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Abstract. Amixed hypergraphH = (X,A, E) consists of the vertex setX and

two families of subsets: the family E of edges and the family A of co-edges. In a

coloring every edge E ∈ E has at least two vertices of different colors, while every

co-edge A ∈ A has at least two vertices of the same color. The largest (smallest)

number of colors for which there exists a coloring of a mixed hypergraph H using

all the colors is called the upper (lower) chromatic number and is denoted χ̄(H)

(χ(H)). A mixed hypergraph is called uncolorable if it admits no coloring.

We show that there exist uncolorable mixed hypergraphs H = (X,A, E) with
arbitrary difference between the upper chromatic number χ̄(HA) of HA = (X,A)

and the lower chromatic number χ(HE) of HE = (X, E). Moreover, for any k =

χ̄(HA)−χ(HE), the minimum number v(k) of vertices of an inclusionwise minimal

uncolorable mixed hypergraph is exactly k + 4.

We introduce a measure of uncolorability which is called the vertex uncol-

orability number. We propose an algorithm that finds an estimate on it and

is a greedy mixed hypergraph coloring algorithm at the same time. We also

show that the colorability problem can be expressed in terms of integer linear

programming.

Concerning particular cases, we describe those complete (l,m)-uniform mixed

hypergraphs which are uncolorable, and observe that for given (l,m) almost all

complete (l,m)-uniform mixed hypergraphs are uncolorable, whereas generally

almost all complete mixed hypergraphs are colorable.

∗ Supported in part by the Hungarian National Research Fund, grant OTKA T–016416.
† Partially supported by CNR(GNSAGA), the University of Catania and DAAD (TU-Dresden).
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1 Introduction

We use the terminology of [19, 20]. A mixed hypergraph is a triple H = (X,A, E),
where X = {x1, x2, . . . , xn} (n ≥ 1) is the vertex set , A = {A1, A2, . . . , Al} (Ai ⊆
X, i = 1, . . . , l, l ≥ 1) is the family of co-edges , and E = {E1, E2, . . . , Em} (Ej ⊆
X, j = 1, . . . , m, m ≥ 1) is the family of edges . In the context of the present paper,

we restrict our attention to mixed hypergraphs satisfying |Ai| ≥ 2 and |Ej | ≥ 2 for all

1 ≤ i ≤ l and 1 ≤ j ≤ m, and assume that no edge (co-edge) is contained in any other

edge (co-edge). (In hypergraph terminology, these conditions mean that the lower rank

is at least 2, and both A and E are supposed to be Sperner systems. For standard

notions concerning hypergraphs, we refer to [1].)

We use the following definition [20] of colorings of a mixed hypergraph with λ ≥ 1

colors.

Definition 1 A coloring of a mixed hypergraph H = (X,A, E) with λ colors is a

mapping c : X → {1, 2, . . . , λ} such that the following two conditions hold:

(1) each co-edge A ∈ A has at least two vertices of the same color;

(2) each edge E ∈ E has at least two vertices colored differently.

We shall also need to generalize this notion for the more general situation where

some of the vertices may not get colored:

Definition 2 A partial coloring of a mixed hypergraph H = (X,A, E) with λ colors

is a mapping c : Y → {1, 2, . . . , λ}, Y ⊆ X, Y �= ∅, such that the following two

conditions hold:

(1) each co-edge A ∈ A with all the vertices colored, has at least two vertices of

the same color;

(2) each edge E ∈ E with all the vertices colored, has at least two vertices colored

differently.

The hypergraphs HE = (X, E) and HA = (X,A) are called the partial hypergraph

and the partial co-hypergraph of the initial mixed hypergraph H = (X,A, E), respec-
tively. We can view the partial hypergraph and the partial co-hypergraph of a mixed

hypergraph as the partial cases of mixed hypergraphs (when A = ∅ and E = ∅).
For any subset Y ⊆ X, we call the mixed hypergraph H/Y = (Y,A′, E ′) the induced

subhypergraph of H if A′ and E ′ consist of all those members of A and of E , respectively,
which are entirely contained in Y .

Definition 3 The largest (smallest) number of colors for which there exists a coloring

of H when all the colors are used, is called the upper (lower) chromatic number and is

denoted by χ̄(H) (χ(H)).
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Definition 4 A mixed hypergraph is called uncolorable if it admits no coloring. Oth-

erwise it is called colorable. The colorability problem takes a mixed hypergraph H =

(X,A, E) as input, and asks whether H admits at least one coloring.

The colorability problem represents a new type of problems in coloring theory. It

contains the problem to find the coloring of a graph using a fixed number of colors as

a particular case. It is closely related, but not limited, to the problem to characterize

all uncolorable mixed hypergraphs. The latter was first formulated in [20]. Particular

cases of the colorability problem appeared in [2, 11].

The aim of this paper is to begin a systematic study of the colorability problem in

mixed hypergraphs. We show that, together with a general approach, quite different

methods are required to determine the conditions for colorability in different classes

of mixed hypergraphs. Nevertheless, one of the basic goals is to find the list of all

minimal uncolorable mixed hypergraphs from some given class, in order to describe

the colorable structures in terms of forbidden subhypergraphs with respect to the class

in question.

The paper is organized as follows. In the next section we show that there exist

uncolorable mixed hypergraphs H = (X,A, E) with arbitrarily large difference between

the upper chromatic number χ̄(HA) of the partial co-hypergraph HA = (X,A) and

the lower chromatic number χ(HE) of the partial hypergraph HE = (X, E). We also

describe uncolorable mixed hypergraphs of smallest order in the following sense: for any

k = χ̄(HA)−χ(HE), the minimum number v(k) of vertices of an inclusionwise minimal

uncolorable mixed hypergraph without isolated vertices is exactly k + 4. (The isolated

vertices have to be excluded here, otherwise the problem becomes trivial by taking the

mixed uncolorable hypergraph with just one edge and one co-edge, A1 = E1 = {x1, x2},
on n = k + 3 vertices; then the lower chromatic number is 2 and the upper chromatic

number is n− 1.)

In Section 3 we introduce a measure of uncolorability (so called vertex uncolorability

number) that is the minimum number of vertices to be deleted in such a way that the

mixed hypergraph obtained is colorable. A greedy algorithm to find an estimate on the

vertex uncolorability number is developed. It is related to such known parameters as

the coloring number of graphs introduced by Erdős and Hajnal [5], the Szekeres–Wilf

number [14] (see also [8]), and the resistance (originality) of a co-hypergraph introduced

in [20]. It is the first greedy mixed hypergraph coloring algorithm at the same time.

In Section 4 we show how the colorability problem can be formulated as an integer

programming Problem. The main point here is that the number of constraints need

not grow much faster than that of the independent sets in HA and HE .

In the last section we consider some particular cases of uncolorable mixed hyper-

graphs, and investigate the asymptotic behavior of uncolorability in one special case.

Namely, we describe those complete (l, m)-uniform mixed hypergraphs (where every
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l vertices form a co-edge and every m vertices form an edge) which are uncolorable,

and show that for given (l, m) almost all complete (l, m)-uniform mixed hypergraphs

are uncolorable. In contrast, we prove that generally almost all complete mixed hyper-

graphs are colorable. Some results on uncolorability are derived for constructions using

graphs, too. At last, the necessary and sufficient conditions for the uncolorability of

mixed hypertrees is obtained.

2 Minimal uncolorable mixed hypergraphs

The following problem was formulated in [20]:

Let v(k), k ≥ 0, be the smallest natural number n such that there exists

an inclusionwise minimal uncolorable mixed hypergraph H = (X,A, E),
|X| = n, for which

χ̄(HA)− χ(HE) = k.

Determine v(k) for k = 0, 1, 2, . . . .

The theorem below gives the characterization of these numbers.

Theorem 1 For every k ≥ 0, v(k) = k + 4.

Proof. Let H = (X,A, E) be an uncolorable mixed hypergraph such that |X| = n =

v(k), and χ̄(HA)− χ(HE) = k. We have to prove that n = v(k) = k + 4.

We show first that n ≥ k + 4. Assume on the contrary that n < k + 4. Since H is

uncolorable, χ(HE) ≥ 2. If χ(HE) ≥ 3, then χ̄(HA) ≥ k + 3, that implies n = k + 3,

χ(HA) = n, therefore H contains no co-edges and thus it is colorable, a contradiction.

Hence, χ(HE) = 2. Then we have only two possibilities for the number of vertices:

n = k + 2 or n = k + 3.

Similarly to the previous case, for n = k+ 2 and χ̄(HA) = k + 2 it follows that the

mixed hypergraph H contains no co-edges, and therefore is not uncolorable. Hence,

consider the last case n = k+3. Since χ̄(HA) = k+2 = n−1, the partial co-hypergraph

HA = (X,A) is a co-bistar [20], i.e., a co-hypergraph having two vertices, say x1 and

x2, that belong to all co-edges. If this pair (x1, x2) were not an edge in HE , then we

could color x1, x2 with the first color and the remaining vertices all differently, that

contradicts again to the uncolorability of H. Consequently, the pair (x1, x2) is an edge

in H. Since H is an uncolorable hypergraph minimal under inclusion, no co-edge may

coincide with (x1, x2), and therefore the cardinality of each co-edge is at least 3.

Consider an arbitrary 2-coloring of HE = (X, E). It is at the same time a coloring of

the initial mixed hypergraph H, because each co-edge contains at least three vertices,

and hence H again is colorable. This contradiction shows that v(k) = n ≥ k + 4.
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Now, in order to prove the converse inequality v(k) ≤ k + 4, we construct a series

of examples of minimal uncolorable mixed hypergraphs with χ̄(HA)− χ(HE) = k and

n = k + 4, k = 0, 1, 2, . . . . The construction will depend on the parity of k; we first

describe the particular cases k = 0, 1 that can be verified directly.

k = 0.

Let H = (X,A, E), where X = {1, 2, 3, 4}, A = {(1, 2, 3), (1, 2, 4)}, E = {(1, 2),
(2, 3), (2, 4), (3, 4)}.
k = 1.

Consider H = (X,A, E), where X = {1, 2, 3, 4, 5}, A={(1, 2, 3), (1, 2, 4), (1, 2, 5)},
E={(1, 2), (3, 4), (4, 5), (3, 5)}.
k = 2l, l ≥ 1.

Construct the mixed hypergraph H = (X,A, E), where X = {1, 2, 3, . . . k + 4},
A = {(1, 2, i) | 3 ≤ i ≤ k + 4}, and E = {(i, i+ 1) | 1 ≤ i ≤ k + 3} ∪ {(k + 4, 2)}.

In other words HA = (X,A) represents a 3-uniform co-bistar in which the vertices

1,2 belong to all co-edges, and therefore χ̄(HA) = n− 1 = k + 3.

Moreover, HE = (X, E) is the odd cycle (2, 3, 4, . . . , k+4, 2) with the pendant edge

(1, 2), so that χ(HE) = 3.

Let c(i) denote the color of the vertex i, i = 1, 2, . . . , n. In any possible coloring of

H, the vertices 1, 2 are colored differently, say c(1) = 1, c(2) = 2.

Because of the edge (2, 3) we have c(3) �= c(2) and, because of the co-edge (1, 2, 3),

the unique possibility for vertex 3 to be colored is c(3) = c(1) = 1. In the same way,

c(4) �= c(3) and, because of the co-edge (1, 2, 4), the unique possibility for vertex 4 to

be colored is c(4) = c(2) = 2.

It is clear now that the colors have to alternate on the cycle (2, 3, 4, . . . , k + 4).

Since c(k + 3) = 1 and c(2) = 2, we can color the vertex k + 4 neither with color

1, nor with color 2. However, any other color c(k + 4) is infeasible on the co-edge

(1, 2, k + 4). Consequently, H is uncolorable. One can easily check that it is minimal

under inclusion.

k = 2l + 1, l ≥ 1.

Construct the mixed hypergraph H = (X,A, E), where X = {1, 2, 3, . . . , k + 4},
A = {(1, 2, i) | 3 ≤ i ≤ k+4)}, and E={(1, 2)}∪{(i, i+1) | 3 ≤ i ≤ k+3}∪{(k+4, 3)}.

Again, HA = (X,A) represents a 3-uniform co-bistar with the vertices 1, 2 shared

by all the co-edges, so that χ̄(HA) = n− 1 = k+3. In the present case HE = (X, E) is
a disconnected graph having the edge (1, 2) as the first component and the odd cycle

(3, 4, . . . , k + 4, 3) as the second component, yielding again χ(HE) = 3.
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Let c(1) = 1, c(2) = 2. For c(3) there are only two possibilities: c(3) = 1, or

c(3) = 2. By symmetry reasons, we may assume c(3) = 1. Then, similarly to the

argument above, we obtain c(4) = 2, c(5) = 1, c(6) = 2, and so on, i.e., the colors have

to alternate along the odd cycle. Since the vertex k + 4 cannot be colored with any

color (because of the co-edge (1, 2, k + 4) and the edges (k + 3, k + 4) and (k + 4, 3)),

we conclude that H is uncolorable. Minimality is also easily seen. Hence, the theorem

follows. �

3 Uncolorability measure and greedy algorithm

In this section we introduce several concepts and parameters related to (un)colorability,

and apply them to develop an algorithm that colors a mixed hypergraph or finds a fairly

large colorable part of it.

Definition 5 For a mixed hypergraph H = (X,A, E) the vertex uncolorability number

Ω(H) is the minimum number of vertices to be deleted in such a way that the hypergraph

obtained is colorable.

Clearly, 0 ≤ Ω(H) ≤ n− 1 holds for any mixed hypergraph, and Ω(H) = 0 holds if

and only if H is colorable.

Denote by τ(HE) the transversal number of a hypergraph H = (X, E) [1, p. 53],

i.e., the minimum cardinality of a subset of vertices that contains at least one vertex

from every edge. The next upper bound is immediate.

Proposition 1 For every mixed hypergraph H = (X,A, E) the following inequality

holds:

Ω(H) ≤ min{τ(HA), τ(HE)}. �

In the algorithmic sense, the vertex uncolorability number is a hard-to-determine

parameter, already for the smallest particular case:

Theorem 2 The problem to decide for an arbitrary mixed hypergraph H whether

Ω(H) = 0 is NP -complete.

Proof. We will prove that the recognition problem of colorable mixed hypergraphs

is at least as hard as the problem of hypergraph 2-colorability. Since the latter is

NP-complete [10], the same will follow for the former, too.

For an arbitrary hypergraph H = (X, E) with vertex set X, construct the mixed

hypergraph

H3 = (X,
(
X
3

)
, E),
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where
(
X
3

)
denotes the collection of all 3-element subsets of X, i.e., each triple of

vertices forms a co-edge in H3. Every assignment of the vertices to at most two colors

is a feasible coloring of H3
A, while more than two colors would yield an unfeasible

co-edge. This fact implies that H3 is colorable if and only if H is 2-colorable. �

Let H = (X,A, E) be a mixed hypergraph, and let A(x) (E(x)) denote the set of

co-edges (edges) containing the vertex x ∈ X.

Definition 6 The mono-degree m(x,H) of a vertex x ∈ X in a mixed hypergraph

H = (X,A, E) is the maximum cardinality of a subfamily E1(x) ⊆ E(x) such that

Ei ∩ Ej = {x} ∀ Ei, Ej ∈ E1(x), Ei �= Ej .

We denote

M(HE) = max
Y ⊆X

min
x∈Y

m(x,H/Y ).

If applied to graphs, M(HE)+1 is equal to the so called coloring number , introduced

and studied by Erdős and Hajnal [5], and also to the Szekeres–Wilf number [14], see

[8, p. 8]. The latter was used implicitly by Vizing in [17]. If ω(G) means the maximum

cardinality of a clique of the graph G, then the Szekeres–Wilf number is at least ω(G)−
1. It was shown in [18] (see also [21, p. 268]), that it attains this smallest possible value

for a graph and for all its induced subgraphs if and only if the graph G is chordal (i.e.,

if every cycle of length at least four has two non-consecutive adjacent vertices; also

called triangulated or rigid circuit graphs, introduced by Hajnal and Surányi [7] and

characterized by Dirac [4]).

In [1, p. 116], m(x,H) was termed β-degree, and the following theorem was proved:

Theorem 3 For any hypergraph H = (X, E),
χ(H) ≤ 1 +M(HE).

In hypergraph coloring theory this value plays an important role. It shows how

effective the consecutive greedy hypergraph coloring algorithm described in [1] can be.

Call the value

b(x,H) = max {|A(x) ∩ A(y)| : y ∈ X, y �= x}
the bi-degree of a vertex x.

The value

o(x,H) = |A(x)| − b(x,H)

was introduced in [20] and was called the originality of vertex x in the co-hypergraph

HA. It expresses the similarity of a vertex to its neighbors in HA.
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Clearly, o(x,H) = o(x,HA), o(x,H) ≥ 0, and o(H, x) = 0 means that there exists

some another vertex y ∈ X belonging to all those co-edges which contain x.

As it was shown in [20], o(x,H) plays an important role in the greedy consecutive

co-hypergraph coloring algorithm. Namely,

Theorem 4 The number of colors that may be lost at any step of the consecutive

greedy co-hypergraph coloring algorithm does not exceed the value

O(HA) + 1 = max
Y ⊆X

min
x∈Y

o(H/Y, x) + 1.

Call the value O(HA) the resistance of the co-hypergraph HA. (In [20] it was called

the originality of the co-hypergraph, but we shall see later that ‘ resistance ’ is a better

word for it.)

It follows from the above observations that the resistance of a co-hypergraph is dual

in a combinatorial sense to the value of M(HE).

If M(HE) is small, then the lower cromatic number of the hypergraph HE is small,

too. It means that at each coloring step of the greedy algorithm there exist several

possibilities to color the next vertex. And the less M(HE) is, the more such possibilities

we have.

If O(HA) is large, then HA necessarily contains a subhypergraph which causes the

large lose of colors as a result of re-colorings of monochromatic components [20]. Then

the upper chromatic number of the co-hypergraph HA is small on the average. On

the other hand, if O(HA) is small, then the greedy algorithm for the upper chromatic

number does not lose many colors. Again, at each coloring step there exist several

possibilities to color the next vertex. The less O(HA) is, the more such possibilities we

have.

As a result, for O(HA) small, the upper chromatic number of the co-hypergraph

HA is large. This explains the term ‘ resistance ’ for O(HA). It shows how the structure

of a co-hypergraph ‘ resists ’ to the greedy algorithm.

However, these values have very different nature. M(HE) shows directly an estimate

on the lower chromatic number of HE . In contrast, O(HA) does not give an estimate on

the upper chromatic number of HA. It is necessary to implement the greedy algorithm

in order to obtain such an estimate.

Now we will combine these two values in order to form a parameter that ex-

presses the possibility to color (with some approximation) the mixed hypergraph H =

(X,A, E), or, at least, to color as many vertices as possible using local information

(based on vertex degrees). In this way we obtain some estimate on the vertex uncol-

orability number.

We need the following notions introduced in [16].
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Let H = (X,A, E). Assume that c is a coloring of the mixed hypergraph H. Now

consider a mixed hypergraph H′ constructed by adding a vertex y to the vertex set X,

and adding a family Ay of co-edges to A, where each co-edge A ∈ Ay contains y, and

a family Ey of edges to E , where each edge E ∈ Ey contains y.

The co-edge A ∈ Ay is called influencing with respect to the coloring c of H if

all its vertices except y are colored with mutually different colors in the coloring c of

H. Analogously, the edge E ∈ Ey is called influencing with respect to the coloring

c of H if all its vertices except y are colored with the same color in the coloring c.

Note that all vertices (but y itself) of an influencing edge or co-edge are supposed to

have been colored. Influencing co-edges and edges define all constraints concerning the

possibilities for extending the coloring c of H to the vertex y.

Let c(A) (c(E)) be the set of colors used by the vertices in the co-edge A (edge E)

in the coloring c of H. Let

FS(y) =
⋂ {c(A) : A ∈ Ay, A is an influencing co-edge}.

It means that FS(y) is the set of colors one of which must be used on y in extending

c to y. We call FS(y) the Forcing Set of y.

Let

V S(y) =
⋃ {c(E) : E ∈ Ey, E is an influencing edge}.

It means that V S(y) is the set of colors which must not be used on y in extending the

coloring c to y. We call V S(y) the Veto Set of y.

Definition 7 The vertex y is called uncolorable in extending the coloring c, if

1. there exists at least one influencing co-edge, and

2. FS(y) \ V S(y) = ∅.

Definition 8 The first free color is:

1. the smallest number in the list FS(y) \ V S(y) when there exists at least one

influencing co-edge and FS(y) \ V S(y) �= ∅ ;
2. the first natural number missing from V S(y) otherwise.

Definition 9 For a vertex x ∈ X of a mixed hypergraph H = (X,A, E), the value

φ(x,H) = |A(x)| − b(x,HA) +m(x,HE)

is called the risk of x.
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Clearly, φ(x,H) ≥ 0, and φ(x,H) = 0 implies that E(x) = ∅ (since we consider

mixed hypergraphs without loops and co-loops).

Next we introduce the value for which we preserve the term ‘ resistance.’

Definition 10 For a mixed hypergraph H = (X,A, E), the value

Φ(H) = max
Y ⊆X

min
x∈Y

φ(x,H/Y )

is called the resistance of H.

Hence, Φ(H) ≥ 0, and Φ(H) = 0 means that E = ∅ holds and, thus, H is colorable.

If H is a simple graph, then Φ(H) equals the coloring number, if H is a co-hypergraph,

then Φ(H) equals the resistance (introduced as ‘ originality ’ in [20]).

Now, in order to find an estimate on the vertex uncolorability number Ω(H), we

propose a greedy coloring algorithm for an arbitrary mixed hypergraph H. The idea

is to find a fairly good ordering of the vertices and then greedily color H successively,

using the local information as much as possible. First we decompose the hypergraph

by consecutively eliminating the vertices with minimal risk. In this way we obtain

some ordering of the vertex set. Then we start coloring, sequentially reconstructing

the initial mixed hypergraph by adding vertices in the reverse order. At each coloring

step we use the Veto Set and the Forcing Set in order to choose the most appropriate

color for the next vertex.

ALGORITHM (greedy mixed hypergraph coloring)

INPUT : An arbitrary mixed hypergraph H = (X,A, E), X = {1, 2, . . . , n}.
OUTPUT : A partial coloring C = (c(1), c(2), . . . , c(n)) of H, and the list U of un-

colored vertices.

STEP 1. Set i := n; declare Hn := H; find a vertex of minimum risk and label it xn.

STEP 2. Set i := i− 1; if i = 0, then go to STEP 5.

STEP 3. Form a subhypergraph Hi := H/{X − {xn, . . . , xi+1}} = Hi+1 − xi+1.

STEP 4. Find a vertex of minimum risk in H i and label it xi; go to STEP 2.

STEP 5. Set the list of uncolored vertices U := {1, 2, . . . , n}, set the color vector

C := (0, 0, . . . , 0).

STEP 6. Color the vertex x1 with the first color: c(x1):=1; set U := U \ {x1}; set
i := 1.
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STEP 7. Set i := i+ 1; if i = n+ 1, then go to STEP 12.

STEP 8. If there are no influencing co-edges, then let c(xi) := {the first free color},
U := U \ {xi} and go to STEP 7.

STEP 9. Construct FS(xi) and V S(xi).

STEP 10. If FS(xi) \ V S(xi) = ∅, then go to STEP 7.

STEP 11. c(xi)={the first free color}, U := U \ {xi}; go to STEP 7.

STEP 12. Output: C,U . End.

Remark 1. In graph theory the bi-chromatic chain recoloring method by Kempe [9]

is well known. It can be generalized to hypergraphs. It is not possible to use it for any

recoloring in the mixed hypergraphs , however, because some co-edges may get colored

unfeasibly.

In [20] it was developed the so called monochromatic component re-coloring method.

It is dual in combinatorial sense to the method by Kempe. However, again, it is

not possible to use it for any monochromatic component re-coloring in the mixed

hypergraphs, because the wrongly colored edges may appear as a result.

Therefore, when encountering an uncolorable vertex in a mixed hypergraph, we

are able to use neither the recoloring method by Kempe [9], nor its opposite developed

in [20]. Re-colorings in mixed hypergraphs deserve a separate study.

Remark 2. At every coloring step the algorithm chooses the vertex of minimum

risk that greedily decreases the sum of the cardinalities of the Veto Set and Forcing

Set. It minimizes the possible conflict of constraints. (This explains the term ‘ risk ’

for φ(x,H).) There may be other ways to minimize the possibility of such conflicts.

Remark 3. If Φ(H) is big, then H necessarily contains a subhypergraph which is

‘ very hard to color ’ by the algorithm. So, one can think that with high probability

this subhypergraph remains uncolored. (In fact, it is so when the respective mono-

degrees and bi-degrees have the same cardinality; the difference between them shows

the ‘ roughness ’ of the greedy algorithm). This justifies the term ‘ resistance ’ for Φ(H).

In other words, Φ(H) shows how the structure of H ‘may resist to the greedy coloring

algorithm.’

Remark 4. In the greedy coloring algorithm for the upper chromatic number the

recoloring of colored vertices is unavoidable [20]. In contrast, in the greedy coloring

algorithm for the lower chromatic number no recoloring of colored vertices is required

[1]. From this viewpoint, recalling Remark 1, the co-edges in a mixed hypergraph are

less favorable with respect to colorability. At STEP 8 of the algorithm one could use

any color, including a new one. However, we use the ‘ first free color,’ with the aim

to use as few colors as possible. Using fewer colors on the average leads to a larger
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number of vertices colored with the same color. Hence, more co-edges and, thus, more

vertices have a chance to get colored.

EXAMPLE.

Consider the mixed hypergraph H = (X,A, E), |X| = 5, such that (see the picture

below): X = (1, 2, 3, 4, 5), A = {A1, A2, A3, A4, A5}, A1 = (1, 3), A2 = (2, 3, 4), A3 =

(3, 4, 5), A4 = (4, 5, 1), A5 = (5, 1, 2), E = {E1, E2, E3, E4}, E1 = (1, 2), E2 =

(2, 5), E3 = (2, 3), E4 = (3, 5).

s 1

s 2

s 3
s 4

s 5

Declare H5 = H. Since the vertex 4 has minimal risk, start with the fourth vertex:

x5 = 4.

Form the subhypergraph H4 = (X4,A4, E4) with X4 = (1, 2, 3, 5), A4 = {A1, A5},
E4 = {E1, E2, E3, E4}, E1 = (1, 2), E2 = (2, 5), E3 = (2, 3), E4 = (3, 5).

In H4, the first vertex with minimal risk is x4 = 1. Form the subhypergraph H3 =

(X3,A3, E3) with X3 = (2, 3, 5), A3 = ∅, E3 = {E2, E3, E4}, E2 = (2, 5), E3 = (2, 3),

E4 = (3, 5).

In H3 the first vertex with minimal risk is x3 = 2. Form the subhypergraph H2 =

(X2,A2, E2) with X2 = (3, 5), A3 = ∅, E2 = {E4}, E4 = (3, 5).
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In H2 the first vertex with minimal risk is x2 = 3. Form the subhypergraph H1 =

(X1,A1, E1) with X1 = (5), A3 = ∅, E3 = ∅.
These were the results of steps 1–4. Now start coloring.

STEP 5. Set the list U := {1, 2, 3, 4, 5} of uncolored vertices, set the color vector

C = (0, 0, 0, 0, 0).

STEP 6. C = (0, 0, 0, 0, 1), U := {1, 2, 3, 4}.
STEP 7. i = 2.

STEP 8. C = (0, 0, 2, 0, 1), U = {1, 2, 4}.
STEP 7. i = 3.

STEP 8. C = (0, 3, 2, 0, 1), U = {1, 4}.
STEP 7. i = 4. STEP 8.

STEP 9. FS(1) = {1, 3} ∩ {2} = ∅, V S(1) = {3}.
STEP 10. STEP 7. i = 5. STEP 8.

STEP 9. FS(4) = {1, 2} ∩ {2, 3} = {2}, V S(4) = ∅.
STEP 10. STEP 11. C = (0, 3, 2, 2, 1), U = {1}.
STEP 7. i = 6. STEP 12. Output C = (0, 3, 2, 2, 1), U = {1}. End.

Hence we can conclude Ω(H) ≤ 1. One can check, actually, that indeed Ω(H) = 1.

Theorem 5 The greedy mixed hypergraph coloring algorithm finds the resistance

Φ(H) for any mixed hypergraph H.

Proof. Let t be the largest value of the minimum risk over all the vertices in the

order generated by STEPS 1–5. It is clear that t ≤ Φ(H).

Suppose that Φ(H) ≥ t + 1, i.e., in some subhypergraph H∗ of H, there exists a

vertex y such that

φ(y,H∗) = min
z

o(z,H∗) = Φ(H) ≥ t+ 1.

The resistance of any vertex is a monotone function with respect to subhypergraph

inclusion. This implies that the first vertex of H∗ that was deleted in STEP 3 by the

algorithm had resistance ≥ t+1, and this contradicts the definition of t. Consequently,

t = Φ(H). �

The following two assertions are obvious.

Theorem 6 If U is the list of vertices uncolored by the algorithm, then

Ω(H) ≤ |U |. �

Theorem 7 The total sum of Forcing Set and Veto Set cardinalities at every coloring

step of the algorithm does not exceed the value Φ(H). �

13



4 Colorability as an Integer Progamming Problem

There are several ways to formulate the colorability problem for mixed hypergraphs as

an integer programming problem. In this section we describe one possible approach

that seems to us the most promising one for future applications. We will show that

not only the colorability but also the upper and lower chromatic numbers of a mixed

hypergraph can be determined by the solutions of an integer programming problem.

Let H = (X,A, E) be a mixed hypergraph, where X = {x1, x2, . . . , xn}, n ≥ 1,

A = {A1, A2, . . . , Al}, l ≥ 1, and E = {E1, E2, . . . , Em}, m ≥ 1.

Definition 11 A set S ⊂ X is stable if it contains no edge E ∈ E ; and S is called

co-stable if it contains no A ∈ A as a subset. We denote by SA and SE the collection

of all co-stable sets and all stable sets of H, respectively.

By definition, a mapping c : X → {1, 2, . . . , λ} is a coloring of H if and only if

every S ⊂ X satisfies the following two requirements:

(1) if S is monochromatic, then S ∈ SE , and

(2) if S is totally multicolored, then S ∈ SA.

For our purpose, it will be convenient to view colorings from another side, namely

as vertex partitions into stable sets satisfying condition (2). Based on this idea, we

now introduce a more general coloring/covering concept, assigning stable sets to real

weights in the half-open interval (0, 1] as follows.

Definition 12 A fractional coloring of H with t colors is a collection S = {S1, . . . , St}
⊆ SE of t distinct stable sets together with a weight function

w : S → (0, 1]

satisfying the following properties:

(i) For each vertex x ∈ X, ∑
Si∈S
x∈Si

w(Si) = 1,

(ii) For each co-edge A ∈ A,

∑
Si∈S

A∩Si �=∅

w(Si) ≤ |A| − 1.

14



It is convenient to extend the domain of w to the entire SE , by defining

w(S) = 0 ∀ S ∈ SE \ S.
Then the extended w on SE and its restriction to S can be considered equivalent, without

ambiguity. Actually, the latter becomes important only in contexts where the number

of colors assigned to fractional weights is relevant.

The value of a fractional coloring (S, w) is defined as

w(S) =
t∑

i=1

w(Si).

The quantities

χ∗(H) = min
(S,w)

w(S)
and

χ̄∗(H) = max
(S,w)

w(S)
are termed the fractional lower chromatic number and the fractional upper chromatic

number of H, respectively, where the corresponding minimum or maximum is taken

over all t and all feasible fractional t-colorings (S, w).

It is readily seen that the following sequence of inequalities is valid for every colorable

mixed hypergraph H :

χ∗(H) ≤ χ(H) ≤ χ̄(H) ≤ χ̄∗(H).

Moreover, by what has been said, the problem of determining χ∗ and χ̄∗ can be solved

by linear programming on an |SE |-dimensional polyhedron defined by |X|+ |HA| con-
straints. As a consequence, we obtain

Theorem 8 The fractional upper and lower chromatic numbers of a mixed hypergraph

H can be determined by an algorithm whose running time is a polynomial of the numbers

of vertices, co-edges, and stable sets.

Unfortunately, SE can be exponentially large with respect to X, partly because we

have to consider all stable sets, not only the maximal ones. On the other hand, it is

worth noting that fractional colorings may be — though are not always — feasible for

uncolorable mixed hypergraphs as well.

EXAMPLE.

Consider the mixed hypergraph H = (X,A, E) with X = {1, 2, 3, 4, 5} where the

co-edges form the co-cycloid

A = {(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 1), (5, 1, 2)}
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and the edges induce the 5-cycle in the ‘ diagonal ’ form,

E = {(1, 3), (2, 4), (3, 5), (4, 1), (5, 2)}.
One can check that the collection

SE = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}∪ {(1), (2), (3), (4), (5)}
of stable sets admits a unique fractional coloring that assigns 1/2 to each stable pair.

On the other hand, H is uncolorable because χ̄(HA) = 2 < 3 = χ(HE).

Observe further that restricting the range of the weight function w to the integers

0,1 (with the same convention w(S) = 0 for all S /∈ S as above), the minimum and

maximum values of the objective function coincide with χ(H) and χ̄(H), respectively.

Indeed, choosing the sets Si from SE means that no edge becomes monochromatic,

the condition (i) ensures that every vertex is assigned to precisely one color, and (ii)

implies the presence of at least one monochromatic pair of vertices inside each co-edge

A ∈ A. Moreover,
∑

S∈SE w(S) equals the number of colors used in the coloring. In

this way we obtain the following result.

Theorem 9 The upper and lower chromatic number of a mixed hypergraph can be

determined by the solution of an integer programming problem. Moreover, H is col-

orable if and only if the integer programming problem associated to it admits at least

one feasible (0, 1)-solution.

5 Partial cases of uncolorable mixed hypergraphs

In this section we investigate the conditions of uncolorability in various types of well-

structured mixed hypergraphs.

5.1 Complete (l, m)-uniform uncolorable mixed hypergraphs

Let K(l, m, n)=(X,A, E), where |X| = n, A =
(
X
l

)
is the family of all l-element subsets

of X, and E =
(
X
m

)
is the collection of all m-element subsets of X. Hence, |A| =

(
n
l

)

and |E| =
(
n
m

)
. Call K(l, m, n) the complete (l, m)-uniform mixed hypergraph of order

n.

Theorem 10 K(l, m, n) is uncolorable if and only if n ≥ (l − 1)(m− 1) + 1.

Proof. ⇒ We prove the contrapositive. Suppose that n ≤ (l − 1)(m − 1). Color

m− 1 vertices with the first color, the next m− 1 vertices with the second color, etc.
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Since n ≤ (l − 1)(m − 1), this procedure requires at most l − 1 colors, and a strict

coloring of K(l, m, n) is obtained, i.e., the hypergraph is colorable.

⇐ Let n ≥ (l − 1)(m − 1) + 1. Since each m-tuple is an edge and each l-tuple is a

co-edge, the number of vertices in any one color does not exceed m−1 and the number

of colors does not exceed l−1. It follows that in any partial coloring at least one vertex

remains uncolored. �

Hence, for any fixed l and m, the total number of all colorable K(l, m, n) equals

(l − 1)(m− 1)−min (l, m), i.e., it is finite.

Corollary 1 For fixed (l, m) almost all K(l, m, n) are uncolorable. �

A completely differend conclusion is obtained, however, if we do not fix the values

l and m. In the analysis below it will turn out that the proportion of uncolorable

complete mixed hypergraph of order n tends to zero as n gets large. Let us recall that

the definition of coloring excludes singletons as edges and co-edges.

Theorem 11 Almost all K(l, m, n) are colorable.

Proof. In order to simplify the formulas, let us make the calculation for mixed

hypergraphs of order n + 1 instead of n. Since l = 1 and m = 1 are excluded by

definition, we have n2 possibilities to choose the pair (l, m) in the range 2 ≤ l ≤ n+1,

2 ≤ m ≤ n + 1. Applying Theorem 10, we obtain that K(l, m, n + 1) is uncolorable if

and only if

(l − 1)(m− 1) ≤ n.

Here the smallest possible value of m− 1 is 1. Thus, for each l ≥ 2, there are precisely

� n
l−1

� uncolorable complete mixed hypergraphs of order n+1. Consequently, the total

number Nn of complete uncolorable mixed hypergraphs on n+ 1 vertices equals

Nn =
n∑

k=1

�n
k
� � n logn

where the asymptotic equation is meant as n tends to infinity. Thus, the proportion

of uncolorable complete mixed hypergraphs equals

lim
n→∞

Nn

n2
= lim

n→∞
logn

n
= 0,

implying that almost all large complete mixed hypergraphs are colorable. �
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5.2 Constructions from graphs

Let G = (X, E) be a graph with χ(G) = k. Construct a mixed hypergraph HG =

(X,A, E), where A = {A ⊂ V : |A| = k, A = V (P ) for some path P ⊂ G}. (Here

V (P ) denotes the vertex set of P .) We call HG the k-path mixed hypergraph on G.

Theorem 12 The k-path mixed hypergraph HG = (X,A, E) is uncolorable for every

graph G.

Proof. Suppose on the contrary that HG is colorable. Clearly, χ(HG) ≥ χ(G) = k ;

let c : X → {1, 2, . . . , k′} be a feasible coloring for some k ′ ≥ k. For each uv ∈ E ,
orient uv from the vertex of smaller color to the larger one. Since χ(G) = k, the

Gallai–Roy theorem ([6, 13], see also [15] for a short proof and generalizations) implies

that G contains a directed path P on k vertices. By definition, V (P ) ∈ A, and since

the colors are increasing along P , the vertices of P have mutually distinct colors.

Thus, A contains a totally multicolored co-edge. This contradiction proves that H is

uncolorable. �

Remarks. If χ(G) < k, then the k-path mixed hypergraph is colorable because in any

coloring of H with fewer than k colors every A ∈ A contains a monochromatic pair of

vertices. On the other hand, for every k < χ(G), the mixed hypergraph is uncolorable,

as the above proof works also for these cases.

A subclass of uncolorable mixed hypergraphs of this type is constructed by taking

G = C2t+1 ; then we obtain the odd cycle (graph) with the 3-uniform co-cycloid [20].

5.3 Uncolorable mixed hypertrees

Throughout this subsection we assume that the graphs considered are connected.

Definition 13 A mixed hypergraph H = (X,A, E) is called a mixed hypertree if there

exists a tree T = (X,F ) such that every A ∈ A and every E ∈ E induces a subtree in

T .

For A = ∅, we obtain the classic concept of hypertrees, the structural properties

of which are well investigated, see for example [1] (‘ arboreal hypergraphs ’). Some

chromatic properties of co-hypertrees (mixed hypertrees with E = ∅) have been inves-

tigated in [20]. Here we find the value of resistance and give the criteria of colorability

for mixed hypertrees.

Theorem 13 If H = (X,A, E) is a mixed hypertree, then

Φ(H) ≤ 1.
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Proof. Recall that we consider mixed hypergraphs without loops and co-loops, and

also assume that no (co-)edge contains any other (co-)edge. We shall apply nduction

on |X| = n. For n = 1, 2, 3 the assertion is obvious. Assume it holds true for any

mixed hypertree with fewer than n vertices. Consider a vertex x that is a leaf in the

corresponding tree T . Since every edge and every co-edge of H has cardinality at least

2, o(x,H) = 0 and m(x,H) ≤ 1. Therefore φ(x,H) ≤ 1. Further, it is clear that for

every Y ⊂ X the induced subhypergraph H/Y represents a mixed hypertree. By the

induction hypothesis, we have then that Φ(H/Y ) ≤ 1. Consequently, Φ(H) ≤ 1 holds,

too. �

We recall the following notion defined in [2]:

Definition 14 In a mixed hypergraph H = (X,A, E) an edge Ej ∈ E , |Ej | ≥ 2, is

called evidently uncolorable if for each pair of vertices x, y ∈ Ej there exists a sequence

(xA1z1A2z2 . . . Al−1zl−1Aly) such that

1) z1, z2, . . . , zl−1 ∈ Ej ,

2) Ai ∈ A for every i = 1, . . . , l,

3) A1 = {x, z1}, A2 = {z1, z2}, . . . , Al = {zl−1, y}.

Theorem 14 A mixed hypertree H = (X,A, E) is colorable if and only if it does not

contain any evidently uncolorable edge.

Proof. ⇒ Obvious.

⇐ Let H = (X,A, E) be a mixed hypertree without evidently uncolorable edges.

Observe that if it contains no co-edges of size 2, then it is colorable. Indeed, consider

the corresponding tree T and color it as usually, alternating with colors 1 and 2,

starting at any vertex. The coloring obtained is at the same time a coloring of H.

If H = (X,A, E) contains co-edges of size 2, then each of them coincides with some

edge of T . Now we repeat the previous procedure with the following exception: if we

encounter a co-edge of size 2, then we do not change color along this edge of T . (I.e.,

an edge of T is properly colored if and only if it is not a co-edge in H.) Since there are

no evidently uncolorable edges in H, we again obtain the coloring of H. �

5.4 Uncolorable block designs

Finally, we mention a different type of constructions studied in [11, 12]. Among other

results, it is proven there that for any Steiner Triple System S = STS(n) on a point set

X of cardinality n ≤ 2k − 1, the co-hypergraph H = (X,A) with A = S (i.e., viewing

each block as a co-edge) has upper chromatic number at most k, i.e.,

χ̄(H) ≤ �log2(n + 1)�.
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As a consequence, if n tends to infinity and the independence number of S becomes

smaller than n
log2(n/2)

, we obtain that there exists an infinite familly of uncolorable

Steiner Triple Systems viewed as the mixed hypergraphs H = (X,A, E) with A = E =

S. Similar ideas work for Steiner systems S(t, t+1, n) with larger block size, t+1 > 3,

as well.

Moreover, it is found that some Steiner Triple Systems (where each block is consid-

ered again as an edge and co-edge at the same time) are uncolorable already for n=15

(B. Ganter, private communication, 1997).

6 Open problems

We conclude this paper with some problems that remain open for future research.

Problem 1 The following notion was introduced in [20]. For a mixed hypergraph

H = (X,A, E) call a hypergraph H1 = (X,A1, E1) the chromatic inversion of H if

A1 = E and E1 = A.

When are both H and H̄ colorable (uncolorable) ?

Problem 2 Let us call H a bi-hypergraph if A = E . We consider r-uniform bi-

hypergraphs, i.e. when all the (co-)edges are of a size r, r = 2, 3, 4, . . . .

What is the minimum n = n(r) (m = m(r)) for which there exist inclusionwise

minimal uncolorable r-uniform mixed bi-hypergraphs on n vertices (with m (co)-edges,

respectively) ?

Evidently, n(2) = 2, m(2) = 1, n(3) = 5, m(3) ≤ 10. Theorem 10 implies that

n(r) ≤ (r − 1)2 + 1 and m(r) ≤
(
(r−1)2+1

r

)
.

Problem 3 Characterize the critical uncolorable mixed hypergraphs, i.e. those be-

coming colorable if we delete any vertex (or any edge, or any co-edge).

Problem 4 LetH be a minimal uncolorable mixed hypergraph. Characterize the max-

imal colorable subhypergraphs of H. Is every colorable mixed hypergraph a maximal

colorable subhypergraph of some minimal uncolorable mixed hypergraph?
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