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Abstract

We survey the literature on those variants of the chro-
matic number problem where not only a proper coloring
has to be found (i.e., adjacent vertices must not receive
the same color) but some further local restrictions are im-
posed on the color assignment. Mostly, the list colorings
and the precoloring extensions are considered.

In one of the most general formulations, a graph
G = (V,E), sets L(v) of admissible colors, and natural
numbers ¢, for the vertices v € V are given, and the ques-
tion is whether there can be chosen a subset C'(v) C L(v)
of cardinality ¢, for each vertex in such a way that the sets
C(v),C(v") are disjoint for each pair v, v" of adjacent ver-
tices. The particular case of constant |L(v)| with ¢, =1
for all v € V leads to the concept of choice number, a
graph parameter showing unexpectedly different behavior
compared to the chromatic number, despite these two in-
variants have nearly the same value for almost all graphs.

To illustrate typical techniques, some of the proofs are
sketched.
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0 Introduction

The key concept of this survey, list coloring, was intro-
duced in the second half of the 1970s, in two papers,
by Vizing [190] and independently by Erdés, Rubin and
Taylor [62]. Despite the subject offers a large number
of challenging problems, some of which appeared already
in [62], the vertex list colorings remained almost forgotten
for about a decade. The field started to flourish around
1990, and has attracted an increasing attention since then.
Most of the early questions have been answered, and new
directions have been initiated. But one of the innocent-
looking problems raised in [62] (Problem 1.5 below) is
still open, and in the particular cases for which affirma-
tive answers have been proved, we are still rather far from
a general solution.

The systematic study of precoloring extensions was
initiated about a decade after [62], in the paper by Bird,
Hujter and Tuza [18]. Some of its particular cases (mostly
in connection with edge colorings) appeared earlier in the
works of Burr [40], Marcotte and Seymour [145], and,
using a different terminology, in several papers on Latin
squares.

In this paper we summarize what is known so far on
these problems and in their ‘close neighborhood.” Sur-
veying this part of the literature, not only the strongest
results but also much of the history is presented. Some
typical techniques are illustrated by sketches of proofs.
Several open problems are mentioned, too.

We have to mention at this point that the class of hy-
pergraphs seems to offer a big unexplored area with many
interesting results to be discovered. And, in this con-
text as well, the intensively studied symmetric structures
(finite geometries, Steiner systems, balanced incomplete
block designs) may deserve more attention.

There are at least two previous works to be cited for
general reference on list colorings. The paper of Alon [4]
surveys the early results, presents some of the important
methods, and also contains several new theorems. More-
over, many aspects of list colorings, with lots of inter-
esting historical remarks and informative comments, are
discussed in various subsections of the excellent book by
Jensen and Toft [111].

Applications. Before giving the formal definitions, let
us mention that both L1IST COLORING and PRECOLORING
EXTENSION are well motivated, providing natural inter-
pretations for various kinds of scheduling problems; see,
e.g., [18, 19, 22]. As a matter of fact, the starting point of
the investigations on precoloring extension was the obser-
vation that, on interval graphs, it provides an equivalent
formulation of a practical problem where flights have to
be assigned to a given number of airplanes according to
the schedule of a timetable, under the additional condi-
tion that the fixed schedule of maintenances (prescribed
for each airplane) must not be changed. Further applica-
tions include issues in VLSI theory. The problem of T-
COLORINGS has important practical motivation as well,
from the area of frequency assignments to avoid interfer-

ences; see [89, 174] and the surveys [154, 155]. Precol-
oring extension also has some consequences on the non-
approximability of some scheduling problems [22]. More-
over, edge colorings of complete bipartite (and also of
complete) graphs have equivalent interpretations in terms
of Latin squares and rectangles. The extendability of par-
tial Latin squares has been studied extensively; we refer
to the survey [10] and the more recent paper [11] for ref-
erences in this part of the literature.

From the theoretical point of view, Vizing introduced
list colorings with the intention to study total colorings,
while Erdds, Rubin and Taylor took their motivation from
Dinitz’s conjecture on n X n matrices. Last but not least,
the idea of extending a partial coloring to a larger one
is a natural approach in various contexts where graph
colorings are constructed sequentially.

Related problems. At the end of this informal intro-
duction, let us say a few words also about three topics
that will not be considered here, despite they might have
fitted nicely in the context. First, we shall not deal with
problems in which some forbidding condition (e.g., the ex-
clusion of ‘being monochromatic’) is extended from ad-
jacent vertices to vertex pairs at larger distance apart.
These ‘distance colorings’ lead to interesting questions
and results, but usually may be viewed as colorings on
the kth powers of graphs, and so they are less ‘ restricted’
than the concepts discussed here. Second, in a more gen-
eral setting, the ‘ P-chromatic number’ of a graph can be
defined with respect to any hereditary property P. This
concept is discussed in detail in the paper [33], therefore
we shall only mention a couple of related references at
some points. Last but not least, we do not consider here
‘rankings,’ i.e., vertex (edge) colorings with positive in-
tegers in such a way that each monochromatic pair of
vertices (edges) is completely separated by the vertices
(edges) of greater colors. A large part of the literature
on rankings can be traced back from the relatively recent
papers [125] and [21]. The unpublished manuscript [184]
surveys many problems; we hope to polish this prelimi-
nary version for publication reasonably soon.

0.1 Standard definitions

A graph (meant to be undirected, without loops and mul-
tiple edges) or multigraph (undirected, without loops)
will usually be written in the form G = (V, E), where
V =V(G) and E = E(G) denote the set of vertices and
edges, respectively. The complement of G will be denoted
by G, the degree of vertex v by d(v) or dg(v) when the
particular graph H in which it is considered has to be
emphasized, and the mazimum degree of G by A(G) or
A. The cardinality |V of the vertex set is called the order
of G, and usually will be denoted by n. The parameters
(@) and w(G) denote the independence or stability num-
ber and the cligue number, respectively (i.e., the largest
cardinality of a subset Y C V consisting of mutually non-
adjacent resp. adjacent vertices). Standard notation is
applied for particular types of graphs, too, including K,



(complete graph with n vertices), K, , (complete bipar-
tite graph with vertex classes of respective cardinalities p
and ¢), P, (path of length n — 1), C,, (cycle of length n),
Sp (star of degree n — 1). Terminology not defined here
for particular classes of graphs and basic concepts can be
found e.g. in [15, 29, 72, 91, 142].

A proper vertex | edge / total coloring is a mapping
@ from the set V' / E / V U E into the set IN of natural
numbers, such that the first / the second / all the three
conditions below are satisfied :

o o(v) # (V') for all vertex pairs v,v’ € V with
w' € F,

e p(e) # p(e) for each pair e, e’ € E of edges sharing
a vertex,

o o(v) # p(e) forallv € V and all e € E with v € e.

Throughout the paper, the expressions ‘coloring’ and
‘proper coloring’ will be used as synonyms, except in the
few paragraphs where the ‘T-colorings’ are considered
(see the definition in Subsection 0.3). We shall mostly
deal with vertex colorings; the only exceptions are some
complexity issues (in Section 4) and the material pre-
sented in Section 3.3.

0.2 Notation for vertex colorings

Assuming that the vertex set is V = {v1,...,v,}, L; will
denote the list (= set of admissible colors) associated with
v;. For the union of the lists, we use the notation

L.=LU---UL,.
We also denote

L:= (le"'an)v

the (ordered) n-tuple of lists. A mapping ¢: V — IL is
a (vertex) list coloring, or an L-coloring, if ¢ is a proper
coloring and ¢(v;) € L; holds for all 1 < i < n. (In some
papers, the set of forbidden colors is given instead of the
admissible ones. Those sets may be viewed as comple-
ments of the L; with respect to IL.)

If |L;| = k for all 4, then L is termed a k-assignment.
The choice number of G (also called the list chromatic
number in the literature), denoted x,(G), is the smallest
k such that every k-assignment £ admits a list coloring.
For x,(G) < k, G is said to be k-choosable. Since the
identical lists (defining L; := {1,...,k} for all ¢) form a
particular k-assignment, it follows by definition that the
chromatic number x(G) of G' does not exceed x,(G).

The concept of precoloring extension lies between k-
colorability and k-choosability. In this problem, a vertex
subset W C V of the graph G = (V, E) is precolored with

ow: W —={1,...,k}

for some k € IN, where the mapping ¢y is not required
to be onto (and, in particular, W = () is also allowed),
and the question is whether G admits a proper k-coloring

that extends ¢y,. That is, a color should be assigned to
each precolorless vertex v; € V '\ W from the list L; :=
{1,...,k} (identical lists for the entire V' \ W) while the
colors L; := {¢w(v;)} of the precolored vertices v; € W
are unchangeable. The parameter k is termed the color
bound.

Finally, the coloring number of G, denoted col(G), is
defined as the largest integer k such that G has a subgraph
of minimum degree k — 1. Equivalently, col(G) is the
smallest k such that G is ‘ (k—1)-degenerate.” As a trivial
first remark, let us note that if v,, has more colors in its list
than the number of its neighbors, then G is list colorable
if and only if so is G — v,,. In this way, the inequalities

X(G) < x,(G) < col(G) < AG) +1

are valid for every graph G.

0.3 Some variations

Beside the concepts introduced above, at some points we
shall mention results on the following variants, too.

(f,g)-choosability. A more general setting for k-
choosability is as follows. Let f and g be two functions
from the same domain V' into IN, with f(v;) > g(v;) for
all 1 < ¢ < n. The graph G is said to be (vertex-) (f,g)-
choosable if, for every list assignment £ with |L;| = f(v;)
for all ¢, there can be chosen subsets S; C L; of cardi-
nality |S;| = g(v;), such that S; N'S; = 0 holds for every
edge v;v; € E. The constant functions are of particu-
lar interest; the case g = 1 is termed f-choosable, while
f=kand g =/¢with k,¢ € IN fixed will be referred to as
(k, £)-choosable. These concepts extend to edge and total
colorings in the natural way.

(p, q,7)-choosability. This type of list colorings is ob-
tained from the previous one by taking constant functions
f =pand g = ¢, and assuming that |L, U L;| > p+r
whenever v; and v; are adjacent. To exclude trivial un-
colorability, it is assumed that p > g and p+r > 2q.

List T-colorings. Given a set T'C INU {0}, a (vertex)
T-coloring of G = (V, E) is a mapping ¢: V — IN such
that |¢o(v;) — ¢(v;)| ¢ T holds for all edges v;v; € E. List
T-colorings are defined in the natural way, choosing each
color (v;) from the corresponding list L;. The T'-choice
number, i.e., the smallest k for which every k-assignment
of G has a list T-coloring, will be denoted by X(&\T(G)'
Note that a (list) T-coloring is required to be a proper

coloring if and only if 0 € T'; in fact, a list coloring is a
list T-coloring with 7" = {0}, and Xoir0y = Xe holds.

0.4 Small uncolorable graphs

We close this introduction with some simple examples ad-
mitting no list coloring, to illustrate the above definitions.

Example 0.1. The complete bipartite graph Ks 4 with
the lists {1,2} and {3,4} in the first vertex class and
{1,3}, {1,4}, {2,3}, {2,4} in the second class admits no



list coloring, hence it is not 2-choosable. Similarly, K3 3
with the lists {1, 2}, {1, 3}, and {2, 3} in each vertex class
has no list coloring, therefore it is not 2-choosable either.
On the other hand, it is easy to show that both graphs
are 3-choosable, thus x,(K2,4) = x,(K3,3) = 3 holds.

Example 0.2. One of the simplest non-3-choosable, pla-
nar, K -free graphs is obtained from Kj 153 by inserting a
matching of nine edges in the 18-element vertex class. De-
note these edges by e;;, where 1 <¢ < 3 and 4 < j <6.
Assign the lists {1, 2,3} and {4, 5,6} to the vertices in the
2-element class; and the list {4, j, 7} to both vertices of
each matching edge e;;. This 3-assignment admits no list
coloring.

Example 0.3. A non-3-choosable bipartite graph with
transparent structure is K7 7, e.g. with the lists {1, 2,3},
{1,4,5}, {1,6,7}, {2,4,7}, {2,5,6}, {3,4,6}, {3,5,7} in
each vertex class. These lists correspond to the seven
lines of the Fano plane, where the colors are viewed as
points. It is well known (and easy to see) that if a set T
of at most three points meets all lines of the plane, then
T itself is a line. Thus, in any selection of colors from the
above lists, either at least four of the seven colors occur
in each vertex class, or in one class the three colors of an
entire line are selected (and this line is a list in the other
class, t0o). In either case, some color is selected in both
classes, implying that no list coloring exists because the
corresponding two vertices are adjacent.

Example 0.4. Consider the list T-coloring problem on
K3 5 with lists {1, 2}, {1, 3}, {2, 3} in one vertex class and
{1,3}, {1,4}, {3,4} in the other class, where T = {2}.
Though 0 ¢ T, no feasible coloring exists. (Compared to
Example 0.1, the lists are now ‘shifted’ by 2 (mod 4).)
The graph remains uncolorable even if we remove the two

edges ({1,3},{1,3}) and ({2,3},{1,4}).

1 General results

In this section we review some of the most general facts,
walking around the subject from several different sides.

1.1 Equivalent formulations

Next, we present two types of reductions, taken from [18]
and [190], respectively. The first one shows in two steps
that the three problems of list coloring, precoloring exten-
sion, and chromatic number are quickly reducible to each
other. (In one direction it is obvious that, in general,
list coloring is hardest and chromatic number is the most
particular case, with all lists identical and having no pre-
colored vertices.) The second construction will establish
a relationship between list colorability and independence
number.

List colorings vs. precoloring extension. Assuming
that a graph G = (V, E') with a list assignment £ is given,
and that the union IL of the lists is the interval {1,...,k}

without any gaps, take k new vertices uq, ..., ux and join
u; with v; if and only if ¢ ¢ L; (1 <i <k, 1< j<n).
Then, forgetting about the list assignment, precolor the
vertex u; with color ¢, for alli =1, ..., k. This precoloring
of the larger graph is extendable with color bound & (i.e.,
without taking any new colors) if and only if G is list
colorable.

Precoloring extension vs. chromatic number. Let
the graph G = (V, E) with precolored set W and color
bound k be given. Assuming that W; C W is the (possibly
empty) set of vertices of color i for 1 < i < k, replace W;
by a new vertex u; (joining v; € V' \ W to w; if and
only if v; had at least one neighbor in W;), and make the
new vertices u; mutually adjacent, creating a complete
subgraph of order k. The modified graph has chromatic
number k if and only if the precoloring of G is extendable
with color bound k.

List colorings vs. independence number. Given
the graph G = (V, E) with a list assignment £, construct
the graph GOL with vertex set

V(GOL) :={(i,j) |vi € V,j € L;}

and join two of its vertices (¢, '), (i”, ") if and only if
they belong to the same vertex (i.e., 1 <i =4” <n) or
to the same color at adjacent vertices (j' = j” € Ly N L
and vyvyr € E).

Theorem 1.1. (Vizing [190]) The graph G = (V, E)
with lists £ admits a list coloring if and only if
a(GOL) = n.

As a matter of fact, slightly more is true; namely, there
is a bijection between the admissible list colorings and
the independent sets of cardinality n, as the vertex set
of GOL is partitioned into the n cliques induced by the
sets {(i,5) | j € Li}, 1 < i < n. Note further that if all
lists are identical, then the above construction results in
the known equivalent definition of the chromatic number,
stating that a graph G = (V, E) is k-colorable if and only
if the ¢ Cartesian product’ (also called ‘ box product’) of
G and K, has independence number |V].

1.2 Complete bipartite graphs and the
construction of Hajos

Next, we consider complete bipartite — and more gener-
ally, complete multipartite — graphs, present estimates
on their choice numbers, and show how they can be
taken as building blocks to construct all non-k-choosable
graphs.

We have already seen (cf. Examples 0.1 and 0.3) that
some bipartite graphs are not 2-choosable. As a matter
of fact, the choice number of K, ,, tends to infinity with
n, and its growth can be described fairly accurately along
the following observations of [62].

Denote by m, the minimum number of edges in an
r-uniform 3-chromatic hypergraph H, (i.e., |H| = r for
all H € H,, and in every vertex partition of H, into two



parts, at least one part contains some H € H,). View
the vertices of H, as colors, and assign the edges of H,.
to the vertices in each vertex class of K, ,,, for any n >
my, as lists. If there were a list coloring (in which no
color appears in both classes of K, ), it would yield a
2-partition of H, with no part containing any H € H,;
thus, x,(Kn,n) > 7. On the other hand, if 2n < m,, then
the lists in every list assignment on the vertices of K, ,
form some 2-chromatic hypergraph H, and from a proper
2-partition AU B of H, we can choose a color from A for
the vertices in one class of K, , and a color from B for
the other class. Thus, the smallest n = n, for which K, ,
is not r-choosable satisfies the inequalities

%m,x<nT§mT.

It is known (see [14, 59, 61]) that the growth of m, is
between r1/37¢ . 2" and r2 - 27, therefore we obtain

Theorem 1.2. (Erdds, Rubin, Taylor [62])
X, (Knn) = logyn + o(logn).

As n — oo,

Unequal vertex classes. The exact determination of
X, (Kp,q) secems to be hopeless. Already the simplest par-
ticular case of characterizing all pairs p, ¢ with 3-choosable
Ky 4, p < g, required much effort. A complete descrip-
tion can be obtained by combining the works of Mahadev,
Roberts and Santhanakrishnan [144] (p = 3, ¢ < 26, and
p =4, ¢ < 18), Fiiredi, Shende and Tesman [169] (p = 5,
¢ < 12), and O-Donnel [151] (p = 6, ¢ < 10).

A related problem is to determine the smallest ny,
k € IN, for which there exists a non-k-choosable K, , with
p + q = ng. By the observations above, ng < 2my holds,
and for small values the bound is tight: ne = 6 and n3 =
14 (the latter proved in [90], cf. Example 0.3). Hanson,
MacGillivray and Toft also give the recursive estimate
ne < knp_o + 2F which, for k even, provides a better
upper bound than the known ones for 2my, (e.g., ngy < 40
is obtained, while the currently best upper bound on my
is 23). Nevertheless, as sufficiently strong lower bounds
on my are not available, the equality of n; and 2my has
not been ruled out for any value of k so far.

For p much bigger than ¢, Hoffman and Johnson [98]
determine the choice number, proving that
X,(Epg)=q for (¢q-1)""'—(¢g-2)""'<p<q’
and that for p smaller, x, is smaller than g. (For p > ¢4,
the choice number is easily seen to equal ¢ + 1.) They
also study which list assignments are uncolorable when p
is at the two ends of the above interval. It is not known,
however, for which values of p the smaller ‘jumps’ in
X, occur as it grows from log, g to ¢ — 1 (for ¢ fixed).
For instance, if ¢ = 6, we obtain x,(Kpe) = 5 for all
125 < p < 5°—45—1 = 2100 (the construction for p = 125
is due to Eaton [54]), but it is not clear whether this is
indeed the entire range of p for x, = 5.

Complete multipartite graphs. More generally, de-
note by K.+ the complete r-partite graph with ¢ vertices

in each of its r classes. Alon [3] proves that there exist
positive constants ¢y, ca such that

cirlogt < Xg(Kr*t) < cyrlogt (1)

holds for every r and t.

Generating all non-k-choosable graphs. In his well
known paper [88], Hajés describes three elementary oper-
ations by the repeated application of which all graphs of
chromatic number greater than k£ can be obtained from
the complete graph Kj41. Gravier has proved that a sim-
ilar generating procedure can be applied for graphs whose
choice number exceeds k.
Consider the following three types of operations.

1. Add a new vertex or a new edge.

2. Let G1,G2 be vertex-disjoint, and z;y; an edge in
G;, i = 1,2. Identify 7 and z9, join y; with yo by
a new edge, and delete the edges x1y1 and zays.

3. If G has an uncolorable list assignment £ such that
|L;] > k for all 1 < ¢ < n and two nonadjacent
vertices vy, vy have the same list in £, then identify
(U1 with Vi .

Theorem 1.3. (Gravier [74]) Every non-k-choosable
graph can be generated by the above three operations
from any one non-k-choosable complete bipartite graph.

In this way, the role of complete graphs is taken by the
complete bipartite ones when x is replaced by x,. It
is interesting to note that, though there is an increas-
ing number of (inclusionwise) minimal complete bipartite
non-k-choosable graphs as k gets large, all of them are
equivalent from the generative point of view.

1.3 Typical behavior of the choice num-
ber

In this subsection we present asymptotic results on the
choice number of random graphs and random bipartite
graphs.

On one hand, putting r := x(G) and t := n, the
inequality (1) implies

X, (G) < ex(G)logn

for every graph of order n, for some absolute constant c.
On the other hand, the complete bipartite graphs K, ,
already show that this bound is tight (apart from the
actual value of ¢), and, in particular, the choice number
is not bounded by any function of the chromatic number.
In this setting it may be unexpected that, nevertheless, x
and x, have nearly the same value for almost all graphs.

Random graphs. Let p be a real number, 0 < p <
1. Denote by G, , the random graph on n vertices, in
which each unordered vertex pair v;v; is chosen to be
an edge with probability p, and these choices are made
totally independently of each other. The following result



for p = 1/2 is due to J. Kahn (its proof appeared in [4]);
the general case has been proved by Tuza and Voigt [182].
(The weaker upper bound of o(n), conjectured in [62], was
first proved by Alon [3].)

Theorem 1.4. For every fixed edge probability p,

X (Gnp) = (L+0(1)) - x(Gnp)

with probability 1 — o(1) as n — oo.

An important result of Bollobds [25] states that

WGy = (5 +00) (low 1 )

i.e., the expected value of the chromatic number asymp-
totically equals the order n divided by the expectation of
the independence number. As regards the choice num-
ber, one can prove that there exists a slowly decreas-
ing sequence €, — 0 (the appropriate speed of conver-
gence can be read out from numerical estimates of [25])
for which the following procedure successfully finds a list
coloring for any k-assignment with k = (1+¢€,) - x(Gn,p)-
As long as there exists an independent set S of at least
(1—e€),) - a(Gp,p) currently uncolored vertices and a color
i appearing in the lists of all vertices in S, assign i to
the entire S and remove i from all the other lists. On
the other hand, if such a large uncolored S does not exist
anymore, then, for every subset Y of the currently un-
colored vertices, the union of the modified lists belonging
to Y contains at least |Y| colors, thus the remaining lists
have distinct representatives by the Kénig—Hall theorem.

It remains an open problem to settle whether x(G,, )
and x,(Gn,p) have the same asymptotic behavior for every
‘reasonable’ edge probability function p = p(n). Neither
is it known how strongly x, is concentrated, and whether
X, > X holds with probability 1 — o(1).

Random bipartite graphs. FErdés, Rubin and Tay-
lor [62] investigated the random bipartite graph B,, , with
m = n/2 vertices in each class and with edge probability
p = 1/2 They proved the logarithmic growth of

logm
log 6

3logm
log 6

<X, (Bnp) <

with probability 1 — o(1) as m — cc.

1.4 Unions of graphs and the (am,bm)-
conjecture

In this section we deal with some problems and results
related to (k, £)-choosability. Perhaps the most challeng-
ing open question of this kind is the following one, being
unsolved for already almost two decades.

Problem 1.5. (Erdds, Rubin, Taylor [62]) If G is
(k,£)-choosable, does it follow that G is (km,fm)-
choosable for every m € IN?

It is widely believed that the answer is affirmative (justi-
fying the word ‘ conjecture ’ in the title of this subsection),
and almost all known proofs showing that a certain graph
is (k, 1)-chosable can be extended with little effort to ver-
ify (km,m)-choosability. Nevertheless, (k,£) = (2,1) is
the only case for which the implication formulated in
Problem 1.5 has been proved for all m and for all graphs G
satisfying the supposition (i.e., for all 2-choosable graphs).
This result, published in [186], can be extended to obtain
a reduction method as follows.

Theorem 1.6. (Tuza, Voigt [187]) Let £ be a k-
assignment on G = (V, E), and suppose that X C V
is a vertex set such that the edges incident to X form
a 2-choosable graph. Then, there can be chosen a color
o(vi) € L; for each v; € X, in such a way that

|L; N {e(vi) |vi € X,vv; € B} <1
holds for every v; € V'\ X.

If a set X C V with the above property exists in G and,
in addition, the induced subgraph G— X can be proven to
be (k — 1)-choosable, then the k-choosability of G follows
as well. The (km, m)-choosability of G can be deduced in
a similar way ; for instance, the (3m, m)-choosability of
the Petersen graph is obtained for every m € IN.

Graph union. One of the interesting consequences of
an affirmative answer to Problem 1.5 (if it holds true in-
deed) would be that the choice number is a submulti-
plicative function with respect to graph union. For the
time being, however, this can only be formulated as yet
another intriguing open problem.

Conjecture 1.7. For any two graphs G; and G2 on the
same vertex set,

X, (G1UG2) < x,(G1) x,(Ga) .- (2)

To see that the implication of Problem 1.5 would indeed
imply (2), assume x,(G;) = k; for i = 1,2. Starting with
any (k1 ko)-assignment of G1UG2, choose ko-element color
sets S; C L; such that S; and S; are disjoint whenever
v;v; € E(G1) — on applying that the k;-choosability of
G; implies its (k1k2, k2)-choosability as well — and then
find a list coloring of the ks-choosable graph Gs in the list
assignment (S7,...,S5,). (More generally, inserting the
edges of a (b, ¢)-choosable graph into an (a, b)-choosable
graph, we obtain an (a, ¢)-choosable one [62].) By the re-
sults cited above, the inequality (2) holds (with equality)
if at least one of the two GG; is 2-choosable.

Jensen and Toft [111] remark that so far (2) is not
confirmed even for the following rather simple particular
Suppose that G is bipartite, and substitute two
nonadjacent vertices for each vertex of G. (Each edge of
G becomes then an induced Cy.) Tt is easily seen that
the new graph G’ can be written in the form G; U G,
where G1 ~ G5 ~ 2@ ; it is not known, however, whether
X, (6 < (x, (G))2.

Let us mention here a further problem, that deals with
the union of three graphs.

case.



Conjecture 1.8. (Voigt [192]) Let G = (V,E) be a
graph with V' = V; UV, UV3 where Vi, V5, V3 are mutually
disjoint independent sets, and suppose that the subgraph
induced by V; UVj is 2-choosable for all 1 <7 < j < 3.
Then G is 3-choosable.

Recently, Voigt proved in [194] that those graphs are 4-
choosable, and more generally, (4m,m)-choosable for all
m € IN.

Though the inequality (2) has not yet been proved,
an upper bound on the choice number of the union of two
graphs follows from a result of Alon (Theorem 2.5, to be
discussed later).

Theorem 1.9. (Alon) There exists a function h: IN x
IN — N such that x,(G1UG2) < h(x,(G1), x,(G2)) holds
for any two graphs G, Gs.

The superexponential upper bound read out from Theo-
rem 2.5 is the best known general one, hence being very
far from quadratic (as expected).

1.5 Graphs and their complements

The well known theorem of Nordhaus and Gaddum states
that B

X(G)+x(G)<n+1
holds for every graph G on n vertices. As shown in [62],
this inequality can be strengthened to a far extent.

Theorem 1.10. (Erdés, Rubin,
graph G of order n satisfies

Taylor [62]) Every

X, (G) + x,(G) < col(G) +col(G) <n+1.

For a short proof, denote by d; the number of vertices
v; with j < ¢ that are adjacent to v;, and by d;" the
number of those v; with j > ¢ which are nonadjacent to
v;. Assuming that the vertices are labelled in a decreasing
order of degree, we see
di +df <n—-1 Vi>j.

(The inequality remains valid even if we replace d; and
g‘ by the degrees dg(v;) and dg(v;) in the entire G' and
G, respectively.) Moreover, since d; < i—1 and d;." <n—i
obviously hold, we also have

dy +df <i—14n—j<n—-1 Vi<j.

The combination of the above inequalities yields

X, (G) + x,(G) < col(G) + col(G)
< max; (d; + 1) + max; (d;r—|—1) <n+1,

proving the assertion.

The graphs attaining equality in the Nordhaus—
Gaddum theorem have been described (cf. [15]). On the
other hand, the following problem seems to be unsolved,
as well as its analogue for the coloring number.

Problem 1.11. Characterize the structure of graphs
G = (V, E) such that

3, (G) +x, @ = V] +1.
To see how small the sum x,(G)+Xx, (G) can be, consider
the complete r-partite graph G := K,..; of order n = rt,
with r := y/n/logn vertex classes and ¢t := /nlogn =
n/r vertices in each class. Applying the upper bound
of Inequality (1), we obtain that x,(G) = O(v/nlogn);
moreover, its complement G is just rK;, so that X, (G) +
x,(G) = O(v/nlogn). (This construction in [3] answered
a question of [62] in the negative.)

It is an open problem whether the factor v/logn is
necessary in the formula, or perhaps x,(Gn) + X, (Gp) <
¢y/n holds for an infinite sequence of graphs G, of order n.

2 Vertex degrees

In this section we discuss three main issues. The first
one is to investigate the possible extensions of Brooks’s
theorem for various types of choosability, i.e., to obtain
sufficient conditions in terms of vertex degrees for choos-
ing colors or color sets from the lists. The second one is
a lower bound on x,(G) as a function of the average de-
gree, a property in which the choice number significantly
differs from the chromatic number. The third and fourth
subsections are devoted to an algebraic approach invented
by Alon and Tarsi, that leads to sufficient conditions for
choosability, in terms of the existence of certain orienta-
tions on the edges.

The bounds on edge colorings are also strongly related
to vertex degrees, but we shall discuss them only later, in
Section 3.3.

2.1 The theorems of Brooks and Gallai

The inequality x,(G) < col(G) < A(G) + 1 yields an
obvious upper bound on the choice number. Certainly,
the bound is tight, and one nice class attaining equal-
ity is that of the chordal graphs. In fact, arranging the
vertices of a chordal graph in reversed simplicial order
U1,...,v, (i.e., where for each i < n, the neighbors v;
of v; with j < 4 are mutually adjacent), gives not only
a simple coloring algorithm, but also demonstrates that
the bounds obtained are best possible. In this way, one
can handle many situations, including (f, g)-choosability
and T-choosability as well (see e.g. [174, 175, 185]). For
instance, it is easy to show that denoting by w; the largest
number of vertices in a clique containing v;, every chordal
graph is (f, g)-choosable for f(v;) = mw; and g = m, for
all m € IN.

Similarly to the classic theorem of Brooks [38], the
previous upper bounds on the necessary length of lists
are hardly ever tight, and lists of lengths not exceeding
the vertex degrees suffice in most graphs. The first re-
sult of this kind is due to Vizing [190] who proved that
a connected graph of maximum degree A is A-choosable



unless it is K a1, or A = 2 and the graph is an odd cycle.
Erdés, Rubin and Taylor [62] and Borodin [30] strength-
ened this assertion, proving list colorability with lists of
lengths d(v;) for every vertex v;, provided that at least
one 2-connected block of the connected graph is not a
clique or an odd cycle. Tuza and Voigt [185] showed fur-
ther that, under the same structural condition, color sets
of cardinality m can be chosen whenever |L;| = md(v;)
for every v;. We summarize these results in the following
assertion.

Theorem 2.1. Let m € IN, and let G = (V, E) be a
connected graph. Suppose that £ is a list assignment
where |L;| > md(v;) for each v; € V. If

(i) |Li| > md(v;) for some v;, or

(ii) G contains a block which is neither a complete graph
nor an induced odd cycle,

then G admits a choice of an m-element C; C L; for each
i, such that C; N C; = 0 for all vv; € E.

Further generalizations are known for list T-colorings
(Waller [196], also making a distinction for the cases
where T is an arithmetic progression containing 0) and
colorings with respect to additive and hereditary graph
properties (Borowiecki et al. [35, 34]). The previous the-
orem does not hold true for infinite graphs, however, as
shown by the following class of examples. Take the count-
able star S* with center vy and leaves vy, v, ..., with the
list assignment Lo = IN and L; = {i} for all ¢+ € N,
and join vy with a vertex of a finite 2-connected graph G
which is neither a complete graph nor an odd cycle. If
the lists on G are larger than |V(G)|, then the conditions
of the theorem are satisfied in the graph composed from
S* and G, but no list coloring exists since already S™* is
uncolorable.

Critical graphs. A closely related classic theorem due
to Gallai [69] deals with the structure of subgraphs in-
duced by the set of vertices of minimum degree in a
color-critical graph. To generalize this result, call a graph
G = (V, E) critical with respect to a color assignment £
if it has no list coloring, but each of its proper induced
subgraphs does have one. Clearly, |L;| < d(v;) holds for
every vertex v; if G is critical. Call v; small if its degree
equals |L;|.

Theorem 2.2. (Kostochka, Stiebitz, Wirth [132]; Tho-
massen [178]) If the graph G is critical with respect to
the list assignment L, then each block of its subgraph
induced by the small vertices is a complete graph or an
odd cycle.

This result can be obtained directly from the proof of
Erdds, Rubin and Taylor [62], too; however, the new
proofs are much simpler. In fact, Gallai’s original method
[69] can also be applied. Moreover, for general graph
properties P, the variations [36, 146] of Brooks’s and Gal-
lai’s theorems can be extended to list P-colorings as well,

see [35]. The corresponding result for hypergraphs ap-
pears in [132].

There are several results concerning ‘critical
amenable graphs,” too, where the lists are supposed to
be nonidentical. See [39, 179] for further details and ref-

erences.

Sparse graphs. Perhaps the most involved theorems
concerning vertex choosability vs. vertex degrees are re-
lated to triangle-free graphs. The results summarized be-
low are proved by a heavy use of probabilistic methods.
The estimates nicely match with the general lower bounds
on the independence number, in terms of order and max-
imum degree ([1, 166, 167, 168]).

Theorem 2.3. Let G be any graph of maximum de-
gree A.

(i) If G has girth at least 5, then x,(G) < (1 +
ea) A/log A, where ex — 0 as A — oo (Kim [128]).

(i) If G is triangle-free, then x,(G) < cA/logA
for some constant ¢ independent of A (Johansson
[113]).

(iii) For every r € IN there exists a constant ¢, such that
if Gis K-free, then x,(G) < (¢, Aloglog A)/log A
(Johansson [114]).

Apart from a multiplicative constant, the upper bounds
in (i) and (ii) as functions of A are tight, since there exist
graphs of arbitrarily large girth with maximum degree A
and chromatic number c¢A/log A (see [24]). It remains
an open problem to prove the asymptotic bound of (i) for
the triangle-free case:

Conjecture 2.4. (Kahn, Kim [128])
graphs G of maximum degree A,

X, (G) < (1+0(1)) A/log A

For triangle-free

as A — oo.

For relatively small maximum degree A > 5 and suffi-
ciently large girth g with respect to A, the stronger ex-
plicit upper bound x, < A /2+2 was proved by Kostochka
[129, Remark 6]. It follows, in particular, that every graph
of maximum degree 5 and girth at least 35 is 4-choosable.

Almost disjoint lists. In the context of (p,q,r)-
choosability, upper bounds in terms of vertex degrees have
been derived by Kratochvil, Tuza and Voigt [138]. For in-
stance, it is shown by probabilistic methods that if the
lists are almost disjoint (say, r = p — ¢) then lists of
size 1/5.437 ¢ A(G) always admit a list coloring and this
bound is best possible for all ¢, apart from a multiplicative
constant.

2.2 Lower bounds on the choice number

The following result shows that x, is closely related to
the essentially local parameter of vertex degree. In this
respect it essentially differs from the chromatic number
which is a global graph invariant in nature.



Theorem 2.5. (Alon [4])

- k* k*

axa(’, Jos (2(}))
holds for the average vertex degree d := L (d(vi)+ ...
+d(vn)) of G, then x,(G) > k.

Let k € IN. If

The proof is probabilistic, performed in two main steps.
Start with a bipartite subgraph H C G of minimum de-
gree at least d/4, with vertex partition AU B, |A| > |B].
Simple calculation shows that selecting k-element lists
for the vertices of B from a k*-element color set IL ran-
domly and independently, each with probability (k,:) ,
the probability that all k-subsets of IL occur as lists in the
neighborhood of a vertex v is at least 1/2, for each v € A.
Call such a v good. We now fix a list assignment for B in
which at least |A|/2 vertices v € A are good, and choose a
k-subset of IL for each good vertex of A, again randomly
and independently. Since every coloring from the lists on
B uses at least k* — k4 1 colors in the neighborhood of a
good vertex, it is necessary for the colorability of H (and
hence of G, too) that the list of each good v € A contains
at least one of the remaining & — 1 colors. This can be
seen to have probability less than k=2, however, and thus
by the independent random choice, any one of the k!!
possible colorings of B has an extension on A with proba-
bility less than k—2141/2 < k=Bl Consequently, some list
assignment admits no coloring.

Approximability. One important consequence of The-
orem 2.5 is that the choice number can be estimated
within constant accuracy on every class of graphs where
X, 1s supposed to not exceed a fixed bound. This is ob-
tained by observing the additional facts that the coloring
number col(G) can be determined in linear time, and that
every graph of average degree t contains a subgraph of
minimum degree at least ¢/2.

Corollary 2.6. There exists a function ~: N — IN and
an algorithm A that finds, for every graph G = (V, E), an
s € IN'in O(|V| + | E|) steps such that s < x,(G) < h(s).

Taking h(s) = col(G), the above method yields that
h=1(x) can grow at least with the speed of log x/ loglog .

Unit distance graphs. Theorem 2.5 has several fur-
ther interesting corollaries. One on graph unions will be
discussed later, in Section 1.4. Here we mention a prob-
lem raised by Johnson [116] and solved by Jensen and
Toft [112].

The unit distance graph in IR? has the points of the
Euclidean plane as vertices, and two vertices are adjacent
if and only if their distance in the plane equals 1. The
chromatic number of this graph is known to be between 4
and 7. Jensen and Toft observe that the unit distance
graph contains a d-regular bipartite subgraph for every
d € IN, namely the d-dimensional cube Q¢ can be em-
bedded into it (e.g., translating Q° with a unit vector of
general position, we obtain Q**'). Since x,(G4) tends to

infinity with d by Theorem 2.5, it follows that the choice
number of the planar unit distance graph is infinite.
Making this assertion more precise, Schmerl [161]
proved that the choice number for IR? and IR? is count-
able, as well as the ‘rational distance graph’ in IR?; and
that these bounds are not valid in higher dimension.

2.3 Graph polynomials

The graph polynomial, also called the edge difference poly-
nomial, of a graph G = (V, E) is defined as

I @i—=)

i<j
viv;€E

PG = Pg(ml,...

7mn) =

for E # (. Assuming that the list assignment £ =

(L1,...,Ly) is given, the polynomials
Qi = Qi(z:) == [] (@i —0q)
q€L;
(for i =1,...,n) will also be of great importance.

The classical concept of graph polynomials was stud-
ied already in the 19th century, by Sylvester [173] and
Petersen [152]. (For more recent references, see [7, 58].)
In order to relate it to list colorings, Alon and Tarsi [7]
first observe (by applying induction on n) that the follow-
ing kind of ‘ Nullstellensatz’ is valid.

Lemma 2.7. Let P(x1,...,z,) be a polynomial of n
variables over the ring Z of integers, and suppose that
the degree of z; in P is at most d;. Let L; be any subset
of Z with cardinality |L;| = d; + 1, for 1 < i < n. If
P(x1,...,x,) = 0 for all n-tuples (x1,...,2,) € Ly X
-+« X Ly, then P =0.

From this lemma, several useful results can be deduced
for list colorings. The first one is an algebraic necessary
and sufficient condition for list colorability.

Theorem 2.8. (Alon, Tarsi [7]) A graph G with an
n-tuple £ of lists admits a list coloring if and only if
the graph polynomial P; does not belong to the ideal
Z(Q1, - .., Qn) generated by the polynomials Q.

To prove this assertion (in either direction), one ob-
serves first that, substituting the color of v; for x; in
Pg, the graph polynomial becomes zero if and only if
the color assignment is not a proper coloring. On the
other hand, choosing a color for each vertex from its
list, makes the value of each @; equal to zero, therefore
xLL"" can be expressed in the form Q; := 2o0<j<|Li] cijx
as long as we restrict ourselves to color assignments
taken from the lists. Substituting xLL"" by Q, repeat-
edly in Pg, eventually we obtain a polynomial, say Pg,
in which each x; has degree less than |L;|, and further-
more (Pg — Pg) € Z(Q1, . .., Q). By the small degrees,
Pc € Z(Qy, . .., Q) holds if and only if Pg = 0.

Now, if we assume that G admits no list coloring,
then Pg as well as Pg is zero on the entire Ly X - - - X Ly,



thus Pg = 0 and P € Z(Q1,...,Q,); and, conversely,
assuming Pg € Z(Q1,...,Qn), we obtain Pg = 0, thus
Pg(z1,...,2y) = 0 for all (z1,...,2,) € L1 X -+ X Ly,
and therefore G admits no list coloring.

Uniquely list-colorable graphs. Dinitz and Mar-
tin [49] analyze irreducible factors of the remainder Pg
of Pg modulo Z(Q1, . ..,Qy), with emphasis on the case
where G admits precisely one list coloring. For this pur-
pose, it is convenient to view Pg as a homogeneous poly-
nomial of degree |E| over the set LU{z1,...,2,} of vari-
ables. (Note that the substituting operation with respect
to the @; never destroys homogenity if also the colors are
treated as variables.) It is proven in [49] that if (G, L)
admits precisely one coloring, say (c1, ..., cy), then Pg is
the product of |E| linear factors, where each x; appears
on the power |L;| — 1, and the other |E| + |[V| = > |L;]
factors are of the form ¢; —c;. What is more, ¥ admits an
orientation E for which a subset E’ - E can be chosen,
|E'| = 32", (|Li| — 1), such that
IT @—cp)

Pc(xl, ce
1),;1)_7'65’

, Tn) (ci —¢j).

II

vV €E\E'

Since Pg has degree less than |L;| in each variable x;,
and all but one colors are infeasible at v; — setting Pg to
zero for each x; = ¢, ¢ € L; \ {¢;}, the first product can
be equivalently written as

[T teep=TI [T
1)«;1}_7‘EE’ i=1 iilgl

In particular, the formula establishes a bijection between
the edges of G and the irreducible factors of P, for each
uniquely colorable list assignment £ on G.

2.4 Orientations and FEulerian subdi-

graphs

In general, it is not easy to check whether Pg; can be
expressed in terms of a combination of the @); with poly-
nomial coefficients, therefore Theorem 2.8 is not a ‘ good
characterization’ in the algorithm-theoretic sense. One
can deduce a more explicit sufficient condition for col-
orability from it, however, with the help of orientations.
To formulate the result, call a digraph G Eulerian if the
in-degree equals the out-degree for each of its vertices.
(Hence, such a digraph is not required to be connected,
and it is allowed to have an arbitrary number of isolated
vertices, t00.) We denote by ee(G) the number of those
spanning Eulerian subgraphs of G which have an even
number of edges, and by eo(é) the number of those with
an odd number of edges.

Theorem 2.9. ([7]) Let agraph G = (V, E) with a col-
lection L of lists be given. If G has an orientation G such

that the out-degree of each vertex v; is at most [L;| — 1,
and ee(G) # eo(G), then G is L-list colorable.
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Call an orientation G of G even if it has an even num-
ber of edges v;v; with 4 > j, i.e., oriented from a vertex
of larger subscript to a smaller one; and call G odd if
the number of those backwards-oriented edges is odd. To
prove Theorem 2.9, one observes first that, writing Pg as
the sum of 2™ (m := | E|) monomials, there is a bijection
between those 2™ terms and the 2" possible orientations
of G. (In the factor (z; — x;) of Pg, choose z; if the edge
v;v; is oriented from v; to v;, and choose —z; if it is ori-
ented from v; to v;.) Hence, the monomials [/, z% are
in one-to-one correspondence with those orientations in
which the out-degree sequence is (di,...,d,,). Thus, the
coefficient of [, mf in the standard representation of
Pg equals the difference between the numbers of even and
odd orientations having out-degree sequence (d1, . .., dp,).

If two orientations él, ég have the same out-degree
sequence, then the set G 1 EBGQ of edges oriented differently
in G; and in G, is an Eulerian subgraph, and the parlty
of the number of its edges is even if both G1 and G2 are
even or both are odd, and the parity is odd if precisely one
of él and ég is even. Therefore, under the conditions of
Theorem 2.9, the coefficient of [];-, m in Pg is nonzero
(as the mapping G' — G ® G’ is a parity-preserving bi-
jection between orientations and Eulerian subgraphs if G
is even, and parity-changing otherwise). Since all terms
of P have degree m and every reduction step (by which
P is derived from Pg) decreases the degree of the mono-
mial to which it is applied, no new term [[!", x?i
occur during the reduction steps; and the original terms
[T, 2% in Pg are not modified because d; < |L;| is as-
sumed for all 1 < i < n. Consequently, Pg # 0, and thus
G admits a list coloring.

can

Orientations without odd circuits. An interesting
case, worth mentioning separately, is where eo(é) =0,
e., if no directed circuits of odd length occur in the ori-
entation. Since ee(G) > 0 (as the edgeless subgraph al-
ways is Eulerian), Theorem 2.9 implies that the maximum
out-degree plus 1 is an upper bound on the choice num-
ber. For eo(C_v") = 0, however, the algebraic machinery
is not needed, as an elementary proof works by applying
Richardson’s theorem [153]. This result guarantees that,
under the ‘no odd circuits’ assumption, G contains an
independent set S such that from each v € V'\ S there is
at least one edge oriented to some vertex of S. In such
orientations, the method of the proof described for The-
orem 3.12 finds a list coloring whenever the out-degree of
each vertex v; is smaller than |L;|.
In several situations, the following related observation
turns out to be useful.

Lemma 2.10. If G = (V,E) and d € IN such that, for
every ¢t < |V|, each induced subgraph on t vertices has
at most dt edges, then G has an orientation of maximum
out-degree at most d.

This assertion seems to have been in the folklore at
least from the second half of the 1980s; a proof can be
found in [7]. By the observations above, if G is bipartite,
then the lemma yields an orientation G with a guaranteed



upper bound not only on the maximum out-degree, but
also on the choice number.

Corollary 2.11. Every 4-regular bipartite graph is 3-
chosable. More generally, for all k,m € IN, every 2k-
regular bipartite graph is (km + m, m)-choosable.

Contrary to the algebraic proof of Theorem 2.9, these
ideas can be turned to a polynomial algorithm that finds
a list coloring when the relevant assumptions hold. On
the other hand, as noted by Jensen and Toft [111], there
seem to be no efficient algorithms known that find the
smallest possible maximum out-degrees in orientations G
with ee(G) # eo(G) or in those with no odd directed
circuits.

4-regular Hamiltonian graphs. One of the success-
ful applications concerns graphs with 3¢ vertices and 6¢
edges, whose edge set is the union of a Hamiltonian cy-
cle and t vertex-disjoint triangles. For such graphs, Du
and Hsu [52] conjectured that the independence number
equals t, and Erdés raised the problem whether they al-
ways are 3-colorable. This has been answered in the fol-
lowing stronger form.

Theorem 2.12. (Fleischner, Stiebitz [67]) If a directed
graph G is the edge-disjoint union of a Hamiltonian cir-
cuit and some mutually vertex-disjoint, cyclically oriented

— —

triangles, then ee(G) — eo(G) = 2 (mod 4), and, conse-

—

quently, the underlying graph of G is 3-choosable.

Without applying the algebraic machinery of Theo-
rem 2.9, Sachs [157] presents a purely combinatorial proof
for the weaker assertion of 3-colorability.

List T-colorings. Recently, Alon and Zaks [9] gener-
alized Theorem 2.9 for list-T-colorings. They consider
multigraphs G where each edge of G is replaced by
2|T| — 1 parallel edges if 0 € T, and by 2|T'| parallel edges
if 0 ¢ T. Then, if G™ admits an orientation G™ where
ee(G™) # eo(G™) and the out-degree of each vertex v; is
smaller than L;, then G admits a list-T-coloring.

3 Comparisons of coloring param-
eters

In the bulk of this section, we investigate graph classes
in which the choice number is not much larger than the
chromatic number. Classical examples of this kind are
the planar graphs, while a fundamental open problem is
related to line graphs. At the end, we discuss the rela-
tionship between subset choosability and the fractional
chromatic number.

3.1 Planar graphs

Planar graphs have always been special objects in the
study of graph colorings. The paper by Erd&s, Rubin and
Taylor [62], too, contained several challenging questions
about them. The answers (each found more than a decade
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later) and some further results are summarized next. One
may note at the beginning that x,(G) < 6 is easily seen,
because every planar graph contains a vertex of degree at
most 5, therefore col(G) < 6 also holds.

Theorem 3.1.

(i)

Every planar graph is 5-choosable (Thomassen
[176]).

There exists
(Voigt [191]).

(i)

a non-4-choosable planar graph

Every planar graph is (4,1, 3)-choosable (Kratoch-
vil, Tuza, Voigt [138]).

Every triangle-free planar graph is 4-choosable.

There exists a non-3-choosable triangle-free planar
graph (Voigt [193]).

Every triangle-free planar graph is
choosable (Kratochvil, Tuza, Voigt [138]).

(37 1a 2)'

(vii)

Every planar graph of girth 5 is 3-choosable (Tho-
massen [177]).

Every bipartite planar graph is 3-choosable (Alon,
Tarsi [7]).

(viii)

Further constructions for parts (ii) and (v) were found by
Gutner [82]. Moreover, as noted in [195], a construction
of [82] (as well as one of [195]) is a non-4-choosable planar
graph of chromatic number 3, having an uncolorable list
assignment on as few as |IL| = 5 colors. The currently
known smallest 3-colorable non-4-choosable planar graph,
with 63 vertices, is presented by Mirzakhani [148] (also
describing the interesting story of ‘teamwork’ how the
record of 63 has been achieved). In her construction, too,
an uncolorable list assignment with |IL| = 5 is given.

To (viii), one may note that K 4 is bipartite, planar,
and not 2-choosable. Furthermore, the k-choosability re-
sults (k = 3,4,5) extend to (km,m)-choosability for all
m € IN. In connection with (iii), the following problem
remains open.

Problem 3.2. ([138])
choosable ?

Is every planar graph (4,1,2)-

Moreover, Skrekovski asks concerning (vi) whether there
exist any planar, non-(3, 1, 2)-choosable graphs.

The proofs of the various upper bounds on the choice
number in Theorem 3.1 use quite different techniques.
Part (iv), that belongs to the folklore and seems to have
been first mentioned explicitly in [136], is just a simple
remark on applying Euler’s formula; (vii) requires a lot
of intermediate steps to verify; (iii), (vi), and (viii) are
based on the fact that the graphs in question admit an
orientation with maximum out-degree 3 and 2, respec-
tively (cf. Lemma 2.10); and the proof of (i) is already a
classic, that we present next.



The proof of 5-choosability. As the assertion is triv-
ial for graphs of order at most 5, one can apply induction
on n. We may assume that G is a 2-connected near-
triangulation, i.e. all of its internal faces are triangles.
Omitting colors from lists on the outer cycle C, the fol-
lowing induction hypothesis will be applied on the list
assignments: Two consecutive vertices v1, vy of C are col-
ored (i.e., |L1] = |L2| = 1) with distinct colors, lists at the
other vertices of C' have size 3, and vertices not incident
to C have lists of 5 colors each. If C is a triangle, one
can immediately reduce G by omitting v, ve, and their
colors from the lists of their neighbors (with just a little
more care if an internal vertex is adjacent to the entire
(). Hence, we assume |C| > 4.

If C has a chord, say v;,v; € V(C) are adjacent but
nonconsecutive on C, then {v;, v;} splits G into two parts
G1, G2, having the edge v;v; on their outer cycles, and one
of them, say G, contains the two colored vertices of C.
Finding a list coloring of G; by the induciton hypothesis,
v; and v; get colored on the outer cycle of Go, and then
(5 is also list colorable.

If C has no chord, consider the uncolored neighbor of
vg, say vs, and reduce its list to a 2-element subset Lj
not containing Ls. Since G is a near-triangulation and
|C| > 3, the neighbors of vz induce a path P from vs to
the uncolored neighbor v4 of v3 on C, and P is internally
disjoint from C' (as C has no chord); therefore, the lists
of size 5 on P can be reduced to 3-element lists disjoint
from L%. Finding a list coloring of G — v3 by induction,
vy is the unique vertex that can exclude one of the two
colors from L%, therefore G, too, is list colorable.

Defective colorings. Cowen, Cowen and Woodall [45]
consider vertex colorings ¢ which are not proper, but for
a fixed d € IN every vertex v has at most d neighbors
of color ¢(v). In the list coloring version, call a graph
(k, d)*-choosable if it admits such a coloring for every k-
assignment £. This concept was recently introduced in-
dependently and simultaneously by Skrekovski [170] and
Eaton and Hull [55]. In the manuscript [170], the follow-
ing collection of results is announced :

(i) Every planar graph is (3,2)*-choosable.
(ii) Every triangle-free planar graph is (3, 1)*-choosable.
(iii) Every outerplanar graph is (2,2)*-choosable.

(iv) Every triangle-free outerplanar graph is (2,1)*-
choosable.

The assertions (iii) and (iv) concerning outerplanar
graphs have also been proved by Eaton and Hull. Both
[170] and [55] ask whether every planar graph is (4,1)*-
choosable; if true, this would be an interesting general-
ization of a theorem of [45].

Answering a problem of [170] in the negative, Tuza
and Voigt have constructed 3-colorable planar graphs
which are not (3, 1)*-choosable. (One simple example is
27P; + 2K,.)
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3.2 Graphs with equal chromatic and
choice number

Beside the asymptotic results of Section 1.3, it would be
of great interest to know which conditions ensure that
the choice number equals the chromatic number. At the
current state of the art, however, it seems hopeless to
find a characterization theorem for graphs G satisfying

X, (G) = x(G).

Graphs of small chromatic number. Already the
case of 2-choosable bipartite graphs, settled by Rubin?!,
is not at all trivial. To formulate the result, define the
core of G the subgraph obtained by successively removing
vertices of degree 1 as long as such a vertex is present in
the current graph. Moreover, let us say for short that a
graph is a 6-graph if it consists of two vertices of degree 3
joined by three paths of respective lengths 2,2, 2m (m €
IN arbitrary) all internal vertices of which have degree 2.
(L.e., one edge of K3 3 is subdivided into an odd path.)

Theorem 3.3. (Rubin [62]) A connected graph is 2-
choosable if and only if its core is either a single vertex or
an even cycle or a 6-graph.

The smallest uncolorable 2-assignments of a non-2-
choosable graph require at most four colors in IL. Hoff-
man, Johnson and Wantland [99] observe that under the
additional condition [IL| < 3, the graphs K5 ,,—2 (and only
those) become 2-choosable, for all n.

It is worth noting here that the T-choice version of
list colorings seems to be much harder than the problem
for T'= {0}. Already for a subcase of k& = 2, namely for
cycles of even length, and for some rather restricted sets
T, unexpected difficulties arise.

Conjecture 3.4. (Alon, Zaks [9]) For every n,r € IN,
and for the set T'=1T, :={0,1,...,7},

4dn — 2
4n —1

In [9], the conjecture is proved for cycles of length four.
For a subclass of 3-colorable graphs, we mention the
following result.

Theorem 3.5. (Gravier, Maffray [75]) Suppose that
w(G) < 3 in the graph G = (V, E). If the edge set can
be partitioned into two sets F' U E” = E in such a way

that each induced Ps of G has precisely one edge in each
of E' and E”, then x,(G) = x(G) = w(G).

Further problems. Graphs with larger chromatic
number are considered in recent works by Gravier and
Maffray. In [76] they investigate graphs in which there
exists a k-coloring without color classes of more than 2
vertices. Corollaries are derived for claw-free graphs (i.e.,

! There are several important results in the paper [62] attributed
by its authors to A. L. Rubin who was working on his Thesis at that
time.



graphs containing no induced star of degree 3) of small or-
der, from which it follows that if G is the complement of
a triangle-free graph, then x(G) = x,(G). An interesting
related problem is

Conjecture 3.6. (Gravier, Maffray [75, 76]) If G is
claw-free, then x,(G) = x(G).

In some sense, this conjecture seems to be ‘too strong,’
and perhaps it would be worth making further efforts to
find a counterexample. On the other hand, if it turns out
to be true, then it implies the validity of the famous List
Coloring Conjecture, too. (The latter will be discussed in
the next subsection.)

Choice-perfect graphs. Motivated by the concept of
perfect graphs, one can define various types of ‘choice
perfectness,” and raise the following problem.

Problem 3.7. ([181]) Characterize those graphs G in
which x,(G’) = f(G’) holds for every induced subgraph
G’, where

(i) f(G) = x(G"),
(i) f(G") :=w(G").

The second property implies that G is perfect, but the
first one doesn’t ; for instance, the odd cycles are ‘ perfect’
in the sense of (i). Further choice-perfect classes will be
mentioned in the next subsection.

Concerining the equality x = x,, the following prob-
lem extends the famous Erdés—Lovéasz—Farber conjecture
(see e.g. [60, p. 26]) for choosability.

Conjecture 3.8. (Alon [5]) If G is the edge-disjoint
union of n complete graphs of order n each, then

X, (G) =n.

Kahn [124] has observed that a slight modification in the
proof of the main result in [122] yields x, = n + o(n)
for these graphs. From another point of view, motivated
by Theorem 2.9, Alon and Seymour [5] have proved that
such a graph always has an orientation with maximum
out-degree at most n — 1.

A theorem on matroids. In the context of x, = x, we
mention the following result of Seymour [164] who derives
it from the Matroid Union Theorem [57, 150]. Let M be a
matroid whose set X of elements can be partitioned into
k independent sets. If L, is a set with |L,| > k for each
x € X, then there exists a partition of X into independent
sets X;, 1 € UxEX L, such that ¢ € L, for all ¢ and all
r e X;.

It follows, in particular, that if the edge set of a graph
can be decomposed into k forests, and each edge is as-
signed to a list of k colors, then a color can be chosen
for each edge from its list so that no cycle is monochro-
matic. (Certainly, colorings obtained this way are usually
not proper edge colorings.)
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3.3 Edge and total colorings

There is a large number of results motivated by the List
Coloring Conjecture (Conjecture 3.10 below) which states
the equality x = x, for line graphs. In this subsection we
survey the results related to this problem, but in the more
convenient terminology of edge and total colorings, rather
than coloring line graphs and total graphs.

We shall use the following notational conventions,
analogously to vertex colorings.

Prime notation. The parameters corresponding to
chromatic and choice numbers for edge colorings are de-
noted in the same way, except that we write x’ instead of
X, as follows:

X' (@) = the chromatic index of G,

X' (G) = the edge choice number or list chromatic index
of G = the smallest k such that every k-assignment
L on the edges of G admits a list coloring.

These parameters are just the corresponding values of
X(L(G)) and x,(L(G)) of the line graph L(G) of G.

Double prime notation. The parameters for total col-
orings are denoted by x” with the analogous subscripts:

X' (G) = the total chromatic number of G = the smallest
number of colors in a proper coloring of V U E,

X;’(G) = the total choice number (or the total list chro-

matic number) of G = the smallest k such that every
k-assignment £ on V U E admits a list coloring.

The following lemma, the variants of which have been
observed by many authors, shows that total list colorings
are closely related to the edge choice number.

Lemma 3.9. For every graph G, XZ(G) < X;(G) + 2.

The key idea of the proof is to color the vertices first. This
can be done, for any k-assignment with k = X; (G)+2, by
the inequalities x(G) < A(G)+1 < X; (G)+2. Removing
the vertex colors from the list of each edge, at least X; (G)
colors remain in each list, so that a total list coloring
exists. In this way, every upper bound on the edge choice
number yields one on the total choice number as well.
As accounted in [86], the following problem has been
raised independently by several authors, including Vizing,
Gupta, Albertson and Collins, and Bollobds and Harris.

Conjecture 3.10. (List Coloring Conjecture) For
every multigraph G, X; (G) = X'(G).

A challenging related recent problem has been raised by
several authors independently (Borodin, Kostochka and
Woodall [32] ; Juvan, Mohar and Skrekovski [119] ; Hilton
and Johnson [95]). For general reference, we propose a
name for it.

Conjecture 3.11. (Total Choice Conjecture) For
every multigraph G, X;’(G) =x"(G).



Subdividing each edge of G into a path of lenght 2, we
obtain a graph H whose square H? is isomorphic to the
“total graph’ of G, so that x(H?) = x”(G) and XK(HQ) =
X"(G). In this direction, Kostochka and Woodall [133]
generalize the Total Choice Conjecture to the following
one, that we may call the ‘ Square Choice Conjecture’:
For every graph G, XZ(GQ) = x(G?).

Though the List Coloring Conjecture is still open in
general, considerable progress has been achieved. A triv-
ial upper bound is X;(G) < col(L(G)) < 2A(G). After
the subsequent improvements by Bollobds and Harris [26],
Chetwynd and Haggkvist [41] (for triangle-free graphs),
and Bollobds and Hind [27], Kahn [121, 122] proved the
asymptotic result

Y, (G) = At o(A)

by the ‘incremental random’ method, not only for all
graphs of maximum degree A(G) = A as A — oo, but
also for families of hypergraphs of maximum degree A
where each pair of vertices is contained in a sufficiently
small number (i.e., 0o(A)) of (hyper)edges with respect
to A.

So far the estimate with best known error term for
graphs seems to be

X, (G) = A+ 0(A%3\/log A),

proved by Héggkvist and Janssen [87]. They also prove,
by an involved application of Theorem 2.9, that

which is in fact best possible for n odd. A more restricted
version of list total colorings of K,,, where the number
of occurrences of the colors is also prescribed, is due to
Sun [172] (proving a conjecture of [41]).

Line graphs of bipartite graphs. The following cele-
brated theorem settles Conjecture 3.10 for all cases where
G is bipartite.

Theorem 3.12. (Galvin [70])
graph, then x| (G) = X/(G)

If G is a bipartite multi-
A(Q).

If G has no multiple edges, then the surprisingly simple
argument just combines the ‘ Stable Marriage Theorem’
of Gale and Shapley [68] and a useful idea of Bondy, Bop-
pana and Siegel [28], as follows. Start with a proper edge
coloring ¢’': E — {1,...,A(G)}. Denoting by X and Y
the two vertex classes of G, for each incident edge pair e, ¢’
with ¢'(e) > ¢(€’), orient the edge ee’ € E(L(G)) from e
to e ifene’ € X, and from €’ to e if eNe’ € Y. In this ori-
entation, the maximum out-degree is at most A(G) — 1.
Assuming that the out-degree of each e is smaller than
the number of colors in the list of e (which is certainly
the case at the beginning in any A(G)-assignment), the
following procedure successfully list-edge-colors G: Tak-
ing the colors ¢ € IL one by one, consider the set E; C E
of those uncolored edges whose lists contain 7. By [68], E;
contains a matching M; which is ‘absorbant’ in E;, i.e.,
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there exist edges oriented from each e’ € F; \ M; to some
e € M;. Assign color ¢ to the members of M;, remove
¢ from the lists of F; \ M;, and delete all edges oriented
from E; \ M; to M;. Since a list gets shortened only if
the corresponding out-degree is decreased, all lists remain
longer than the out-degrees, and eventually the entire G
becomes edge-colored. For multigraphs, one needs an ex-
tension of the Stable Marriage Theorem, which follows
immediately by a more general result of Maffray [143].

Earlier results and extensions. Galvin writes very
modestly in his Introduction: “The proof is very sim-
ple and uses no new ideas.” Nevertheless, his theorem
settles the long-standing conjecture of Dinitz (raised in
1978, also cited in [62]) which is just the rather particu-
lar case G = K, ,,. Before Theorem 3.12, Janssen [110]
solved the problem for all unbalanced complete bipartite
graphs, proving Xlz (Kpq) = max (p,q) for all p # ¢. (She
proved that, with a suitably chosen out-degree sequence
d, L(K, ;) admits just one orientation without cyclic tri-
angles, while the even and odd orientations — cf. the first
paragraph after Theorem 2.9 — containing at least one
cyclic triangle can be matched with each other by a bijec-
tion. Consequently, the monomial corresponding to d in
the standard representation of Pg has coefficient 1 or —1,
implying list colorability. This idea was developed fur-
ther in [87] for the proof of the upper bound Xlz (K,)<n
cited above, to match even and odd orientations which
are not transitive on some clique in a fixed clique decom-
position of a given graph.) Previous significant progress
was achieved by Haggkvist [84], for the case p < 2¢/7. A
self-contained presentation of the proof of Theorem 3.12
can be found in [171], and further sufficient conditions
for list edge colorability (where the conditions on the
edges are given by lists on the vertices, strongly moti-
vated by problems on Latin squares) have been published
by Haggkvist [85].

It is immediately seen that the (m A(G),m)-
choosability of the line graph of any bipartite multi-
graph G follows by the same argument for every m € IN.
Borodin, Kostochka and Woodall [32] extend this method
to prove that if each edge e = xy of G has a list of at least
max (d(x),d(y)) colors, then L(G) admits a list coloring.
<

Note further that Galvin’s theorem implies X;’ (@)
A(Q) + 2 for every bipartite multigraph G. It is conjec-
tured in [32] that a total list coloring exists already for
edge-lists of length A(G) + 1, provided that all vertices
have lists of A(G) + 2 colors. The converse (when only
the vertex-lists are shortened to A(G) + 1) always admits
a list coloring, as shown above.

Nonbipartite multigraphs. Multiple edges seem to
create lots of extra difficulties. Until quite recently, the
only improvement on the trivial upper bound of 2A was
Hind’s unpublished inequality X; <9A/5 in [97].

Theorem 3.13. (Borodin, Kostochka, Woodall [32])
Let G = (V, E) be a multigraph, and suppose that the
list of each edge e = zy € E contains at least

max (d(z),d(y)) + | 4 min (d(z), d(y))]



Then G admits a list coloring.

colors.
V(G) < [2A(0)].

In particular,

This result immediately implies Shannon’s tight bound
[165] on the chromatic index of multigraphs of given max-
imum degree. Moreover, X;’(G) < [3A(G)] + 2 also fol-

2
lows. However, this bound may not be tight :

Conjecture 3.14. ([32]) If G is a multigraph of max-
imum degree A > 4, then X;’(G) < [2A[. Moreover,
if G is connected, not complete and not an odd cycle,
then every list assignment with edge-lists of size {BAJ

2
and vertex-lists of size A is colorable.

List coloring analogues of several further questions can
be raised, for instance whether X; < A+ p+ 1 where p
denotes the maximum edge multiplicity (conjectured in
[119]), or whether XIZ(G) does not exceed the largest of
A(G) and

A'(G) := max { |2‘E(H)‘

vanrer | H € G, |V(H)| odd}

(cf. [122, p. 12]). Explanation for the latter formula is
that for multigraphs G, the fractional chromatic index
X;*(G) equals max {A(G), A'(G)}, by the Matching Poly-
tope Theorem of Edmonds [56] (cf. e.g. [162]). This bound
is asymptotically valid :

Theorem 3.15. (Kahn [123])
graphs G,

For the class of multi-

X, (G) = (1+o(1)) max {A(G),A'(G)}
as A — oo.

An attractive conjecture of Kahn [122, 123] states that
the asymptotic equality of the edge choice number and
the fractional chromatic index remains valid for r-uniform
hypergraphs (or hypergraphs with maximum edge size r,
possibly with multiple edges) as well, for every fixed r €
IN, as, say, X; gets large.

Some upper bounds on Xlz and X/z/ in terms of A plus
the mazimum local average degree are presented in [32].

Regular graphs of class 1. Developing the algebraic
method (cf. Sections 2.4 and 2.3) further, Ellingham and
Goddyn [58] analyze the combinatorial meaning of the
coeflicients of the monomials in the expansion of the graph
polynomial. Some of their results are summarized in the
next theorem. In its second part, ‘Kempe recoloring’
means that in a proper edge coloring we interchange the
two colors on a 2-colored cycle, and repeat this operation
an arbitrary number of times.

Theorem 3.16. (Ellingham, Goddyn [58]) Let G be a

d-regular multigraph with x'(G) = d. If

(i) G hasan odd number of edge colorings with d colors,
or

(ii) any two of its edge d-colorings have a Kempe recol-
oring to each other, or
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(iii) G is planar,
then X;(G) =d.

The third part states that a d-regular planar multigraph
has X/z (G) = difand only if x'(G) = d. For the case of d =
3, this yields that the Four Color Theorem is equivalent
also to the assertion that every planar 2-connected cubic
graph is 3-edge-choosable. As noted in [58], this follows
already from the results of Scheim [160], that can in turn
be deduced by combining a theorem of Vigneron [188] (cf.
also [107]) with some ideas of Alon and Tarsi [7].

Taking another view on graphs embedded in the
plane, projective plane, torus, and the Klein bottle,
Borodin, Kostochka and Woodall [32] provide sufficient
conditions for the equalities X, (G) = A(G) and ) (G) =
A(G) + 1 in terms of combinations of girth and maxi-
mum degree, extending the earlier results and methods of
Borodin [31]. The larger girth, the smaller vertex degree
suffices. We recall here the case with unrestricted girth.

Theorem 3.17. ([32]) If a graph G of maximum de-
gree A(G) > 12 is embeddable in a surface of nonneg-
ative characteristic, then XIZ(G) A(G) and X;’(G)
A(G) + 1.

The equalities X; X' and X/z/ = " for outerplanar

graphs have been proved by Juvan and Mohar [117].

The upper bound of A+1. Most of the results above
verify the List Coloring Conjecture for some graphs with
x' = A. Concerning the other case, x' = A + 1, Juvan,
Mohar and Skrekovski study the problem for small maxi-
mum degree. They note that the upper bound Xlz (G) <4
for (simple) graphs with A(G) < 3 is implied by the choice
version of the Brooks theorem (indeed, to create K, in a
line graph would require a vertex of degree at least 4 or
a triangle with a multiple edge), and prove in [118] the
stronger assertion that if a subgraph E’ C E of maximum
degree 2 has lists of size 3 and the edges of F \ E’ have
lists of size 4, then G is list colorable. Subsequently, they
prove in [118] that every graph of maximum degree 4 is
5-edge-choosable. Their method is strongly based on the
treatment of so-called ‘ half-edges’ (those incident to just
one vertex), to which shorter lists are assigned, and so an
inductive proof becomes possible by cutting off a suitably
chosen small subgraph.

For unrestricted maximum degree, Kostochka [130]
proved that if G contains no cycle shorter than 8A(log A+
1.1), then X;(G) <A+1

3.4 Choice ratio and fractional chromatic
number

Motivated by Problem 1.5, the study of the set
CH(G) := {% | G is (k, £)-choosable}

leads to some interesting observations. It was first proved
in Gutner’s Thesis [81] (cf. also [4]) that the elements of
CH(G) can be arbitrarily close to x(G).



The concept of fractional chromatic number admits a
further strengthening in this assertion. Denote by S the
collection of all independent sets in G, and consider

X(G)i=inf > 9*(S),

where the infimum is taken over all functions
'S - R
satisfying the condition

d e >1

ses

v; €S
for every vertex v; € V. One can show that the infimum
is in fact attained as minimum, and x*(G) — termed the
fractional chromatic number of G — is a rational number.

Theorem 3.18. (Alon, Tuza, Voigt [8])
graph G,

For every

inf{r e CH(G)} =min{r €e CH(G)} = x"(G).

Choosing {-element color sets C; C L; from a k-
assignment £ of G, and defining ¢*(S(j)) := 1/¢ for each
j € IL, where S(j) := {v; |j € C;}, a fractional coloring
of G with value k/{ is obtained, proving that x*(G) is a
lower bound. The other direction for the infimum is not
hard to prove by probabilistic methods; and for the min-
imum it can be deduced from a theorem of Huckemann,
Jurkat and Shapley (mentioned in [73] and proved also
in [6]) by showing that for every fixed ¢ and r, if the edge
size of a uniform hypergraph with ¢ edges is divisible by a
suitably chosen integer, then the hypergraph admits a ver-
tex partition of ‘ zero discrepancy’ (i.e., equi-partitioning
each edge) into r classes. This argument also yields that
the minimum is attained for infinitely many pairs (k, ).
We note further that the result remains valid in a very
general setting, for induced hereditary properties [147].

Theorem 3.18 yields that the implication given in
Problem 1.5 is valid for infinitely many m, for every fixed
pair (k,¢) with k/¢ € CH(G). Moreover, consequences
for the 3-chromatic graph described in Conjecture 1.8 fol-
low, too.

The sufficient value obtained from hypergraph theo-
retic methods for the smallest pair (k,¢) attaining x*(G)
is rather large; the next example shows that it can be the
smallest one expected.

Example 3.19. The equality x*(Cory1) = 241/t is easy
to see. The following short argument shows that Co;11 is
(2t + 1,t)-choosable for every t € IN. Assuming that the
vertices vy,...,v941 are labelled consecutively along the
cycle, suppose that {1,2,...,2t4+ 1} C L in the (2t + 1)-
assignment £, and that each color j > 2¢ + 1 is missing
from at least one list. Remove the color i from L; ifi € L;,
and remove an arbitrary color otherwise. The consecutive
occurrences of any one color induce subpaths P in the
cycle. Select this color for the 1st, 3rd, 5th, ... vertices
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of P (proceeding clockwise), delete it from the 2nd, 4th,

. lists, and also delete the edges incident to a v; when
already t colors have been selected for v;. Repeating this
procedure for each color and each possible P sequentially,
a subset of ¢ colors will eventually be selected for every
v; because only those (at most) ¢ colors get deleted from
the shortened list of size 2¢ which have been selected for
Vi—1-

As regards bipartite graphs, Tuza and Voigt [185] showed
that K4 is (2m,m)-choosable if and only if m is even,
and more generally they proved that the same property
holds for every minimally non-2-choosable bipartite graph
(unpublished, 1995).

3.5 The chromatic polynomial

Given a graph G = (V,E) and a list assignment £ =
(L1,...,Ly), denote by f(G, £) the number of £-colorings
¢: V — IL. Kostochka and Sidorenko [131] proposed the
problem of studying the function

F(G,k) = min
Ll == L=k

f(G, L),

i.e., the minimum number of L-colorings taken over all
k-assignments £. (The maximum would obviously be k™,
for all k € IN.)

Denoting by P(G, k) the chromatic polynomial of G,
it is clear by definition that F'(G, k) < P(G, k) holds for
every G and every k, and the non-k-choosable k-chromatic
graphs show that in some cases this inequality is strict.

Theorem 3.20. (Donner [50]) For every graph G there
exists an integer ko = ko(G) such that

F(G,k) = P(G,k)
holds for all integers k > k.

The starting point of the proof is an observation that al-
lows us to compute f(G, L) recursively for every £ (not
only for k-assignments). For any e = v;v; € E, denote by
G/e the graph obtained by contracting e (i.e., replacing v;
and v; by a new vertex v and joining v’ to each vertex ad-
jacent to at least one of v; and v;) and G—e := (V, E\{e}).
For G/e, define the list assignment £/e to be identical to
L on V\{v;,v;}, and L, := Ly N L; for the contracted
vertex. One can see that that

(G L)=[f(G—eL)=f(G/e L]e)

holds for all G, £, and e € E. To prove f(G, L) > P(G, k)
for every k-assignment £, Donner considers a computa-
tion tree based on the above recursion, and makes esti-
mates on the values at its leaves (each leaf is an edgeless
graph). The partial sums of those values are analyzed by
distinguishing between the leaves according to the num-
ber of contractions on the computation tree from the root
to the leaf in question.

Problem 3.21. For which graphs G is the function
F(G, k) identical to the chromatic polynomial P(G,k)?



Kostochka and Sidorenko [131] have observed that this
equality holds for all chordal graphs; on the other hand,
it obviously does not hold for any G with x,(G) > x(G).
In the latter case, it follows by Donner’s theorem that
F(G, k) is not a polynomial. (Since F(G, k) and P(G, k)
coincide on all sufficiently large values of k, the former is
a polynomial if and only if it is identical to the latter.)

4 Algorithmic complexity

In this section we discuss some algorithmic results. For
terminology not introduced here concerning algorithmic
complexity, we refer to [71] or the more recent book [37].

Note first that, since CHROMATIC NUMBER is a par-
ticular case of LIST COLORING (as well as of PRECOLOR-
ING EXTENSION), in general the NP-completeness of the
latter follows from that of y immediately. On the other
hand, though the reductions presented at the beginning
of Section 1 imply that these problems are equally hard
as long as the class of all graphs is considered, this is not
necessarily the case anymore for many nicely structured
subclasses.

For convenience, let us formulate the algorithmic
questions as decision problems. Keeping previous nota-
tion, the vertex set will be assumed tobe V- = {vy1,...,v,}
throughout. We shall first consider

PRECOLORING EXTENSION (PREXT):

Instance: Graph G = (V,E), subset W C V of precol-
ored vertices, precoloring ¢, : W — IN, color bound k.

Question: Does there exist a proper coloring ¢ with at
most k colors such that ¢(v) = gy (v) for allv e W?

For lists of equal size, the problem is

k-LisT CoLorING (k-LC):

Instance:
(Lq,...

Question:

Graph G = (V,E), list assignment L =
,Lyp), with |L;| =k for all 1 <i <mn.

Does £ admit a list coloring on G 7

The general case, where no restriction is put on the
lengths of the lists, will be called LisST COLORING, abbre-
viated LC.

k-CHOOSABILITY (k-CH):

Instance: Graph G = (V,E).

Question: Does G have a list coloring for every k-
assignment, £ ?

Obviously, the first two problems belong to the class
NP. On the other hand, it will turn out that k-CH is
located higher in the hierarchy of complexity classes. (A
well known fundamental open problem is whether or not
those types of complexity are indeed distinct.)
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We shall proceed in the order of increasing difficulty,
considering PREXT first, also presenting the known trans-
parent necessary and sufficient conditions; the complex-
ity of k-LC and the results related to k-CH will be dis-
cussed in the third and fourth subsections. Finally, we
shall discuss results on graph coloring games.

Before the results on restricted graph classes, we
quote a theorem on the running time of general list col-
oring algorithms.

General upper bounds. The chromatic number of a
graph is a hard-to-estimate parameter, and all known al-
gorithms determining it exactly run in exponential time
with respect to the number n of vertices (even when
the graph in question is supposed to be 3-colorable). In
particular, Lawler [140] proposes an inductive algorithm
that computes the chromatic number of G and of all its
induced subgraphs, where the total number of steps is
bounded above by (1/3+1)" times a polynomial of n. The
method is based on the theorem of Moon and Moser [149)
who proved that no graph of order n can have more than
3"/3 independent sets maximal under inclusion. (One also
needs the fact that the maximal independent sets can be
listed efficiently, see [180, 115].) Variants of this result,
e.g. those in [104] and [65], enable us to improve on the
guaranteed running time of coloring algorithms when re-
stricted classes of graphs are considered. What is more,
Lawler’s method can be extended for list colorings as well,
and the following result is valid.

Theorem 4.1. (Hujter, Tuza [106]) There exists a
polynomial p(x) and an algorithm A such that, for ev-
ery graph G = (V, F) and every list assignment L,

(i) the algorithm A decides in at most p(|V])-|IL|-(V/3+
1)Vl steps whether or not G is list colorable;

(ii) if G is triangle-free, then (¥/3+1)!VI can be replaced
by (v/2+ 1)Vl in the upper bound;

(iii) and, for every fixed t € IN and £ > 0, there is an
no = no(t,e) such that (/34 1)Vl can be replaced
by (1+¢)!VI for every graph of order |V| > ng that
contains no induced matching of ¢ edges.

The above bounds are similar to those for the chromatic
number, the only difference is the (necessary) presence of
the factor |ILJ.

4.1 Precoloring extension

Below we summarize the known results, grouped accord-
ing to graph classes. To make more sensitive distinc-
tions, in some cases we shall impose restrictions on the
precolored set W, too. For convenience, we shall assume
that the monochromatic subsets of W are W1, Wy, ..., Wy
(some of them may be empty), and that they are labelled
in a decreasing order of cardinality, |Wy| > ... > |[Wy|.
The case of Wi = () leads to the complexity of CHRO-
MATIC NUMBER, the literature of which will not be sur-
veyed here; i.e., we assume |W7| > 1 throughout. Unless



otherwise stated, the given time complexity refers to the
original PREXT problem; ‘linear’ means O(|V| + |E|).
The graph is said to be F-free if it contains no induced
subgraph isomorphic to F.

Bipartite graphs: NP-complete in general [103], also
for |W| = 3 [22], on planar bipartite graphs with
k = 3 and on Py4-free bipartite graphs with k£ = 5
[134], Ps-free bipartite graphs with unbounded k
[105]; linear if k = 2 (trivial), on Ps-free bipartite
graphs for any k [105], and on trees and forests
105, 109].

Line graphs: NP-complete on line graphs of complete
bipartite graphs [42]; polynomial on line graphs of
multiforests [145].

Split graphs and complements of bipartite graphs:

polynomial, of the same complexity as BIPARTITE
MATCHING, apart from a multiplicative constant
[105] (fastest known algorithms of O(n*?%), see
e.g. [101]).

Interval graphs: O(n?) if |IW;| = 1, and NP-complete
if just |W3| = 2 is assumed [19].

P,-free graphs (cographs): linear [17, 105, 109].

Permutation graphs: already for

Wi =1 [108].

NP-complete,

Complements of Meyniel graphs: polynomial if
|[W1| =1 [105], by the results of Hertz [93], apply-
ing the algorithms of Groétschel, Lovasz and Schri-
jver [78, 79]. (A graph is said to be a Meyniel graph
if each of its odd cycles of length > 5 contains at
least 2 chords.)

Perfect graphs: polynomial if W5 = () and |W| < 1,
and NP-complete otherwise [135].

The NP-completeness for |[Ws3| > 1 or |Wa| > 2 on
perfect (more explicitly, on bipartite) graphs follows im-
mediately from the results of [22, 134] for k = 3. On
the other hand, as mentioned in [105], the complexity
of PREXT is not known for several graph classes whose
structure is well understood, e.g. for unit interval graphs ;
neither PREXT with the additional condition |W;| = 1
for chordal (and, in particular, strongly chordal) graphs.
Here is another innocent-looking related problem :

Conjecture 4.2. (Woeginger [197]) On planar bipar-
tite graphs, PREXT with & = 3 and |Wi| = |Wa]
|W3| = 1 is solvable in polynomial time.

Woeginger notes that the condition |W;| = 1 makes the
problem straightforward to solve on this restricted class
for any other color bound. The polynomial instances will
be discussed further in the next subsection, where struc-
tural characterizations will be given for the extendability
of precolorings.
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Distance constraints on W. Thomassen [178] proved
for planar graphs G that if k£ > 5 and the vertices of W
are sufficiently far apart (with respect to |IW|), then every
k-coloring of W can be extended to that of the entire G.
This result has recently been strengthened considerably
by Albertson [2], proving that a percoloring is extendable
in either of the following cases:

(i) k> x(G) and the distance between any two precol-
ored vertices is at least 4

(ii) & > x,(G) and the distance between any two pre-
colored vertices is at least 3.

In particular, in a planar graph, distance 4 and 3 suf-
fices for the extendability of a partial 5-coloring and 6-
coloring, respectively. Albertson proves analogous results
for the more general case, too, where W induces the union
of vertex-disjoint cliques of sufficiently large mutual dis-
tances.

One of the interesting questions raised in [2] is
whether or not distance constraints have similar conse-
quences for list colorings. That is, if W is precolored,
lists of given length k > X, are associated to the precol-
orless vertices, and we wish to extend the precoloring of
W to a coloring of the entire graph by choosing a color
from each list, how large should then be the distances
between the vertices of W7 In particular, what is the
smallest distance (if any) that suffices for planar graphs
and lists of length 57

Undecidable problems. Here we mention some re-
sults on infinite graphs. Similarly to the finite case, one
can ask whether a given precoloring on a finite subgraph
is extendable to a proper k-coloring of the entire graph,
with fixed color bound k.

Burr [40] investigates this problem for a class of
graphs of fairly transparent structure, called doubly-
periodic graphs. The vertices of such a graph G are
labelled vije (1,5 € Z, £ € {1,...,n}), the subgraphs
induced by {vij1,vij2,...,vijn} — called cells — are iso-
morphic for all pairs 4, j, any other edge joins neighboring
cells (i.e., cells whose 7 and j differ by at most one), and
both mappings ¢ — i+1 and j — j+1 are automorphisms
of G.

It is proved in [40] that, for every color bound k > 3,
there exists a doubly-periodic planar graph G of maxi-
mum degree 4 and a finite precolored set such that it is
undecidable whether the precoloring can be extended to
a k-coloring of G. Dukes, Emerson and MacGillivray [53]
generalize this result to homomorphisms G — H (Burr’s
theorem deals with H = K}). They prove undecidability
for every finite, non-bipartite H, and for several finite bi-
partite graphs H, too; e.g., for H containing a cycle C
of length at least 6, such that there is a homomorphism
h: H — C with h(v) = v for all vertices v of C'. Tt remains
open, however, to characterize which H make the prob-
lem undecidable (and, in particular, to prove or disprove
decidability if H is a tree).



4.2 Good characterizations

There are some transparent conditions that can be
checked efficiently on fairly large graph classes and pro-
vide good characterizations for the polynomial instances
listed above. Most of them are collected in the paper by
Hujter and Tuza [105]; and an efficient general method
for perfect graphs with restricted precolorings has been
developed by Kratochvil and Sebd [135].

Core Condition. A nonempty set U of pairwise ad-
jacent precolorless vertices is called a g-core if there are
at least ¢ — |U| distinct monochromatic classes W; C W
such that each vertex u € U has at least one neighbor
in each of those W;. If |U| = 1, then U is also called an
elementary g-core. The Core Condition requires that the
precoloring of G contains no (k + 1)-core.

Sequence Condition. Starting with a partial k-
coloring of G, repeat the following procedure until it ter-
minates. If there is a (k+1)-core or there exists no elemen-
tary k-core, then stop; otherwise choose an elementary
k-core {u}, and assign to it the unique color not appear-
ing in its neighborhood. The Sequence Condition requires
that such a procedure must not result in a (k + 1)-core.

Independence Condition. For each precolored class
W, and each precolorless vertex set U, denote by «(U, 1)
the largest number of those mutually nonadjacent vertices
in U which have no neighbor in W;. The Independence
Condition requires |U| < Zle a(U,i) foral U CV\W.

It is easily seen that each of the above conditions is
necessary for the extendability of a precoloring if the color
bound is k. The next statement summarizes the known
cases where they are sufficient as well.

Theorem 4.3. For the extendability of any partial col-
oring with color bound k in an instance of PREXT,

(i) The Core Condition is necessary and sufficient for
split graphs, complements of bipartite graphs, Pj-
free graphs, and, if no color is repeated in W, then
also for complements of Meyniel graphs.

(ii) The Sequence Condition is necessary and sufficient
for forests, and, if & = 2, then also for bipartite
graphs.

(iii) The Independence Condition is necessary and suffi-
cient for line graphs of multiforests.

Part (iii) has been re-stated from the paper by Marcotte
and Seymour [145], the other results appeared in [105].
The case of interval graphs, with the assumption that no
color is repeated in the precoloring, admits a character-
ization in terms of a Menger-type condition on directed
graphs (constructed from the corresponding instance of
PREXT); see [17, 105] for details.

PrExt-perfect graphs. Motivated by the Core Con-
dition, the following graph operation can be introduced.
Let G be a graph class closed under induced subgraphs.
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For each G € G and for each (proper) partial k-coloring of
G, contract each precolored color class to one new vertex,
and make those new vertices mutually adjacent. The class
of graphs obtained in this way from G will be denoted by
G*. It has been observed in [105] that if every G € G is
perfect, and for every precoloring of every G € G the core
condition is sufficient for precoloring extendability, then
every G* € G* is perfect, too. Perfect graphs satisfying
this requirement are called PrExt-perfect in [105]. Their
characterization — as well as that of the corresponding
class obtained by contraction — remains an open prob-
lem.

One of the interesting cases is the class G of Pj-free
graphs (cographs). Recently, Van Bang Le [141] described
G* for them. It follows, in particular, that the member-
ship in this class can be decided in polynomial time. (The
cographs themselves can be recognized in linear time, see
[43].) A characterization in terms of forbidden subgraphs,
however, is not known so far.

Good characterization for PrExt on perfect
graphs. We close this subsection with the strongest
known related result on the general class of perfect graphs.
For a vertex v € V and a collection H of not necessarily
distinct subsets of V', dy (v) denotes the number of those
sets in ‘H which contain v. The term ‘w-clique’ means
‘ complete subgraph on w(G) vertices.’

Theorem 4.4. (Kratochvil, Sebd [135]) Let G
(V,E) be a perfect graph and X,Y C V two disjoint
independent sets. Then G has a proper coloring ¢: V —
{1,...,w(G)} with the properties that X is monochro-
matic and ¢(y) # ¢(X) for all y € Y, if and only if

19 = K| + X

holds for every multi-family Q of cliques and every family
IC of at most |V distinct w-cliques satisfying

do(v) = di(v) VoeV\(XUY)

and

do(v) =di(v) +1 VoveX.

The polynomial-time algorithm finding a required color-
ing when it exists is combinatorial, except for the only
part that it calls for a maximum clique (for which no com-
binatorial algorithm of polynomial running time is known
so far on perfect graphs). For the particular case of Y = (),
this result answers a problem of Seymour who proved that
it is NP-complete to decide whether two independent sets
X, Y of unrestricted cardinalities in a perfect graph admit
a proper coloring with w(G) colors such that X and Y are
contained in distinct color classes [163].

4.3 List colorings

On dense graphs, even with a very transparent structure,
the LisT COLORING problem is quite hard. In fact, as
Jansen and Scheffler [109] prove, it is NP-complete al-
ready on complete bipartite graphs, despite it is solvable



in linear time on every graph without induced subgraphs
Py if the total number |IL| of colors is bounded. Also,
Kubale [139] observes that the NP-completeness of LC
on line graphs of complete graphs follows from that of
the CHROMATIC INDEX problem [100]. (In [139], LC is
shown to be NP-complete for bipartite graphs, too, un-
der the further restriction that |IL| = 5 holds.) Recently,
Jansen [108] proved NP-completeness for the union of two
complete graphs. It is a natural related question to inves-
tigate which are the sparsest hard instances for LC.

Polynomially solvable cases. In both early papers
[190, 62] it is observed that 2-LC is easy to solve. Indeed,
one can obtain a linear-time algorithm by simply guess-
ing the color ¢(v) of a vertex v and check what sort of
implications this color would have for the other vertices.
If p(v) occurs in the list of some neighbor u of v, then u
gets forced to be asssigned to the other color of its list;
and this forcing step may be repeated for the neighbors
of u, etc. If this procedure stops when a subgraph G’
is properly colored while all uncolored vertices still have
two colors in their lists, then G is list colorable if and
only if so is G —G’. On the other hand, if ¢(v) leads to a
contradiction (excluding both colors from the list of some
vertex), then in any list coloring of G (if it exists), the
only choice for v can be the other color, which then either
leads to a final contradiction or reduces the problem to a
smaller subgraph in linear time.

Further easy instances include the graphs of maxi-
mum degree 2, as well as those list assignments (with
arbitrarily long lists) where each color occurs in at most
two lists.

Sparse hard instances. The above examples show
that the following result is tight in several ways.

Theorem 4.5. (Kratochvil, Tuza [136]) The LisT
COLORING problem is NP-complete when restricted to
the instances where each list contains at most 3 colors,
each color occurs in at most 3 lists, and G is a planar
bipartite graph of maximum degree 3.

This result is proved by applying one of the several con-
nections between LC and the SATISFIABILITY problem.
Given a Boolean formula ® in conjunctive normal form,
with a set C of clauses over the set X of variables, one
can define a graph Gg with vertex set V = X U C and
edge set

E:={zc|lzreceCoraecceC}.

The symbols 2 and T (z € X)) will be taken for the colors,
and the lists L(x) and L(c) for the variable vertices z and
clause vertices ¢ will be defined as
L(z) := {z,T} VeeX
and
L(c) ={z |z ectu{z|-zec} VeelX.

It can be seen that there is a one-to-one correspondence
between the satisfying truth assignments of ® and those
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color assignments of X which can be extended to a list
coloring of Gg. (Choose color T for a variable vertex x if
and only if the variable x is false in the truth assignment;
and, conversely, let x be false in ® if and only if the color
T has been chosen for z in a list coloring of G¢.) Hence,
each list coloring uniquely determines a truth assignment,
but not vice versa, because in some truth assignments
some clauses are satisfied by more than one variable, each
allowing a distinct color choice.

By this construction, the various theorems on SATIS-
FIABILITY (e.g., on 3-SAT) yield NP-completeness results
on list colorings restricted to the corresponding graph
classes. Note further that edges may be added to Gg
in an arbitrary way as long as it remains bipartite, and
still the two-way mapping between colorings and truth as-
signments is preserved. It follows, for instance, that LC
is NP-complete on 3-regular bipartite graphs.

Note that also the degree condition in Theorem 4.5
is quite strong when compared to the chromatic number
problem. In fact, by applying the theorem of Brooks, we
obtain that x(G) = 3 can be decided in linear time for
graphs of maximum degree 3, since x(G) < 3 holds if and
only if G contains no connected component isomorphic to
Ky.

Colors in a bounded number of lists. For longer
lists, the easy and hard instances can be separated in
terms of bounds on the number of how many times a color
may appear in the lists. Define the following problem class
for k,d € IN:

(k,d)-LC:
Instance: Graph G = (V,E), list assignment £ =
(L1,...,Ly), |Li| = k for all 1 < i < n, each color ap-

pearing in at most d lists.

Question: Does £ admit a list coloring on G ?

Theorem 4.6. ([136]) Let k > 3, d arbitrary.

(i) If d <k, then every instance of (k,d)-LC admits a
list coloring, and a feasible coloring can be found in
O(n%?) steps.

(ii) If d > k, then (k,d)-LC is NP-complete.

The first part of this result means that the colorability
does not depend on the actual structure of the graph in
question; i.e., one may assume G = K,,. In this case, a
list coloring exists if and only if the lists admit distinct
representatives, and therefore the problem is equally hard
as BIPARTITE MATCHING (or, more explicitly, as finding a
matching that covers the smaller vertex class of a bipartite
graph).

Hall Condition. The following concept may be viewed
as the LC-analogue of the Independence Condition given
in Section 4.2. For graph G = (V, E), list assignment
L, subset U C V, and color ¢ € IL, denote by «(U, 1)
the largest size of an independent set in the subgraph



induced by those vertices of U whose lists contain color .
It is obvious that the condition

U< aU,i)

i€l

YUCV

is necessary for the existence of a list coloring. Hilton and
Johnson [94] and Groflin [77] prove that this coindition is
sufficient for all L on G if and only if each 2-connected
component of G is a complete subgraph. In the particular
case of line graphs G = L(H), the necessary and suffi-
cient condition is that H should be a forest (de Werra
[48]). If multiple edges are also allowed, the Hall Condi-
tion becomes sufficient on multiforests if we require that
any two parallel edges have the same list (Marcotte and
Seymour [145]).

It may be noted that if all blocks are cliques, a polyno-
mial list coloring algorithm can be designed even without
the above characterization at hand. For this, one can take
an endblock K sitting on a cut vertex v;, and check for
each color i € L; one by one whether ¢(v;) = ¢ can be ex-
tended to a list coloring on the entire K. (This amounts
just to testing whether the Lj \ {i} in K \ {v;} have
distinct representatives.) Restricting L; to those colors
which do, the problem gets reduced to the subgraph in-
duced by V' \ (V(K) \ {v;}) which is list colorable with
the modified L; if and only if so is the entire G with the
original lists.

Hall number. An interesting related graph invariant,
introduced and studied recently by Hilton, Johnson and
Wantland [96, 95], is the Hall number, defined as the
smallest natural number %k such that the Hall Condi-
tion ensures colorability for every list assignment £ with
|L;| > k for all vertices of the graph in question. Obvi-
ously, the Hall number cannot be larger than the choice
number. In the forthcoming papers [96, 95] the Hall num-
ber is compared to some other important parameters, too,
such as the chromatic number and the independence ra-
tio. Its irregular behavior is analyzed as well, by showing
that the removal of a vertex or an edge may cause a rather
large decrease or increase, respectively. The best possible
results concerning these ‘jumps’ with respect to vertex
degrees have been obtained by Tuza [181], showing that
the Hall number of K, — e is equal to n — 2 (while it is 1
for both K,, and K,,_1).

Subset choosability. Concerning the more general
problem of choosing subsets that are disjoint if the corre-
sponding vertices are adjacent, the concept of (p, ¢, 7)-LC
is defined in the natural way, with instance G = (V, E)
together with lists L, of cardinality p each and |L;UL;| >
p + r if v;v; € E, and the quesiton is whether g-element
subsets can be chosen that are disjoint if the correspond-
ing vertices are adjacent. The complexity of this problem
is completely characterized :

Theorem 4.7. (Kratochvil, Tuza, Voigt [137])
(p, q,7)-LC problem is NP-complete for

The

p>max{q+2,r+1}
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and solvable in linear time for p =17 > ¢ and for ¢ < p <
g+ 1.

Graphs of bounded treewidth. One of the equiv-
alent definitions of treewidth is introduced in terms of
chordal graphs:

tw(G) := min{w(H) — 1},

where the minimum is taken over all chordal graphs H
containing G as a subgraph. Representing such an H as
the intersection graph of subtrees T1,...,T, of a tree T,
the sets X, := {v; € V |y € V(T;)} (2 € V(T)) together
with 7" form a so-called tree decomposition of G, a very
convenient structure for algorithmic purposes. On this
basis, for many NP-complete problems there exist poly-
nomial (and often even linear) algorithms when restricted
to graphs of treewidth less than ¢ (often called partial t-
trees), t € IN fixed; see e.g. [12, 44]. The methods of
dynamical programming can be applied successfully for
list colorings as well :

Theorem 4.8. (Jansen, Scheffler [109]) Let t € IN be
fixed. Then, on the class G; of graphs of treewidth
less than ¢, the LisT COLORING problem is solvable in
O(n'*?) time. Moreover, for every fixed k € IN, if a tree
decomposition of width < ¢ is given for any G € G;, then
LC is solvable in O(n) time.

A stronger time bound can be proved for trees. Since both
the choice and coloring number of every tree with at least
one edge equals 2, one can solve LC (similarly to PREXT)
on trees in linear time without assuming any bound on
the total number of colors, firstly coloring the vertices
whose list consists of just one color, then deleting those
colors from the lists of the neighbors and continuing this
procedure as long as 1-element lists occur. If no list be-
comes empty at the end of this phase, then each uncolored
component is an instance of 2-LC (we may delete colors
from the lists longer than 2), and can be list-colored in
linear time, by choosing an arbitrary root with any color
from its list and then proceeding from the root towards
the leaves e.g. by breadth-first search. In this way, not
only the decision problem but also the search version is
solvable in linear time. Jansen and Scheffler also note
that the number of admissible list colorings can be deter-
mined in O(kn) time, where k denotes the total number
of colors.

Cardinality-constrained color classes. Let G
(V, E) with the list assignment £ be given, and suppose
that for each ¢ € IL an integer n; > 0 is prescribed,
> ;ni = n. The problem is to decide whether G ad-
mits an L-coloring in which each color i occurs precisely
n; times.

Answering a problem raised by de Werra, recently
Dror, Finke, Gravier and Kubiak [51] proved that this
problem is NP-complete, already for linear forests and re-
stricting £ to 2-assignments. On the other hand, applying
dynamic programming, it is shown that if |IL| < p, where
p € N is fixed (not part of the input), the problem is



solvable in polynomial time on P, and also on the vertex-
disjoint unions of paths. The case of |IL| = 3 was solved
previously by Xu [198].

It remains open to investigate the complexity of the
problem on trees, with a bounded total number of colors.

4.4 Choosability

While the hard instances of LisST COLORING turn out to
be NP-complete, with respect to CHOOSABILITY the class
1% plays the role of NP. The 2-choosable graphs can be
recognized in linear time, by the structural characteri-
zation (Theorem 3.3). Apart from this ‘smallest’ case,
essentially every other class of instances is provably hard.
The following result gives a complete answer to the prob-
lem formulated at the beginning of this section.

Theorem 4.9. (Gutner, Tarsi [83])
k-CHOOSABILITY is IT5-complete.

For every k > 3,

The first complexity result of this kind was due to by
Rubin [62], but not for lists of equal length. Recently,
Gutner proved several similar theorems. In order to state
some of them, we need to introduce the following concept.

(2,3)-CHOOSABILITY ((2,3)-CH):

Instance: Graph G = (V,E), number ¢; € {2,3} for
each vertex v;.

Does G have a list coloring for every as-
,Ly) such that |L;| = ¢; for all

Question:
signment £ = (Lq,...
1<i<n?

Along these lines, a large class of problems
parametrized by sets S of natural numbers can also be
defined, assuming that ¢; € S and |L;| = ¢; for each ver-
tex v; in the list assignment £ for which the colorability
has to be tested. With this formulation, Rubin’s theorem
states that (2,3)-CH is II5-complete on bipartite graphs.
Gutner proves the following stronger related results.

Theorem 4.10. (Gutner [82])
problems is IT5-complete :

Each of the following

(2,3)-CH on planar bipartite graphs,
3-CH on planar triangle-free graphs,
4-CH on planar graphs,
3-CH on the union of two forests.

These results may raise the impression that choosability
is always at least as hard as list colorability. This is not at
all the case, however, as shown by the comparison of the
next result with Theorem 4.7. We denote by (p, ¢, r)-CH
the choice version of (p, ¢, r)-LC.

Theorem 4.11. (Kratochvil, Tuza, Voigt [137]) If
2r > p and 4q > 3r+p, and also if 2r < p and 4q > 2p+r,
then the (p, q,r)-CH problem is solvable in linear time.

The complexity of (p, q,r)-CH, however, is not known in
general.
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4.5 Graph coloring games

Several games on graphs may be viewed as on-line versions
of precoloring extension: At each step, the next player
has to extend the partial coloring to a larger one. Here
we consider some two-person games of this flavor.

In the variants below, it will be assumed throughout
that, already at the beginning of the game, both players
know the entire graph G = (V| E) to be colored. More-
over, a color bound k is given. A legal move consists of
choosing a vertex v not colored so far, and assign to it an
arbitrary color ¢ € {1,...,k} that has not been assigned
to any neighbor of v. We begin with a framework that
may be viewed as most general in some sense, and then
discuss some particular cases and variants.

Achievement and Avoidance Games. In both
types, the players move alternately, and the player to
move next is obliged to color a vertex, whenever the
partial coloring admits an extension. The Achievement
Game is won by the player who makes the last legal move;
while in the Avoidance Game, the last-but-one move wins,
i.e., the winner is the player who can force the other one
to make the last move.

Small values of k lead to some concepts interesting
on their own: For £k = 2 both games end up with an
inclusionwise maximal bipartite induced subgraph (with
unchangeable vertex 2-coloring in each of its components),
and for k = 1 they result in a nonextendable independent
set.

These games have been considered by Harary and
Tuza [92] for some rather restricted types of graphs G
(paths, cycles, Petersen graph) with color bound k =
X(G). As may be expected, Avoidance turns out to be
more complicated than Achievement. Very little is known
so far in general, however, though it would be interesting
to see various winning strategies, as well as arguments
showing that it is hard to determine the winner already
on some graph classes of a fairly transparent structure.

For small k, the game is known to be PSPACE-
complete on unrestricted graphs, by the results of Schae-
fer (k = 1) and Bodlaender (k = 2).

Theorem 4.12. ([158], [20]) For color bounds k = 1
and k = 2, it is PSPACE-complete to decide who has a
winning strategy in the Achievement Game.

So far, the case of k > 3 colors seems to be open. On
the other hand, more results are available under the con-
dition that the players have to color the vertices in a
prescribed order. See Bodlaender [20] and Bodlaender
and Kratsch [23] for details on those ‘sequential color-
ing’ games.

Symmetric strategies. The simplest example to illus-
trate the idea how the symmetry of a graph can be used
successfully, is the winning strategy of the first player in
the Achievement Game on the path P,,, n odd. Denot-
ing P, = wvovy ---v9s, Player 1 colors the middle vertex
vy first (with any color), and then ‘ reflects’ each move of



Player 2 to v ; i.e., if Player 2 colors some v; with color j,
then Player 1 assigns the same color j to the vertex vg;_;
in the next move.

In his recent work, Arroyo [13] applies this idea and
its modifications in designing winning strategies for the
Achievement and/or Avoidance Games on various types
of graphs. Moreover, he considers several further vari-
ants of these games, e.g., where each player has to use
a prescribed set of colors (those sets may be disjoint for
the two players), or adjacent vertices must get the same
color, etc.

Achievement for £k = 1 (Node Kayles). The game
with one color seems to be of major importance, because
the case of more colors can be reduced to it. Indeed, as
Arroyo observes [13], the winner is the same on G with
k colors and on the Cartesian product GOK}, with one
color. (The vertex set of GOK}, is V(G) x {1,...,k}, and
two of its vertices (v,¢) and (v’,4’) are adjacent if and only
ifi =14 and v’ € E(G) ori # i and v =7".)

If just one color is available, the players sequentially
construct larger and larger independent sets until a max-
imal one is reached, and the first player wins if and only
if the set eventually obtained has odd cardinality. Be-
side the complexity result mentioned above, Schaefer [158]
proves that the bipartite version of the game is PSPACE-
complete, as well, i.e., where G is supposed to be bipar-
tite, say with vertex partition V = V3 U V5, and player ¢
(i =1,2) selects a vertex of V; in each step.

Finbow and Hartnell [66] investigate, under which
conditions is the outcome of the game independent of the
actual strategies of the players, i.e., when are the maxi-
mal independent sets of G all of the same parity. They
prove that for graphs of girth at least 8, the necessary and
sufficient condition is that every vertex of degree greater
than 1 is adjacent to an odd number of pendant vertices.
(The girth condition cannot be weakened here, as shown
by the cycle C7.)

The Achievement Game with & = 1 on paths is dis-
cussed by Berlekamp, Conway and Guy [16, pp. 88—
90] in a different but equivalent form, under the name
‘Dawson’s Chess’ (played on a 3 x n board with n white
pawns and n black pawns, initially placed in the first and
third row, respectively; capture is obligatory). Interest-
ingly enough, the score turns out to be ultimately periodic
modulo 34. The second player has a winning strategy on
P, if and only if n = 4,8,20,24,28 (mod 34) or n = 14
or n = 34.

Game chromatic number. This interesting concept
was introduced by Bodlaender [20]. Depending on the
parity of n = |V(G)|, the game becomes some kind of
Achievement (n odd) or avoidance (n even), but now the
first player wins if and only if the entire graph gets col-
ored. The game chromatic number of G, denoted x,4(G),
is the smallest integer k£ such that the first player wins
the game with color bound k. (In order to avoid some
anomalies, Kierstead et al. propose a slight change in the
rules, namely that Player 2 begins but he is allowed to

pass.)
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Faigle, Kern, Kierstead and Trotter [64] proved
Xg(T') < 4 for every tree T, and Bodlaender [20] showed
that this estimate is tight, by constructing a tree with
Xg = 4. (Let T be the caterpillar with 4 internal nodes
along a path, each of degree 4.) The upper bound has
been generalized by Kierstead and Tuza [127] who proved
that

Xg(G) < 6tw(G) — 2

holds for every graph G, where tw(G) denotes the
treewidth of G (see the definition before Theorem 4.8).
It is not known, however, whether the coefficient 6 is re-
ally necessary here, or it can be replaced by a smaller one
(with possibly a worse error term).

It was conjectured by Bodlaender [20] and proved by
Kierstead and Trotter [126] that the game chromatic num-
ber of planar graphs is bounded above by a constant. The
largest possible value of x4, however, is known neither for
planar graphs (it is between 8 and 33), nor for outerplanar
graphs (between 6 and 8). For a general upper bound, we
recall the following result.

Theorem 4.13. (Kierstead, Trotter [126]) There exists
a function g: IN — IN such that, if a graph G does not
contain any subgraph homeomorphic to K¢, then x4(G) <

g(t).

It follows, in particular, that the game chromatic number
is bounded above by a function of the genus.

Though there is relatively little known about the be-
havior of the game chromatic number so far, it seems to
offer a promising area for research, certainly with a lot
more to discover.
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