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Abstract

A (vertex) k-ranking of a graph G = (V,E) is a proper vertex coloring

ϕ : V → {1, . . . , k} such that each path with endvertices of the same color i

contains an internal vertex of color ≥ i+1. In the on-line coloring algorithms,

the vertices v�, . . . , vn arrive one by one in an unrestricted order, and only the

edges inside the set {v�, . . . , vi} are known when the color of vi has to be

chosen. We characterize those graphs for which a 3-ranking can be found on-

line. We also prove that the greedy (First-Fit) on-line algorithm, assigning the

smallest feasible color to the next vertex at each step, generates a (3 log
�
n)-

ranking for the path with n ≥ 2 vertices, independently of the order in which

the vertices are received.
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1 Introduction

Let G = (V,E) be a simple graph with vertex set V and edge set E. A vertex

k-ranking of G is a proper vertex coloring ϕ : V → {1, . . . , k} such that every path

in G with endvertices x and y of the same color ϕ(x) = ϕ(y) contains a vertex z

with higher color ϕ(z) > ϕ(x). The ranking number χr(G) is the smallest integer k

for which there exists a vertex k-ranking of G.

The investigation of ranking problems has importance in the parallel Cholesky

factorization of matrices [2, 6] and also in the field of VLSI-design [5, 7]. In the

latest years, some investigations concerning the computational complexity of ranking

problems were also done ; see [4] for references.

In this paper we consider the problem of finding rankings of graphs on-line.

This problem, among other questions, has been raised in [8]. Here we investigate

two versions of on-line ranking.

In the first version, the graph G to be colored is specified before the on-line

procedure. The vertices of G arrive one by one in an unrestricted order. The input

sequence will be denoted by v1, v2, v3, . . . , indicating the actual order by increasing

subscripts. In the i-th step, the induced subgraph G[v1, . . . , vi] is known (without

any information on the position of this subgraph in G), and a color (rank) has to

be assigned to vi. The assigned colors must not be changed later.

The graph G is called on-line k-rankable if there is an algorithm that generates a

vertex k-ranking of G for each possible input sequence of the vertices of G. The on-

line ranking number χ∗
r(G) is the smallest integer k such that G is on-line k-rankable.

The class of all on-line k-rankable graphs is denoted by R∗
k.

In the second version, a class of graphs is given from which the graph G is chosen ;

but at the beginning of the on-line process the graph G itself is not specified. A

class G of graphs is called on-line k-rankable if there is an algorithm which gives a

vertex k-ranking for each graph G which belongs to G and for each possible input

sequence of the vertices of G, without any preliminary information on the choice of

G ∈ G.
The paper consists of two main parts. In Section 2 we characterize the on-line

3-rankable graphs, and in Section 3 we prove an upper bound on the on-line ranking

number of paths.

For a more precise formulation, we shall denote by Sn the star with center of

degree n− 1, by Pn the path of length (number of edges) n− 1, and by Cn the cycle

of length n. In general, the number of vertices of the graph under consideration is

denoted by n throughout the paper.

Obviously, a graph G is on-line 1-rankable if and only if G is edgeless, and G is

on-line 2-rankable if and only if the edges of G are pairwise non-adjacent. Hence,

for k ≤ 2 the entire class R∗
k is on-line k-rankable. As shown by the results below,

this property does not remain valid for k = 3.
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Theorem 1 A connected graph G of order n ≥ 4 has on-line ranking number 3

if and only if G = Sn, n arbitrary, or n = 4 and G = P4 or G = C4. Moreover, a

graph of order at most 3 has on-line ranking number 3 if and only if it is connected

and has precisely three vertices.

Without assuming connectivity, the characterization becomes slightly more com-

plicated.

Theorem 2 A graph G has on-line ranking number 3 if and only if

(i) each connected component of G is on-line 3-rankable,

(ii) at least one connected component of G has more than two vertices, and

(iii) if G contains a star Sn (n ≥ 4) component, then it contains no C4 and no P4.

We shall prove the ‘ if ’ part (sufficiency) in a stronger form, for graph classes

instead of single graphs. The notation F �⊆ G means that G contains no subgraph

isomorphic to F .

Theorem 3 The graph classes

{G ∈ R∗
3 P4 �⊆ G ∧ C4 �⊆ G}

and

{G ∈ R∗
3 Sn �⊆ G ∀n ≥ 4}

are on-line 3-rankable.

Our last result concerns the on-line ranking number of paths. For the (off-line)

ranking number χr(Pn) it is well known that χr(Pn) = 	log2 n
 + 1. The situation

for on-line rankings is different, however, as it is easily seen (at least for infinitely

many n) that some input sequences require more than χr(Pn) colors.

Let us consider a special algorithm assigning the colors to the vertices. The

greedy algorithm, also called First-Fit , chooses in each step the smallest feasible

color to the arriving vertex vi such that the coloring of the known induced subgraph

Gi = G[v1, . . . , vi] is a vertex ranking of Gi.

Theorem 4 The First-Fit ranking algorithm uses fewer than 3 log2 n colors on Pn

(n ≥ 2), independently of the order the vertices arrive in.

The exact determination of χ∗
r(Pn) remains an open problem. Also, it seems to us

that the characterization of on-line k-rankable graphs for k ≥ 4 becomes increasingly

complicated.
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2 On-line 3-ranking

In this section we prove the results concerning graphs with on-line ranking number 3.

The proof of Theorem 1 and the necessity for Theorem 2 is shown next, while the

sufficiency is deduced from the more general Theorem 3, discussed in the second

subsection.

Before giving those details, we note that the graphs P4, C4, and Sn belong to

R∗
3. Indeed, one can easily check that the First-Fit algorithm generates a 3-ranking

for both P4 and C4, for an arbitrary input sequence of the vertices. This is not valid

for stars, but in Sn one can assign color 2 to all v1, . . . , vi as long as these vertices

form an independent set. If vi+1 is adjacent to the previous vertex (i = 1) or vertices

(i ≥ 2), let it have rank 3. Obviously, all the remaining vertices (if any) may get

color 1, no matter whether vi+1 is the center or a leaf of Sn.

2.1 On-line 3-rankable graphs

In order to prove Theorem 1, we are going to verify some simple structural properties

of on-line 3-rankable graphs.

Lemma 5 If a connected graph G ∈ R∗
3 has maximum degree at least three, then

G is a star.

Proof. Assume, as a bad case, that the first two vertices v1, v2 in the input se-

quence are adjacent. If one of them, say v1, is assigned to color 1, it may turn out in

the next steps that v1 has degree ≥ 3 in G, and then all vertices adjacent to v1 must

get distinct colors. In this way the procedure would require more than three colors,

therefore any 3-ranking on-line algorithm must assign ϕ(v1) = 2 and ϕ(v2) = 3 (or

vice versa).

Suppose that G is not a star ; i.e., the vertex v of degree ≥ 3 does not cover all

edges of G. Let now e be an edge of G incident to a neighbor of v but not incident

to v itself. Define v1v2 := e and assume that v1 is colored by 2 and v2 is colored

by 3. Let v3 := v be a neighbor of v1. In this situation, v3 cannot get color 2 or

3, therefore ϕ(v3) = 1 should hold. But then, again, the (at least three) neighbors

of v3 must get mutually distinct ranks, implying the contradiction that G requires

more than three colors on-line. �

Lemma 6 P5, C5 /∈ R∗
3.

Proof. The assertion is clearly valid for the 5-cycle, because even the (off-line)

ranking number of C5 is 4. As regards P5, observe that its two endvertices cannot

get color 3, and the middle vertex cannot get color 2, in any ranking with three

colors. On the other hand, assuming that v1v2 is an edge, color 2 or 3 must occur,

and then the corresponding vertex can happen to be the middle or first/last vertex

of P5. �
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Proof of Theorem 1. Suppose that G ∈ R∗
3 is a connected graph. By Lemma 5,

if G is not a star, then it is a path or a cycle. But Pn and Cn are excluded for n > 5,

by Lemma 6, because already P5 itself excludes all longer paths and cycles. This

proves the assertion for n ≥ 4, while the smaller cases are obvious. �

Turning now to disconnected graphs, it is clear that the (on-line as well as off-

line) ranking number of any one connected component is a lower bound for the entire

graph. Therefore, the first condition in Theorem 2 is obviously necessary. Also,

matchings are on-line 2-rankable, implying the necessity of the second condition.

Proof of the necessity of (iii) in Theorem 2. Suppose that Sn (n ≥ 4) is a

connected component of a graph G ∈ R∗
3. We have to prove that neither P4 nor C4

is a component of G.

Let v1v2 be an edge. This edge may belong to a star component, therefore —

as we have seen in the proof of Lemma 5 — the only chance to color it with an

extendible partial 3-ranking is that the on-line algorithm assigns ϕ(v 1) = 2 and

ϕ(v2) = 3. Such an edge cannot occur in a C4, however, because C4 has a unique

3-ranking, and colors 2 and 3 must be antipodal in it. Also, in any 3-ranking of P4,

color 3 has to appear on one of the two internal vertices. But if P4 is a component

of G, then v2 may be an endvertex of this P4, contradicting 3-rankability. �

That the two conditions together are also sufficient will be proved in the next

subsection.

2.2 On-line 3-rankable classes

Here we prove that the two subclasses of graphs G ∈ R∗
3 containing either no P4

and C4 or no Sn (n ≥ 4) are on-line 3-rankable, even if the exact structure of the

input graph is not known. We handle the two cases separately, in the two lemmas

below.

Lemma 7 If G ∈ R∗
3 contains no Sn, n ≥ 4, then the First-Fit algorithm finds a

3-ranking on G.

Proof. As the First-Fit algorithm proceeds componentwise independently, it suf-

fices to verify the validity of the assertion for P4 and C4. In either case, color 4 is

not needed unless the first three vertices get colors 1, 2, 3. Moreover, one can check

that the color set {1, 2, 3} occurs only if the vertices of colors 2, 1, 3 form an induced

path in this order. But then the last vertex can get color 1. �

Lemma 8 The class {G ∈ R∗
3 P4 �⊆ G ∧ C4 �⊆ G} is on-line 3-rankable.

Proof. The on-line degree of the vertex vi, denoted d−(vi), is the number of vertices

adjacent to vi in the set {vj 1 ≤ j < i}. Consider the following algorithm.
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1. Every vertex of on-line degree 0 gets color 2.

2. If d−(vi) > 0, then ϕ(vi) = 3 if and only if all of its neighbors vj with j < i

have on-line degree 0.

3. All the other vertices get color 1.

We have seen already before Subsection 2.1 that the above procedure finds a 3-

ranking on each star component, and it obviously ranks properly the components of

orders at most 3 as well. �

Lemmas 7 and 8 together imply the validity of Theorems 2 and 3.

3 Greedy on-line rankings of paths

Here we prove an upper bound on the on-line ranking number of paths. Instead

of the input sequence, it will be more convenient to consider the vertices in their

order along the path. For this purpose, we shall denote them by u1, u2, . . . , un.

The color assigned to ui by the First-Fit algorithm will be denoted by c(u i). (This

color depends on the actual input sequence, but we do not indicate the latter in the

notation.)

Proof of Theorem 4. Let f(k) be the smallest integer such that the First-Fit

algorithm uses k colors on Pf(k) for some input sequence. It is immediately seen that

f(1) = 1, f(2) = 2, f(3) = 3, and f(k + 1) > f(k) for every k ≥ 4 ; in particular,

f(k) ≥ k for every k. For convenience, we set f(0) = 0. Our goal is to prove that

f(k) grows with an exponential function of k.

Consider Pn = u1u2 · · ·un for n = f(k). We assume that the vertices arrive in

a ‘worst ’ input sequence, i.e., each of the colors 1, 2, . . . , k gets assigned to some

vertex of Pn by First-Fit. Let p be the subscript with c(up) = k. Then color k

occurs exactly once, i.e., c(ui) ≤ k − 1 for all 1 ≤ i ≤ n, i �= p. Denoting by

P̃1 := u1 · · ·up−1 and P̃2 := up+1 · · ·un the two subpaths of Pn − up, let uq (ur) be

the vertex of P̃1 (of P̃2) colored with the largest number. We may assume, without

loss of generality, that c(uq) = k − 1. In this case, P̃2 may or may not be empty.

The following lemma will be of major importance. Its proof follows from the

strategy of the First-Fit ranking algorithm.

Cascade Lemma. Suppose c(ur) = k − d for some d with 3 ≤ d ≤ k. Then

there are vertices ui2 , ui3, . . . , uid�1
such that q < i2 < i3 < . . . < id−1 < p and for

2 ≤ j ≤ d− 1 we have c(uij) = k − j, and c(u�) ≤ k − j − 1 for all ij < � < p. �

Moreover, we derive the following estimations from the Cascade Lemma.
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Lemma 9 Set d := k − c(ur) or d := 0 if P̃2 is empty. It follows that

(i) p− 1 ≥ f(k − 1).

(ii) If d �= 0, then n− p ≥ f(k − d).

(iii) If d �∈ {1, 2, 3}, then p ≥ 2f(k − 3) + 3.

Proof.

(i) Notice that the colors of the vertices up, . . . , un have no influence on the col-

oring of P̃1 = u1, . . . , up−1 by the First-Fit algorithm. Thus |P̃1| = p − 1 ≥
f(k − 1) because P̃1 is colored with k − 1 colors by the algorithm.

(ii) The colors of u1, . . . , up have no influence on the coloring of P̃2 = up+1, . . . , un.

Thus |P̃2| = n − p ≥ f(k − d) because P̃2 is colored with k − d colors by the

algorithm.

(iii) There are integers s, t with q < s < t < p such that c(us) = k − 2 and

c(ut) = k − 3, otherwise up gets color k − 2 or color k − 3 by the algorithm.

Again the coloring of uq+1, . . . , up−1 does not depend on the coloring of the

remaining vertices. It follows that p−1−q ≥ f(k−2). By a similar argument,

for the coloring of us+1, . . . , up−1 we obtain p− 1− s ≥ f(k − 3).

Let ux be the vertex of u1 · · ·uq−1 which is colored with the largest color in

this subpath.

If c(ux) = k − j for some j ∈ {2, 3}, then q − 1 ≥ f(k − 3) and together with

p− 1− q ≥ f(k − 2) we have p ≥ f(k − 2) + f(k − 3) + 2 ≥ 2f(k − 3) + 3.

If c(ux) ≤ k − 4, then there is a vertex uy between uq and us colored with

k − 3 because otherwise uq gets color k − 3 by the algorithm. It follows that

s − 1 − q ≥ f(k − 3), and together with p − 1 − s ≥ f(k − 3) we have

p− q − 2 ≥ 2f(k − 3) and p ≥ 2f(k − 3) + 3. �

If d ∈ {1, 2, 3}, it follows from Lemma 9 (i)–(ii) that

f(k) = n ≥ f(k − 1) + f(k − 3) + 1 ≥ 2f(k − 3) + 3.

The same inequality follows from (iii) for the case d �∈ {1, 2, 3}. We conclude

f(k) + 3 ≥ 2 · (f(k − 3) + 3) ,

and therefore

f(k) ≥ 3 · (2k/3 − 1) > 2k/3

for k ≥ 2, by induction on k. Hence, if Pn (n ≥ 4) is colored with k colors by the

First-Fit algorithm, then k < 3 log2 n. This completes the proof of Theorem 4. �
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