices (i.e., p(�) = k if and only if 2k−1 ≤ � ≤
2k − 1). Moreover, we define rt(�) and rp(�) as the maximum ranking number of

directed trees and that of orientations of undirected paths, respectively, under the

condition that no directed subpath has more than � vertices .

Our results will show that the above three parameters are very close to each

other, in the entire range of �.

Theorem 1 For every k ≥ 1 and � such that 2k−2 + 1 ≤ � ≤ 2k−1,

rt(�) = k .

Proof. We first show that χr(T ) ≤ k provided that every directed subpath of T

has at most 2k−1 vertices. Consider an infinite directed path with vertices xi and

edges xixi+1, i ∈ Z. Define a mapping φ : {xi : i ∈ Z} → {1, 2, . . . , k} by

φ(xi) =

{
k if i ≡ 0 mod 2k−1 ,

max {j : i ≡ 0 mod 2j−1} if i �≡ 0 mod 2k−1 .

Obviously, any segment of length at most 2k−1 is ranked feasibly by φ.

Now we consider a directed tree T containing no directed subpath with more

than 2k−1 vertices. We view such a tree as a Hasse diagram of a partially ordered

set, and as such, partition its vertices into levels: we choose an arbitrary vertex and

call its level L(0), and then recursively sort the other vertices — a vertex u is placed

into level L(i + 1) (L(i − 1)) if there is a vertex v already in level L(i) such that

uv ∈ E(T ) (vu ∈ E(T )). A mapping f defined by f(u) = φ(xi) for u ∈ L(i) is then

a feasible k-ranking of T . (The above procedure partitions T into levels correctly,

since T is a tree.)

We next turn to the lower bound for rt(�), namely rt(2
k−1+1) > k. By induction

on i we construct a series of trees Tk(i), i = 0, 1, 2, . . . , 2k−1 but in decreasing order,

with the following properties:

1. every directed subpath of Tk(i) has at most 2k−1 + 1 vertices,

2. Tk(i) contains a nonextendable directed path P of length 2k−1−1 with vertices

x1, x2, . . . , x2k�1 and arcs xhxh+1, 1 ≤ h < 2k−1,
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3. for every j ≤ i, every directed path of Tk(i) passing through xj has at most

2k−1 vertices, and

4. for every feasible k-ranking f of Tk(i) and for every j > i, f(xj) �= k.

The first step of the construction is for i = 2k−1, and for Tk(2
k−1) we simply take

the path P = x1x2 . . . x2k�1 . In the recursive step, we take a copy T ′ of Tk(i + 1)

with vertex set disjoint from the vertex set of Tk(i+ 1) and add the arc x′
i+1xi+1 to

the disjoint union of T ′ and Tk(i+ 1) (we assume that the copy of P is denoted by

P ′ = x′
1x

′
2 . . . x

′
2k�1 in T ′). This will be our Tk(i), and P = x1x2 . . . x2k�1 will keep

playing the role of the path P for the property 2.

The properties 1–3 for Tk(i) clearly follow by induction. To prove 4, we revoke

the result known from undirected ranking — the longest (k − 1)-rankable path has

2k−1 − 1 vertices. Hence, in any feasible k-ranking fi+1 of Tk(i + 1), at least one

of the vertices of P is ranked k. If fi is a k-ranking of Tk(i), by the induction

hypothesis none of the vertices x′
j , j > i + 1 is ranked k, and hence at least one of

the vertices x′
j , 1 ≤ j ≤ i + 1 is ranked k. On the other hand, the directed path

x′
1 . . . x

′
i+1xi+1 . . . x2k�1 contains at most one vertex ranked k, and thus 4 follows for

Tk(i).

The tree T = Tk(0) has no directed path with more than 2k−1+1 vertices and it

is not k-rankable. Indeed, if f0 were a feasible k-ranking, then the property 4 would

imply that no vertex of P is ranked k, contradicting the fact that the path with

2k−1 vertices is not (k − 1)-rankable. Thus rt(2
k−1 + 1) ≥ k + 1. �

Next, we show that the ranking number of directed trees of maximum degree 2

(i.e., orientations of undirected paths) usually equals the ranking number of their

longest paths.

Theorem 2 For every k ≥ 3 and every � such that 2k−1 − 1 ≤ � ≤ 2k − 2,

rp(�) = k .

Proof. We first prove the upper bound, i.e., rp(2
k − 2) ≤ k. It is easy to see

that every (directed or undirected) path with at most 2k − 2 vertices has a feasible

k-ranking such that the first vertex is ranked 1 and the last vertex is ranked 2. Thus,

if T is an orientation of a path consisting of several segments of length at most 2k−3
(a segment is a maximal directed subpath), we can k-rank each segment separately

so that the sources are ranked 1 and the sinks are ranked 2.

On the other hand, to show the lower bound, we take two vertex-disjoint paths

of length 2k − 2 each, and orient an arc from the first vertex of one of them to the

last vertex of the other one. The resulting graph has no feasible k-ranking, because

in every k-ranking of a directed path of length 2k−2, both endvertices are ranked 1,

thus the added arc would connect two vertices ranked 1, a contradiction. Therefore

rp(2
k − 1) ≥ k + 1. �
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Reformulating the results proven above, and relating the ranking number of a

directed tree to the ranking number of its longest paths, we obtain:

Corollary 3 The ranking number of a directed tree is always less than or equal to

the ranking number of its longest directed paths plus 1. This bound is best possible,

as

rt(�) =

{
p(�) if � = 2k ,

p(�) + 1 if � �= 2k .

Similarly, for orientations of undirected paths, we have

rp(�) =

{
p(�) if � �= 2k − 1 ,

p(�) + 1 if � = 2k − 1 .

We illustrate the functions p(�), rp(�), and rt(�) in the schematic figure 1.
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Figure 1: Trees and paths vs. the undirected path p(�)

3 Algorithm for trees

In this section we prove that the ranking number of a directed tree can be determined

by a polynomial-time algorithm.

Assuming that a natural number k and a tree T with n vertices, rooted at a

vertex r, are given, our next goal is to decide by an efficient algorithm if χr(T ) ≤ k.

We shall use the following notation. For a vertex u of T , denote by Tu the subtree

rooted at u and induced by those vertices from which the path (in the underlying

undirected graph of T ) to the root of T passes through u. If u is not the root, then

u+ denotes the first vertex on the path from u to the root r. The vertices adjacent

to u other than u+ are called the children of u.
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The algorithm described below scans recursively the vertices of T from the leaves

to the root and computes a set system S(u) for every u ∈ V (T ). Each S(u) is a

family of subsets of {1, 2, . . . , k}, storing essential information concerning the feasible

rankings of the subtree rooted at u. Also, the values of auxiliary functions Up(u),

Down(u), and Compose(A,B) are collections of subsets of {1, 2, . . . , k}. In the

subroutine Compose, we assume max ∅ = 0.

Algorithm TREE(k)

Function Up(u) :

Let u1, u2, . . . , ut be the children of u such that uiu ∈ E(T ).

Up := {∅};
for j := 1 to t do Up := {A ∪ B : A ∈ Up,B ∈ S(uj)}.
Function Down(u) :

Let u1, u2, . . . , ut be the children of u such that uui ∈ E(T ).

Down := {∅};
for j := 1 to t do Down := {A ∪ B : A ∈ Down,B ∈ S(uj)}.
Function Compose(A,B) :
Compose := ∅;
for A ∈ A do

for B ∈ B do

for i := max(A ∩ B) + 1 to k do

if i /∈ A∪B then Compose := Compose∪ {(A∩ {i+1, i+2, . . . , k})∪ {i}}.
Function S(u) :

if u �= r and uu+ ∈ E(T )

then S := Compose(Up(u), Down(u))

else S := Compose(Down(u), Up(u)).

Program body :

if S(r) = ∅
then χr(T ) > k

else χr(T ) ≤ k.

For a vertex u and a path P = u1 . . . uj, uj = u, we say that a color i is visible

on P from u if some vertex uh on this path receives color i and no vertex u�,

� = h+ 1, . . . , j is colored with a color higher than i.

Proposition 4 If u is not the root of T and uu+ ∈ E(T ), then S ∈ S(u) if

and only if Tu admits a ranking such that S is the set of colors visible (from u)

on directed paths from the inside of Tu to u. Otherwise (i.e., if u is the root or if

u+u ∈ E(T )), S ∈ S(u) if and only if Tu admits a ranking such that S is the set of

colors visible (from u) on directed paths leading from u into Tu.
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Proof. We will prove the statement by induction. If u is a leaf, then any function

fi : u → i (i = 1, 2, . . . , k) is a proper ranking of Tu, and {i} is the set of visible

colors in such a case. Indeed, Up(u) = Down(u) = {∅} and Compose(∅, ∅) =

{{1}, {2}, . . . , {k}}.
For the inductive step, suppose u is an inner vertex of T and uu+ ∈ E(T ). Let

u1, u2, . . . , us be the children of u such that uju ∈ E(T ) (j = 1, 2, . . . , s), and let

v1, v2, . . . , vt be the children of u such that uvj ∈ E(T ) (j = 1, 2, . . . , t).

Suppose first that f : V (Tu) → {1, 2, . . . , k} is a ranking of Tu and f(u) = i.

Let Aj be the set of colors visible from uj on directed paths from within Tuj
to uj

(j = 1, 2, . . . , s), and let Bl be the set of colors visible from vl on directed paths

from vl into Tvl (l = 1, 2, . . . , t). By the induction hypothesis, Aj ∈ S(uj) and

Bl ∈ S(vl). Then A =
⋃s

j=1Aj ∈ Up(u) and this is exactly the set of colors visible

from the children of u on directed paths from within Tu to u (not counting u itself).

Similarly, B =
⋃t

l=1Bl ∈ Down(u). Since f is a ranking of Tu, i > max(A ∩ B),

i �∈ A ∪ B, and (A ∩ {i + 1, . . . , k}) ∪ {i} is the set of colors visible from u on

the directed paths from within Tu to u. And indeed, the definition of the function

Compose gives (A ∩ {i+ 1, . . . , k}) ∪ {i} ∈ S(u).

On the other hand, if S ∈ S(u), then S = (A ∩ {i + 1, . . . , k}) ∪ {i} for some

A ∈ Up(u) and B ∈ Down(u) such that i > max(A ∩ B) and i �∈ A ∪ B. It

follows from the definition of Up and Down that A =
⋃s

j=1Aj and B =
⋃t

l=1Bl for

some Aj ∈ S(uj), j = 1, 2, . . . , s, and Bl ∈ S(vl), l = 1, 2, . . . , t. By the induction

hypothesis each Tuj
has a ranking f j such that Aj is the set of colors visible from

uj on directed paths from within Tuj
to uj (j = 1, 2, . . . , s). Similarly, each Tvl has

a ranking gl such that Bl is the set of colors visible from vl on directed paths from

vl into Tvl (l = 1, 2, . . . , t). Since i > max(A ∩ B) and i /∈ A ∪ B, the function

f : V (Tu)→ {1, 2, . . . , k} defined by

f(x) =

⎧⎪⎨
⎪⎩

f j(x) if x ∈ V (Tuj
)

gl(x) if x ∈ V (Tvl)

i if x = u

is a ranking of Tu, and S is the set of colors visible from u on directed paths from

within Tu to u.

The proof for u+u ∈ E(T ) or u = r is analogous. �

Corollary 5 The algorithm TREE(k) gives the correct answer to the question

whether χr(T ) ≤ k.

Proposition 6 The running time of the algorithm TREE(k) is at most cnk2 22k,

for some absolute constant c independent of k.
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Proof. The function Up (which is a dynamic programming version for computing

the set of all unions of type
⋃s

j=1Aj for Aj ∈ S(uj) ) needs at most 22k set unions in

each of the s steps. Hence, Up on a vertex with s ingoing children runs in O(sk 22k)

time. The analogous property holds for Down as well. Throughout the entire tree

T , there are as many children of processed vertices as the number of edges of T , and

therefore Up and Down will consume in total at most O(nk 22k) steps.

The procedure Compose requires at most O(k2 22k) steps, and being performed

for every vertex, it requires running time at most O(nk2 22k). �

In conclusion, we obtain

Theorem 7 For any directed tree T on n vertices, the directed ranking number of

T can be determined in time O(n �2 log3 �), where � ≥ 2 is the length of a longest

directed path in T .

Proof. We know from Theorem 2 that 1 ≤ χr(T )−1 ≤ log �. Therefore, it suffices

to run the algorithm TREE(k) for at most log � values of k ≤ log �+1, and for each

of them, TREE(k) takes at most O(n log2 � 22 log �) = O(n �2 log2 �) time. �

4 Ranking number of bipartite acyclic digraphs

Here we consider the algorithmic problem on DAGs (directed acyclic graphs).

Theorem 8 The problem Directed Ranking is NP-complete on DAGs with

planar bipartite underlying graphs, even for fixed ranking number k = 3.

Proof. We show a reduction from the Precoloring Extension problem of

(undirected) bipartite graphs. It is known [4] that the following problem is NP-

complete:

Given a planar bipartite graph with some of its vertices properly colored

with three colors, does G admit a proper 3-coloring that extends the pre-

coloring ?

One can observe that, without loss of generality, all the precolored vertices can be

assumed to belong to the same vertex class of G. Indeed, for each precolored vertex

v not in the proper vertex class, we create two new precolored vertices of degree 1,

adjacent to v and assigned to the two colors different from the one prescribed for v ;

then v can be made precolorless, as its precolored pendant neighbors force it to get

the originally prescribed color.
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Given such a bipartite graph G = (A ∪ B,E) with precolored vertex set Z ⊆ A

and precoloring φ : Z → {1, 2, 3}, we construct a directed graph D with vertex set

V (D) = A ∪ B ∪ {zji : z ∈ Z, 1 ≤ i ≤ 7, 1 ≤ j ≤ 2}

and arc set

E(D) =
⋃

u∈A, v∈B
uv∈E

{uv} ∪ ⋃
z∈Z

1≤i≤6
1≤j≤2

{zji zji+1} ∪
⋃
z∈Z
{zz1i1(z), zz2i2(z)}

where

i1(z) =

{
6 if φ(z) = 1

7 if φ(z) = 2 ∨ 3
i2(z) =

{
4 if φ(z) = 1 ∨ 2
6 if φ(z) = 3

Obviously, D is acyclic, and it also remains planar and bipartite whenever so is G.

We claim that D is 3-rankable if and only if G admits a precoloring extension with

3 colors.

Suppose first that D is 3-rankable, and let f : V (D) → {1, 2, 3} be a feasible

ranking. Since the paths Pz,j = zj1z
j
2 . . . z

j
7 (z ∈ Z, j = 1, 2) are uniquely 3-rankable

induced subgraphs of D, we must have f(zj1) = f(zj3) = f(zj5) = f(zj7) = 1, f(zj2) =

f(zj6) = 2, and f(zj4) = 3. In this way, each Pz,j excludes one well-defined color from

its neighbor in A, and the total effect is that precisely the two colors distinct from

φ(z) get excluded at each z ∈ Z. It follows that f(z) = φ(z) holds, and therefore f

is a proper 3-coloring of G extending the precoloring φ.

On the other hand, any proper precoloring extension of φ together with the color

sequence 1213121 on each Pz,j gives a feasible 3-ranking. �

5 Directed 2-rankable graphs

Here we investigate directed rankings with k = 2 colors. For the structural character-

ization of 2-rankable digraphs the following concept will be convenient to introduce.

By an alternating walk of length � we mean a sequence P = x0x1 . . . x� of (not neces-

sarily distinct) vertices such that its orientation is x0 → x1 ← x2 → x3 ← . . . , i.e.,

x2ix2i+1 ∈ E for all 0 ≤ i < �/2 and x2ix2i−1 ∈ E for all 1 ≤ i ≤ �/2. An alternating

walk is an alternating path if its vertices are mutually distinct. Moreover, we say

that a vertex v is starting , central , or ending , if there is a directed path P3 = x1x2x3

with x1 = v, x2 = v, or x3 = v, respectively. In the present context, alternating

paths and cycles of odd lengths will be crucial.
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Theorem 9 For every digraph G = (V,E), the following conditions are equivalent.

(1) G is 2-rankable.

(2) G contains no alternating path of odd length from a starting vertex to an ending

vertex.

(3) G contains no alternating walk of odd length with both endpoints being central

vertices.

(4) G admits a proper 2-coloring in which the set of central vertices is monochro-

matic.

Proof.

(1) ⇒ (2) Suppose that G is 2-rankable. Since P3 has the unique 2-ranking 121,

every starting and ending vertex must get the same color 1 in G. Consequently,

every path P (not only the alternating ones) joining two such vertices must have

even length, for otherwise the endpoints of P should get distinct colors in every

proper 2-coloring (not only in the 2-rankings) of G.

(2) ⇒ (3) Let G be a graph satisfying the condition (2), and suppose on the

contrary that some W = x1x2 . . . x2t ⊂ G is an alternating walk of odd length,

2t−1, where both x1 and x2t are (possibly identical) central vertices. By definition,

there exist directed paths of length 2, P ′ = u′v′z′ and P ′′ = u′′v′′z′′, with v′ = x1

and v′′ = x2t. Denoting x0 := z′ and x2t+1 := u′′, observe that W ∗ := u′′W−1z′ =
x2t+1x2tx2t−1 . . . x1x0 is an alternating walk of odd length 2t + 1 from the starting

vertex x2t+1 to the ending vertex x0. Now (2) implies that W ∗ cannot be a path,

i.e., xi = xj holds for some 0 ≤ i < j ≤ 2t + 1. Assuming that j − i is as small as

possible, we find i and j so that C := xixi+1 . . . xj is a cycle.

We distinguish between two simple cases, depending on the parity of i − j. If

i−j is even, then C is an odd cycle in which xi is the middle vertex of a directed P3,

namely either xi+1xixj−1 or xj−1xixi+1. Thus, C − xi is an alternating path of odd

length from the starting vertex of this P3 to its ending vertex, a contradiction to (2).

On the other hand, if i− j is odd, then removing the segment xj−1xj−2 . . . xi+2xi+1

from W ∗ we obtain a shorter alternating walk of odd length from x2t+1 to x0, and

repeating the same argument we eventually get a final contradiction.

(3) ⇒ (4) Let G be a connected graph satisfying condition (3). We first show

that G is bipartite. Suppose on the contrary that C = x1x2 . . . x2k+1 is a cycle of

odd length in G. By the assumption on parity, at least two consecutive edges are

oriented in the same direction, and thus at least one vertex of C is central. It follows

that, taking subscript addition modulo 2k + 1, there exist two subscripts i and j

(possibly j = i+ 2k + 1) such that j − i is odd, both xi and xj are central vertices,

and no vertex xk, i < k < j, is central. Then the walk xixi+1 . . . xj (or its inverse,

xjxj−1 . . . xi) is alternating.
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Next we show that all central vertices are located in the same bipartition class

of G. If this is not the case, let x, y be central vertices belonging to distinct classes

and being at minimum distance apart. (Recall that G is connected.) Now, any

shortest x–y path has odd length and is alternating, for otherwise G would contain

two central vertices in distinct classes closer to each other than x and y.

(4) ⇒ (1) Let V (G) = A ∪ B be a bipartition of G such that all central vertices

belong to A. Then the mapping that assigns 1 to the vertices in B and 2 to the

vertices in A is a 2-ranking of G. �

Remarks. 1. Algorithmically it is very easy to decide whether a digraph G is 2-

rankable. Indeed, the answer is negative whenever G is not bipartite, and otherwise

it suffices to test separately in each connected component if some of the two possible

2-colorings is a 2-ranking. Cf. also condition (4).

2. Similar types of problems have been studied in the framework of precoloring

extension in several papers. Good characterizations are known for the existence of

k-colorings of trees with any number of prescribed monochromatic independent sets

[2, 3], and also for one prescribed monochromatic independent set in perfect graphs

[5]. (As we have mentioned before, the problem for bipartite graphs with at least

three precolored vertices of distinct colors is algorithmically hard [4], and so is for

two monochromatic vertex pairs in distinct colors, too.) For an extensive survey on

this subject, see [7].

3. Some small subgraphs excluded by the degenerate ‘ alternating ’ path of length 1

are:

• the cyclic triangle y1 → y2 → y3 → y1, where any two of the yi are adjacent

central vertices and also each edge joins a starting vertex with an ending

vertex,

• the transitive triangle y1 → y2 → y3 ← y1, where y1y3 is an edge from a

starting vertex to an ending vertex (and y2y3y1y2 is an odd alternating walk

from the central vertex y2 to itself),

• the path y1 → y2 → y3 → y4 of length 3, where the edge y2y3 joins a starting

vertex with an ending vertex, both of which are central as well.

Moreover, chordless odd cycles of lengths ≥ 5 (with any orientation) are also ex-

cluded by the longer alternating paths or by the entire cycle as an alternating walk,

according to the conditions (2) and (3) for longer paths/walks. Note that the charac-

terization of 2-rankable digraphs in terms of forbidden subgraphs involves an infinite

family of minimal configurations, which is not the case for undirected rankings.
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6 Open problems

There are many interesting related problems arising in the above context in a natural
way. Below we mention some of them.

1. Determine the complexity of Directed Ranking on digraphs whose under-
lying graphs have treewidth at most t for a fixed integer t. (The undirected
version is polynomially solvable [1].)

2. Draw a sharper line between the polynomial instances of oriented trees and
the NP-complete class of directed acyclic bipartite planar graphs, by describ-
ing large subclasses of the latter in which the ranking number still can be
determined in polynomial time.

3. What is the complexity of Directed Edge Ranking for a fixed number of
colors? (The undirected version is linear [1], but NP-complete if the number
of colors is unrestricted [6].)

4. More generally, which classes of directed graphs admit polynomial-time deci-
sion algorithms for k-ranking and/or edge k-ranking, for every fixed k ?
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