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Abstract

This paper investigates properties of the minimal integral solutions of a
linear diophantine equation. We present best possible inequalities that
must be satisfied by these elements which improves on former results.
We also show that the elements of the minimal Hilbert basis of the dual
cone of all minimal integral solutions of a linear diophantine equation
yield best approximations of a rational vector “from above”. Relations
between these cones are applied to the knapsack problem.
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1 Introduction

Throughout this paper we resort to the following notation. For integral points
z1, . . . , zm ∈ Zn, the set

C := pos {z1, . . . , zm} =

{
m∑
i=1

λiz
i : λ ∈ Rm≥0

}

is called a rational polyhedral cone. It is called pointed if there exists a hyperplane
{x ∈ Rn : aTx = 0} such that {0} = {x ∈ C : aTx ≤ 0}. Here we are interested
in generating systems of the integral points contained in such a cone.

Definition 1.1. Let C ⊆ Rn be a rational polyhedral cone. A finite subset
H = {h1, . . . , ht} ⊆ C ∩ Zn is called a Hilbert basis of C if every z ∈ C ∩ Zn

has a representation of the form

z =

t∑
i=1

λih
i,

with non-negative integral multipliers λ1, . . . , λt. A minimal Hilbert basis w.r.t.
inclusion is also called an integral basis of the cone C and it is denoted by H(C).

∗Supported by a “Leibniz Preis” of the German Science Foundation (DFG) awarded to M.
Grötschel.

†Supported by a “Gerhard-Hess-Forschungsförderpreis” of the German Science Foundation
(DFG).
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The name Hilbert basis was introduced by Giles and Pulleyblank [GP79] in
the context of totally dual integral systems. It was shown by Gordan [G1873]
that every rational polyhedral cone has an integral basis and for pointed cones
we have the following result due to van der Corput [Cor31]: The integral basis
H(C) of a rational, pointed cone C ⊆ Rn is uniquely determined by

H(C) =
{
z ∈ C ∩ Zn\{0} : z can not be written as the sum

of two other elements of C ∩ Zn\{0}
}
.

(1.1)

Although Hilbert bases play a role in various fields of mathematics, like com-
binatorial convexity, geometry of numbers, special desingularizations of toric
varieties, or in integer programming, their geometrical structure is not very well
understood yet.

This paper studies Hilbert bases (integral bases) of cones associated with
the problem of simultaneous Diophantine approximation of rationals and the
non-negative integer solutions of a linear Diophantine equation.

The problem of simultaneous Diophantine approximation and a constrained
version of it that we investigate here reads as follows. Let A ∈ Zm×n be an
integral matrix of rank n and let fA : Rn → R≥0 be the norm on Rn defined by

fA(x) = |Ax|� =
m∑
j=1

|ajx|,

where | · |� denotes the l�-norm and aj denotes the j-th row of A . With respect
to that norm we study the

Constrained Simultaneous Dioph. Approximation Problem (CSDAP)
Let p1, . . . , pn, pn+1 ∈ Z, pn+1 > 0, N ∈ N > 0. Find integers q1, . . . , qn ∈ Z
and an integer qn+1 ∈ N > 0 such that qn+1 ≤ N and

1. aj (q1/qn+1, . . . , qn/qn+1)
T ≥ aj (p1/pn+1, . . . , pn/pn+1)

T
, j = 1, . . . ,m,

2. fA (q1/qn+1 − p1/pn+1, . . . , qn/qn+1 − pn/pn+1) is minimal.

Observe, that by neglecting the restrictions of the form 1., the problem reduces
to the “standard” simultaneous Diophantine approximation problem of n ratio-
nals w.r.t. the norm fA.

It is known for a long time that the two-dimensional simultaneous Dio-
phantine approximation problem (n=1) can be solved in polynomial time by
the method of continued fractions as described in Khintchine [Khi56], Perron
[Per13] and Grötschel, Lovász and Schrijver [GLS88]. Moreover, in the two-
dimensional case best approximations have a nice geometric structure. More
precisely, for a given p = (p1, p2)

T ∈ Z2 andN ∈ N let C(I1, p) = pos {(1, 0)T , p}
and C(−I1, p) = pos {(−1, 0)T , p}. Then it was shown by Klein [K1895] that
a point (q1, q2)

T on the lower convex hull of one of the two Klein polyhedra
K+ = conv {C(I1, p) ∩Z2\{0}}, K− = conv {C(−I1, p) ∩Z2\{0}} yields a best
approximation of p1/p2, i.e., |q1/q2−p1/p2| is minimal among all rationals whose
denominator is bounded by N . In particular, an appropriate point (q+1 , q

+
2 )

T

((q−1 , q−2 )
T ) lying on the lower convex hull of K+ (K−) gives a best approxima-

tion of the constrained problem: min |q1/q2−p1/p2|, q2 ≤ N and q1/q2 ≥ p1/p2
(q1/q2 ≤ p1/p2) (see also [BP94], [Fin93], [DS82]).
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Whereas the two dimensional case of the problem has been very well un-
derstood, this much insight could not be gained for higher dimensions. We
show in this paper that for every dimension and every N ∈ N, a solution to
the constrained simultaneous approximation problem with smallest denomina-
tor belongs to the minimal Hilbert basis of the cone

C(A, p) =
{
x ∈ Rn+1 : pn+1a

j(x1, . . . , xn)
T − xn+1a

j(p1, . . . , pn)
T ≥ 0,

j = 1, . . . ,m, xn+1 ≥ 0
}
.

(1.2)

Since the integral basis of any 2-dimensional rational pointed C cone consists
of the integral points lying on the lower convex hull of conv {C ∩ Z2\{0}} (see
e.g. [Oda88] and the references within), Klein’s result follows indeed.

In the particular case when A coincides with the (n×n) identity matrix In,
we have C(In, p) = pos {e1, . . . , en, p}, where ei ∈ Rn+1 denotes the i-th unit
vector and p = (p1, . . . , pn+1)

T . The dual cone C∗(In, p) of C(In, p) is given by

C∗(In, p) =
{
y ∈ Rn+1 : pT y ≥ 0, yi ≥ 0, 1 ≤ i ≤ n

}
. (1.3)

The non-negative integer points on the facet {y ∈ C∗(In, p) : pT y = 0}
may be interpreted as a the set of all non-negative integer solutions of a linear
Diophantine equation. Such an equation reads

Kn1,n2 =
{
(x, y) ∈ Rn1

≥0 × Rn2

≥0 : aTx = bT y
}
, (1.4)

for suitable numbers n1, n2 and positive integer vectors a ∈ Nn1 and b ∈ Nn2 .
The minimal solutions of such an equation constitute the integral basis of the
knapsack cone Kn1,n2 and have been studied for a long time in various different
contexts, see e.g. [Ehr79], [FT95], [Gre88] and the references within.

We generalize a theorem of Lambert [Lam87] and Diaconis, Graham and
Sturmfels [DGS94] by proving that the minimal integer solutions of such a linear
Diophantine equation satisfy a system of inequalities that is stated in Section 3
and that allow to bound the norm of such elements..

In Section 4 we deal with the integer version of Caratheodory’s theorem. We
show that it applies to the families of cones of Sections 2 and 3 when all the
numbers are divisible. Section 5 discusses connections between cones associated
with approximations of a rational vector and knapsack polyhedra.

2 Simultaneous Diophantine Approximation

This section deals with the constrained simultaneous Diophantine approxima-
tion problem CSDAP that we introduced in the previous section. We remark
that if N > pn+1 then q := (p1, . . . , pn+1) is a always an optimal solution of
this problem. It is, however, not clear how one can characterize a solution if
N < pn+1.

Theorem 2.1. Among all solutions of CSDAP let q1, . . . , qn+1 be one with de-
nominator qn+1 as small as possible. Then the vector q = (q1, . . . , qn+1)

T is an
element of the integral basis of C(A, p), i.e., q ∈ H(C(A, p)).
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Proof. On account of the restrictions 1., the vector q is an element of the cone
C(A, p) and conversely, for each vector x ∈ C(A, p) with xn+1 > 0 the associ-
ated rational vector (x1/xn+1, . . . , xn/xn+1)

T satisfies the restrictions 1. Fur-
thermore, since rank(A) = n, the cone C(A, p) is pointed.

Suppose that q is not an element of the integral basis of C(A, p). Then we
can find two nontrivial vectors v, w ∈ C(A, p)\{0} such that q = v + w. For
abbreviation we write x for the first n components of a vector x ∈ Rn+1 and x̃ for
the “rational” vector (x1/xn+1, . . . , xn/xn+1) if xn+1 �= 0. Let vn+1 ≥ wn+1 ≥ 0
and let j ∈ {1, . . . ,m}. We have

aj (q̃ − p̃) = aj
(

v + w

vn+1 + wn+1
− p̃

)
. (2.1)

We have to distinguish two cases.
I. Let wn+1 = 0. Then we may write (cf. (2.1) and (1.2))

aj (q̃ − p̃) = aj ṽ +
1

vn+1
ajw − aj p̃ ≥ aj (ṽ − p̃) .

Since v, w ∈ C(A, p)\{0} and rang(A) = n summation over all indices j =
1, . . . ,m yields fA(q̃− p̃) > fA(ṽ− p̃). This is a contradiction that (q1, . . . , qn+1)
is a solution of CSDAP.
II. Let vn+1 ≥ wn+1 > 0. Then we may write (cf. (2.1))

aj (q̃ − p̃) =
vn+1

vn+1 + wn+1
aj (ṽ − p̃) +

wn+1

vn+1 + wn+1
aj (w̃ − p̃) .

Again summation over all inequalities yields

fA(q̃ − p̃) =
vn+1

vn+1 + wn+1
fA(ṽ − p̃) +

wn+1

vn+1 + wn+1
fA(w̃ − p̃).

Thus, by the minimality of q we conclude that fA(ṽ−p̃) = fA(w̃−p̃) = fA(q̃−p̃).
This contradicts the minimality of the denominator qn+1 and completes the
proof.

We remark that for A = In, fA(·) is the l1-norm. Then CSDAP is the prob-
lem to find a best approximation “from above” of the given rationals by other
rationals whose common denominator is bounded. As pointed out in the intro-
duction, the solutions of this problem for n = 1 can be interpreted as the lattice
points lying on the lower convex hull of the conv

{
C(I1, p) ∩ Z2\{0}}. However,

in general it is not sufficient to consider only the lattice points on the lower con-
vex hull of C(I1, p). To see this, let p = (1, . . . , 1, r)T ∈ Zn+1, n ≥ 2, r > 1
and let N = r − 1. Then C(In, p) = pos {e1, . . . , en, p} and the lower convex
hull of conv

{
C(In, p) ∩ Zn+1\{0}} is given by conv {e1, . . . , en, p}. Obviously,

1/(r− 1), . . . , 1/(r− 1) is a solution of CSDAP, but the vector (1, . . . , 1, r− 1)T

is not contained in conv {e1, . . . , en, p}.

3 The knapsack cone

As mentioned in the introduction the dual of the cone C(In, p) is closely related
to the so called knapsack cone Kn,m, i.e., the set of all non-negative solutions
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of a linear diophantine equation of the form

Kn,m =

⎧⎨⎩(x, y)T ∈ Rn≥0 × Rm≥0 :

n∑
i=1

aixi =

m∑
j=1

bjyj

⎫⎬⎭ ,

where we always assume that a = (a1, . . . , an)
T ∈ Nn , b = (b1, . . . , bm)T ∈ Nm ,

n ≥ m ≥ 1, and a1 ≤ a2 ≤ · · · ≤ an, b1 ≤ b2 ≤ · · · ≤ bm. It is easy to see that

Kn,m = pos
{
bje

i + aie
n+j : 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
, (3.1)

where ei ∈ Rn+m denotes the i-th unit vector. The integral basis of Kn,m is
denoted by Hn,m, for abbreviation.

One of the major results of this paper is to show that every element in Hn,m

satisfies n+m special inequalities that generalize the two inequalities

n∑
i=1

xi ≤ bm, and

m∑
j=1

yj ≤ an (3.2)

proved by Lambert ([Lam87]) and independently by Diaconis, Graham& Sturm-
fels [DGS94].

Theorem 3.1. Every (x, y)T ∈ Hn,m satisfies the inequalities

[Jl] :

n∑
i=1

xi +

l−1∑
j=1

⌊
bl − bj
an

⌋
yj ≤ bl +

m∑
j=l+1

⌈
bj − bl
a1

⌉
yj , l = 1, . . . ,m,

[Ik] :
m∑
j=1

yj +
k−1∑
i=1

⌊
ak − ai
bm

⌋
xi ≤ ak +

n∑
i=k+1

⌈
ai − ak

b1

⌉
xi, k = 1, . . . , n.

Observe, that [Jm] and [In] are generalizations of the inequalities stated in
(3.2). From an algorithmic point of view Theorem 3.1 allows to assert that an
integral point in Kn,m does not belong to a minimal Hilbert basis of this cone.
This problem is in general NP-complete, see Sebö [Seb90].

Let us point out that, although Theorem 3.1 gives the best inequalities
known so far to assert that an integral point in Kn,m does not belong to the
minimal Hilbert basis, we believe that a much stronger and more general state-
ment is true: every element in the integral basis ofKn,m is a convex combination
of 0 and the generators bje

i + aie
n+j of Kn,m. More formally, let

Pn,m = conv
{
0, bje

i + aie
n+j : 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
.

One might conjecture that

Conjecture 3.1. Hn,m ⊂ Pn,m.1

For m = 1 Theorem 3.1 implies the inclusion Hn,1 ⊂ Pn,1. This can easily
be read off from the representation

Pn,1 =

{
(x, y)T ∈ Rn × R : aTx = b1y x, y ≥ 0,

n∑
i=1

xi ≤ b1

}
.

1This conjecture was independently made by Hosten and Sturmfels, private communication
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We remark that is was shown by Hosten and Sturmfels that the “more natural”
conjectureHn,m ⊂ conv

{
0, (bje

i + aie
n+j)/ gcd(bj , ai) : 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
is false.

One approach to prove Conjecture 3.1 would be to find all the facet-defining
inequalities of Pn,m and check that these inequalities are satisfied by the ele-
ments of Hn,m. A subset of all the facet defining inequalities of Pn,m is given
by

Proposition 3.1. For l = 1, . . . ,m let

Jl =

⎧⎨⎩(x, y) ∈ Rn × Rm :

n∑
i=1

xi +

l−1∑
j=1

bl − bj
an

yj ≤ bl +

m∑
j=l+1

bj − bl
a1

yj

⎫⎬⎭
and for k = 1, . . . , n let

Ik =

⎧⎨⎩(x, y) ∈ Rn × Rm :

m∑
j=1

yj +

k−1∑
i=1

ak − ai
bm

xi ≤ ak +

n∑
i=k+1

ai − ak
b1

xi

⎫⎬⎭ .

Then we have Pn,m ⊂ Jl, Pn,m ⊂ Ik. Moreover, Pn,m ∩ Jl and Pn,m ∩ Ik are
facets of Pn,m, 1 ≤ l ≤ m, 1 ≤ k ≤ n.

Proof. It is quite easy to check that all vectors bje
i+aie

n+j, 1 ≤ i ≤ n, 1 ≤ j ≤
m, are contained in Jl, l = 1, . . . ,m. Moreover, the inequality corresponding
to Jl is satisfied with equality by the n + m − 1 linearly independent points
blei+aie

n+l, 1 ≤ i ≤ n, bje
n+ane

n+j, 1 ≤ j ≤ l−1, bje
1+a1e

n+j , l+1 ≤ j ≤ m.
The halfspaces Ik can be treated in the same way.

Remark 3.1. Since Pn,2 = {(x, y)T ∈ Rn ×R2 : aTx = bT y;x, y ≥ 0, (x, y)T ∈
Ik, 1 ≤ k ≤ n}, Theorem 3.1 shows that the conjecture is “almost true” when
m = 2.

The proof of Theorem 3.1 relies on the following observation, which was also
the key of Lambert’s proof of (3.2).

Lemma 3.1. Let (x̂, ŷ)T ∈ Kn,m and let (x1, y1)T , (x2, y2)T ∈ Nn+m such that
0 <lex (x2 − x1, y2 − y1)T <lex (x̂, ŷ)T and aTx1 − bT y1 = aTx2 − bT y2. Then
(x̂, ŷ)T is not an element of Hn,m.

Proof. Let (zx, zy) = (x2 − x1, y2 − y1). By assumption we have (zx, zy)
T , (x̂−

zx, ŷ− zy)
T ∈ Kn,m\{0}. Thus (x̂, ŷ) = (x̂− zx, ŷ− zy)+ (zx, zy) can be written

as a non trivial combination of two elements of Kn,m.

Proof of Theorem 3.1. Let (x̃, ỹ)T ∈ Hn,m. By symmetry it suffices to con-
sider only the inequalities [Jl], l = 1, . . . ,m. Let us fix an index l ∈ {1, . . . ,m}
and let ξ =

∑n
i=1 x̃i, υ =

∑m
j=1 ỹj . We choose a sequence of points xi ∈ Nn ,

0 ≤ i ≤ ξ, such that

0 = x0 <lex x1 <lex x2 <lex · · · <lex xξ = x̃. (3.3)

Next we define recursively a sequence of points yj ∈ Nm , 0 ≤ j ≤ υ, by y0 = 0
and yj = yj−1 + ed(j), j ≥ 1, where the index d(j) is given by d(j) = min{1 ≤
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d ≤ m : yj−1
d + ed ≤ ỹd}. Observe that here ed denotes the d-th unit vector in

Rm . Obviously, we have

0 = y0 <lex y1 <lex y2 <lex · · · <lex yυ = ỹ. (3.4)

For two points x ∈ Nn , y ∈ Nm let r(x, y) = aTx− bT y and for a given point xi

let yμ(i) be the unique point such that

r(xi, yμ(i)) = min
{
r(xi, yj) : r(xi, yj) ≥ 0, 0 ≤ j ≤ υ

}
.

For abbreviation we set r(i) = r(xi, yμ(i)). It is easy to see that r(i) ∈ {0, bm−1}
and

0 = yμ(0) <lex yμ(1) <lex · · · <lex yμ(ξ) = ỹ. (3.5)

Moreover, by definition of yj we have the relation

r(i) ≥ bt =⇒ y
μ(i)
j = ỹj , 1 ≤ j ≤ t. (3.6)

So we have assigned each i ∈ {0, . . . , ξ − 1} its residue r(i) and now we count
the number of different residues which may occur. To this end let

Rl = {i ∈ {0, . . . , ξ − 1} : r(i) < bl} ,

and for l + 1 ≤ j ≤ m let

Rj =
{
i ∈ {0, . . . , ξ − 1} : bl ≤ r(i) < bj , y

μ(i)
j−1 = ỹj−1, y

μ(i)
j < ỹj

}
.

Since {0, . . . , ξ − 1} =
⋃m

j=l Rj we have

n∑
i=1

xi ≤ #Rl +
m∑

j=l+1

#Rj . (3.7)

By Lemma 3.1, (3.3), (3.4) we may assume

#Rl = #{r(i) : i ∈ Rl} ≤ bl. (3.8)

We claim that for j = l + 1, . . . ,m

#Rj ≤
⌈
bj − bl
a1

⌉
ỹj. (3.9)

To show this let ζ ∈ {0, . . . , ỹj − 1} and let xi1 <lex · · · <lex xiτ be all vectors of

the x-sequence (cf. (3.3)) satisfying y
μ(i)
j = ζ and i ∈ Rj . By construction we

have yμ(i1) = yμ(i2) = · · · = yμ(iτ ) and so

(τ − 1)a1 ≤ aTxiτ − aTxi1 = r(iτ )− r(i1) ≤ (bj − 1)− bl.

Hence τ ≤ �(bj − bl)/a1� and we get (3.9).
So far we have proved (cf. (3.7), (3.9))

n∑
i=1

xi ≤ #Rl +

m∑
j=l+1

⌈
bj − bl
a1

⌉
ỹj. (3.10)
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In the following we estimate the number of residues ∈ {0, . . . , bl − 1} which are
not contained in {r(i) : i ∈ Rl}.

To do this we have to extend our x-sequence. For v ∈ N let rv, qv ∈ N be
the uniquely determined numbers with v = rvξ + qv, 0 ≤ qv < ξ, and let

xv = rvx
ξ + xqv .

Observe that r(xv, y) = rvb
T ỹ − bT y + aTxqv . For s ∈ {1, . . . , l − 1} and t ∈

{0, . . . , ỹs−1} let ys,t be the point of the y-sequence (cf. (3.4)) with coordinates

ys,ts = t, ys,tj = ỹj, 1 ≤ j ≤ s− 1, and ys,tj = 0, s+ 1 ≤ j ≤ m.

For such a vector ys,t let xδ(s,t) be the point of the x-sequence such that

r(xδ(s,t), ys,t) = min
{
r(xi, ys,t) : r(xi, ys,t) ≥ bs, i ∈ {0, . . . , ξ}} .

Observe that such a point xδ(s,t) exists, because t ∈ {0, . . . , ỹs − 1}. Moreover,
xδ(s,t) belongs to the “original” x-sequence. In particular, we have

bs ≤ r(xδ(s,t), ys,t) < bs + an. (3.11)

Let rs,t = {xi : bs ≤ r(xi, ys,t) < bl}. Obviously, by (3.11) we have

#rs,t ≥ (bl − bs)/an�. (3.12)

Now we study the cardinality of

R =

l−1⋃
s=1

{
ỹs−1⋃
t=0

{
r(xi, ys,t) : bs ≤ r(xi, ys,t) < bl

}}

and we show

#R ≥
l−1∑
s=1

⌊
bl − bs
an

⌋
ỹs. (3.13)

Suppose the contrary. Then, by (3.12), we can find s, s′ ∈ {1, . . . , l − 1}, t ∈
{0, . . . , ỹs − 1}, t′ ∈ {0, . . . , ỹs′ − 1} and vectors xv, xw of the x-sequence such
that r(xv, ys,t) = r(xw, ys

′,t′). We may assume ys,t <lex ys
′,t′ and therefore

xv <lex xw, i.e., v ≤ w. Since

r(xv, ys,t) = rvb
T ỹ − bT ys,t + aTxqv = rwb

T ỹ − bT ys
′,t′ + aTxqw = r(xw, ys,t)

we get rw ∈ {rv, rv + 1}.
a) If rw = rv then 0 <lex xw −xv = xqw −xqv <lex xξ and we can apply Lemma
3.1 to (xw, ys,t)T , (xw, ys

′,t′)T which yields the contradiction (x̃, ỹ) /∈ Hn,m.
b) If rw = rv + 1 then 0 <lex xw − xv = xξ + xqw − xqv . Since

aT (xqv − xqw ) = bT ỹ + bT ys,t − bT ys
′,t′ > 0

we have xqw <lex xqv and thus 0 <lex xw − xv <lex xξ. Hence, also in this case
we can apply Lemma 3.1 and obtain a contradiction. Next we claim that

R ∩ {r(i) : i ∈ Rl} = ∅. (3.14)
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Otherwise there exist xv, ys,t with bs ≤ r(xv, ys,t) < bl and xi, yμ(i), 0 ≤ i ≤ ξ−
1, such that r(xv, ys,t) = r(xi, yμ(i)). Since r(xv, ys,t) ≥ bs but y

s,t
s < ỹs we have

ys,t �= yμ(i) (cf. (3.6)). Hence, we may assume ys,t <lex yμ(i) or yμ(i) <lex ys,t.
a) If ys,t <lex yμ(i) then xv <lex xi and thus v < i < ξ. Again, by Lemma 3.1
we find (x̃, ỹ) /∈ Hn,m.
b) If yμ(i) <lex ys,t then xi <lex xv. As above, it is easy to see that rv ∈ {0, 1}
and that in both cases Lemma 3.1 can be applied in order to get a contradiction.

Finally, we note that (3.8), (3.14) and (3.13) imply

#Rl ≤ bl −
l−1∑
s=1

⌊
bl − bs
an

⌋
ỹs,

which proves inequality [Jl] (cf. (3.10)).

4 Carathéodory Property

Every integral vector in a polyhedral cone can be decomposed by vectors of a
Hilbert basis. In fact one can write every integral vector in any pointed cone of
dimension n as the non-negative integer combination of at most 2n− 2 vectors
from the integral basis. This was shown by Sebö [Seb90] and gives currently the
best bound in general; it improves the bound given by Cook, Fonlupt & Schrijver
[CFS86] by 1, yet is still quite far from what many researchers conjecture to be
true, namely: every integral vector in a pointed cone is the non-negative integer
combination of at most n vectors of the integral basis. So far it has been verified
only for dimensions less or equal than three, see [Seb90].

We show below that this integer Version of Caratheodory’s Theorem holds
for the knapsack cone of Section 2 and the cone of best approximations studied
in Section 3 when the numbers are divisible. To this end we use the notation
a|b if a is a divisor of b.

Theorem 4.1. Let positive integers a1, . . . , an and b1, . . . , bm be given such
that ai−1|ai, i = 2, . . . , n, an|b1 and bi−1|bi, i = 2, . . . ,m. Every integral point
in

Kn,m =

⎧⎨⎩(x, y)T ∈ Rn≥0 × Rm≥0 :

n∑
i=1

aixi =

m∑
j=1

bjyj

⎫⎬⎭
can be written as the non-negative integer combination of at most n+m− 1 =
dim(Kn,m) elements of Hn,m = H(Kn,m).

Proof. Let (x̃, ỹ)T ∈ Kn,m. We have to show that there exist (xi, yi)T ∈ Hn,m,

ni ∈ N, 1 ≤ i ≤ n+m− 1 such that (x̃, ỹ)T =
∑n+m−1

i=1 ni(x
i, yi)T .

In order to show this statement we use induction w.r.t. n. W.l.o.g. we may
assume that a1 = 1. If n = 1 then we see by (3.2) that bie

1+en+i, i = 1, . . . ,m,
is the integral basis of Kn,m and we are done. So let n ≥ 2, a∗i = ai/a2,
2 ≤ i ≤ n, b∗j = bj/a2, 1 ≤ j ≤ m, and let

K∗
n,m =

⎧⎨⎩(x, y)T ∈ Rn≥0 × Rm≥0 : x1 + x2 +

n∑
i=3

a∗i xi =

m∑
j=1

b∗jyj

⎫⎬⎭ .
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Let f : Rn+m → Rn+m be the map given by f((x1, . . . , xn, y1, . . . , ym)T ) =
(x1/a2, x2, . . . , xn, y1, . . . , ym)T . It is easy to see that the linear map f induces
a bijection betweenKn,m∩Zn+m andK∗

n,m∩Zn+m. Therefore it suffices to prove

that f((x̃, ỹ)T ) can be written as an integral combination of at most n+m− 1
elements of the integral basis of K∗

n,m, which is denoted by H∗
n,m.

For abbreviation we set (x∗, y∗) = f((x̃, ỹ)T ). Now let

Kn−1,m =

⎧⎨⎩(x, y)T ∈ Rn−1
≥0 × Rm≥0 : x1 +

n−1∑
i=2

a∗i+1xi =

m∑
j=1

b∗jyj

⎫⎬⎭
and let g : Rn+m → Rn−1+m defined by g((x1, . . . , xn, y1, . . . , ym)T ) = (x1 +
x2, x3, . . . , xn, y1, . . . , ym)T . Next we make use of our induction hypothesis w.r.t.
to the point g((x∗, y∗)T ) ∈ Kn−1,m, i.e., there exist ni ∈ N, (x̄i, ȳi)T ∈ Hn−1,m,
1 ≤ i ≤ n+m− 2, such that

g((x∗, y∗)T ) =
n+m−2∑

i=1

ni (x̄
i, ȳi)T ,

whereHn−1,m denotes the integral basis ofKn−1,m w.r.t.Zn−1+m. In particular,
we have

x∗
1 + x∗

2 =

n+m−2∑
i=1

= ni x̄
i
1. (4.1)

W.l.o.g. let n1x̄
1
1 ≥ n2x̄

2
1 ≥ · · · ≥ nn+m−2x̄

n+m−2
1 . From the identity (4.1) we

see that we can find εi ∈ {0, 1}, 2 ≤ i ≤ n+m− 2 such that(
v1
v2

)
=

(
x∗
1

x∗
2

)
−

n+m−2∑
i=2

ni

(
εi

(
x̄i
1

0

)
+ (1− εi)

(
0
x̄i
1

))
≥ 0. (4.2)

Obviously, we have v1 + v2 = n1x̄
1
1. Now if we consider the 2-dimensional

knapsack cone C = {(x, y)T ∈ R2≥0 × R≥0 : x1 + x2 = x̄1
1y1} then all elements

of the integral basis have the form (α1, α2, 1)
T (cf. (3.2)). Further, for a 2-

dimensional cone it is well known that each element can be written as an integral
combination of at most two elements of the minimal Hilbert basis. Therefore,
since (v1, v2)

T ∈ C, there exist n∗
0, n

∗
1 ∈ N, w0, w1 ∈ N2 , such that(

v1
v2

)
= n∗

0w
0 + n∗

1w
1, n∗

0 + n∗
1 = n1, w0

1 + w0
2 = w1

1 + w1
2 = x̄1

1. (4.3)

Finally, for i = 2, . . . , n+m− 2 let (xi, yi)T ∈ Rn × Rm be defined by

(xi, yi) =
(
εix̄

i
1, (1− εi)x̄

i
1, x̄

i
2, . . . , x̄

i
n−1, ȳ

i
1, . . . , ȳ

i
m

)
.

and for i = 0, 1 let

(xi, yi) =
(
wi

1, w
i
2, x̄

1
2, . . . , x̄

1
n−1, ȳ

1
1 , . . . , ȳ

1
m

)
.

By definition and (4.3) we have (xi, yi)T ∈ Kn,m and indeed it is easy to check
that (xi, yi)T ∈ Hn,m, 0 ≤ i ≤ n+m− 2. By (4.2) and (4.3) we get

(x∗, y∗)T = n∗
0(x

0, y0)T + n∗
1(x

1, y1)T +

n+m−2∑
i=2

ni(x
i, yi)T .
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The Carathéodry property also holds for a special family of cones that we
investigated in Section 2.

Theorem 4.2. Let C = pos{e1, . . . , en−1, p} with p = (p1, . . . , pn)
T ∈ Nn sat-

isfying p1 = 1 and pi|pi+1, 1 ≤ i ≤ n − 1, i.e., the numbers pi are successively
divisible. Let H(C) be the integral basis of C. Then for each z ∈ C ∩ Zn there
exist at most n elements b1, . . . , bn of H(C) such that z =

∑n
i=1 vib

i with vi ∈ N.
Proof. We use double induction w.r.t. the dimension n and the last coordinate
pn of the vector p. For n = 2 the theorem follows from the more general result
of Sebö [Seb90].

Let n ≥ 3. If pn = 1 then the generators of C constitute a basis of Zn and
the result follows. Let pn ≥ 2 and let

P (C) = {z ∈ Zn : z =

n−1∑
i=1

λie
i + λnp, 0 ≤ λi < 1}

=

{(
1,

⌈
jp2
pn

⌉
, . . . ,

⌈
jpn−1

pn

⌉
, j

)T

: 1 ≤ j ≤ pn − 1

}
.

It is quite easy to check that

H(C) =
{
e1, . . . , en−1, p

} ∪ P (C).

Next we have to distinguish two cases.
I. p2 = 1.
Let z ∈ C ∩Zn. We first analyze the case when z1 ≥ z2. For a vector x ∈ Rn let
x̃ = (x2, . . . , xn)

T be its orthogonal projection onto the plane {x ∈ Rn : x1 = 0}
(identified with Rn−1 ). Then z̃ is an integral vector of the (n− 1)-dimensional

cone C̃ = pos{ẽ2, . . . ,�en−1, p̃} which is of the same type as the cone C. Hence,

by induction hypothesis w.r.t. the dimension we can find b̂1, . . . , b̂n−1 ∈ H(C̃)

such that z̃ =
∑n−1

i=1 vib̂
i, vi ∈ N. Now, it easy to check that bi = (1, b̂i)T ∈ H(C)

and since b̂i2 = 1 we get

z =

n−1∑
i=1

vib
i + (z1 − z2)e

1.

The case z2 ≤ z1 can be treated in the same way w.r.t. the orthogonal projection
onto the plane {x ∈ Rn : x2 = 0}.
II. p2 > 1.
Let v = (1, 1, p3/p2, . . . , pn/p2)

T ∈ P (C). Then we may write v = (1/p2)p +
((p2 − 1)/p2)e

1 and thus v is contained in the relative interior of a 2-face of the
cone C. Hence, C = C1 ∪ C2 with

C1 = pos{e1, . . . , en−1, v} and C2 = pos{e2, . . . , en−1, v, p}.
Obviously, C1 is of the same type as C but with vn < pn and therefore, we may
assume that the Carathéodory property holds for this cone.

Since v, e2, . . . , en constitute a basis of the lattice Zn there exists a unimod-
ular matrix U such that Uv = e1, Uei = ei, i = 2, . . . , n. Let

p = Up =

(
1, p2 − 1,

p3
p2

(p2 − 1), . . . ,
pn
p2

(p2 − 1)

)T

.
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Then UC2 = pos{e1, . . . , en−1, p}. This cone is of the same type as C but with
pn < pn. Therefore, we can assume that the Carathéodory property holds for
the cone UC2 and hence, also for C2.

Next we study the minimal Hilbert bases of the cones C1 and C2. Obviously,

H(C1) =
{
e1, . . . , en−1, v

} ∪
{(

1,

⌈
j
v2
vn

⌉
, . . . ,

⌈
j
vn−1

vn

⌉
, j

)
: 1 ≤ j ≤ vn

}
=

{
e1, . . . , en−1, v

} ∪
{(

1,

⌈
j
p2
pn

⌉
, . . . ,

⌈
j
pn−1

pn
,

⌉
, j

)T

: 1 ≤ j ≤ pn
p2

}
.

Thus H(C1) ⊂ H(C).
For the cone UC2 we get

H(UC2) = {e1, . . . , en−1, p} ∪
{
wj : j = 1, . . . ,

pn
p2

(p2 − 1)

}
,

where wj = (1, �jp2/pn�, . . . , �jpn−1/pn�, j)T , 1 ≤ j ≤ pn/p2(p2 − 1). Now,

U−1wj =

(
1,

⌈(
j +

pn
p2

)
p2
pn

⌉
, . . . ,

⌈(
j +

pn
p2

)
pn−1

pn

⌉
, j +

pn
p2

)T

and this shows H(C2) ⊂ H(C).
Since C = C1 ∪ C2 and each subcone satisfies the Cararthéodory property

we get the desired result.

Remark 4.1. With small modifications of the above proof one can show that
a cone C as in Theorem 4 admits a unimodular partition, i.e., one can find
subcones Ci generated by the elements of H(C), such that i) the generators of
Ci form a basis of Zn, ii) the union of the subcones Ci covers C and iii) the
intersection of two distinct subcones is a face of both. Of course, this property
implies the Carathéodory property.

5 A relation to polyhedral combinatorics

In this section we discuss a relation of the cone investigated in Section 2 to
families of knapsack polyhedra. For k, n,m, b ∈ N, k ≤ n and given vectors
p ∈ Nn+m and u ∈ Nn , let

PI = conv {x ∈ Zn+m : pTx ≤ b, 0 ≤ xi ≤ ui for all 1 ≤ i ≤ k,
xi ≤ ui for all k + 1 ≤ i ≤ n}.

In the sequel we investigate the inequalities that are needed to describe PI .
To this end we resort to the Chvátal-Gomory rounding procedure. The following
notation is needed. Let

P 0 = {x ∈ Rn+m : pTx ≤ b, 0 ≤ xi ≤ ui for all 1 ≤ i ≤ k,
xi ≤ ui for all k + 1 ≤ i ≤ n},

and define for t ∈ N,
P t+1 := {x ∈ Rn+m : cTx ≤ δ� for all supporting hyperplanes

cTx ≤ δ of P t with c integral.
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It is well known that in the case when n = 0 and gcd(pn+1, . . . , pn+m) = 1,
PI = P 0 holds, see Proposition 1.2 on page 211 in [NW88].

In fact the following generalization holds.

Proposition 5.1. If gcd(pn+1, . . . , pn+m) = 1, then PI = P 0.

Proof. We use the Chvátal-Gomory rounding procedure to prove the statement.
In fact, [Gom60], and later [Chv73] and [Sch80] have shown that there exists a
finite number t0 such that PI = P t0 . Let cTx ≤ δ be a supporting hyperplane
of P 0 with c integral. Then, c is an integer element in the cone generated by
the row vectors describing P 0, i.e.,

c ∈ pos (−e1, . . . ,−ek, e1, . . . , en, p) ∩ Zn+m.

Hence, there exist μ1, . . . , μk ≥ 0, λ1, . . . , λn ≥ 0 and τ ≥ 0 such that

ci = −μi + λi + τpi, for all 1 ≤ i ≤ k,
ci = λi + τpi, for all k + 1 ≤ i ≤ n,
ci = τpi, for all n+ 1 ≤ i ≤ n+m.

On account of the condition that gcd(pn+1, . . . , pn+m) = 1 we conclude that
τ ∈ N. This further implies that λi ∈ N for all k + 1 ≤ i ≤ n and that
−μi + λi ∈ N for all 1 ≤ i ≤ k. Moreover,

δ� = ∑n
i=1 λiui + τb�

≥ ∑k
i=1(λi − μi)

+ui +
∑n

i=k+1 λiui + τb�
=

∑k
i=1(λi − μi)

+ui +
∑n

i=k+1 λiui + τb.

Because c =
∑k

i=1(λi −μi)
+ei +

∑n
i=k+1 λie

i + τp, cTx ≤ δ� is a non-negative
combination of inequalities from P 0. Therefore, P 1 = P 0, implying that P t+1 =
P t for all t ∈ N and finally, PI = P 0.

On account of Proposition 5.1, the only case in which inequalities might have
to be added to the system describing P 0 in order to describe PI is the case when
gcd(pn+1, . . . , pn+m) > 0. When m = 1 and pn+1 > 1, then the arguments used
in the proof Proposition 5.1 show that the supporting hyperplanes {x ∈ Rn :
cTx = δ} of P 0 with c integral can be reconstructed from a Hilbert basis of
pos (−e1, . . . ,−ek, e1, . . . , en, p). For k = 0, we have to analyze the minimal
Hilbert basis of the cone of all best approximations, pos (e1, . . . , en, p). By
similar arguments one may verify that for k > 0, we need to inspect the Hilbert
bases of the family of cones

pos (σ1e
1, . . . , σek, ek+1, . . . , en, p) : σ ∈ {−1, 0,+1}k.

Denoting by b(h) =
∑n

i=1 λiui+λn+1b for h =
∑n

i=1 λie
i+λn+1p, we obtain

Proposition 5.2. Let k = 0 and m = 1. Then the system of inequalities

htx ≤ b(h)� for all h in the integral basis of pos (e1, . . . , en, p) (5.1)

describes P 1.

In the special case when ui = 1 for all i = 1, . . . , n and b = 1, p1 ≤ . . . ≤ pn+1

and pi divides pi+1 for all i = 1, . . . , n, it may be checked that the system (5.1)
is totally dual integral.
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