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Abstract

A graph G is called preperfect if each induced subgraph G′ ⊆ G of order

at least 2 has two vertices x, y such that either all maximum cliques of G′

containing x contain y, or all maximum independent sets of G′ containing y

contain x, too. Giving a partial answer to a problem of Hammer and Maffray

[Combinatorica 13 (1993), 199–208], we describe new classes of minimally

non-preperfect graphs, and prove the following characterizations :

(i) A graph of maximum degree 4 is minimally non-preperfect if and only

if it is an odd cycle of length at least 5, or the complement of a cycle of

length 7, or the line graph of a 3-regular 3-connected bipartite graph.

(ii) If a graph G is not an odd cycle and has no isolated vertices, then its

line graph is minimally non-preperfect if and only if G is bipartite, 3-

edge-connected, regular of degree d for some d ≥ 3, and contains no

3-edge-connected d′-regular subgraph for any 3 ≤ d′ < d.

∗guest at ZIB 1997
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1 Introduction

In his classic paper [1], Berge proposed to call a graph G perfect if, for each of its
induced subgraphs G′, the chromatic number χ(G′) equals the clique number ω(G′) ;
and call G imperfect otherwise. Chordless cycles of length at least four have been
termed holes and their complements antiholes. Obviously, any graph that contains
an odd hole or an odd antihole is imperfect. The famous Strong Perfect Graph
Conjecture of Berge states that a graph is perfect if and only if it contains no odd
hole and no odd antihole as an induced subgraph.

Investigating subclasses of perfect graphs, Hammer and Maffray [2] have intro-
duced the notions of predomination and preperfectness. Following their terminology,
we say that a vertex x of a graph G = (V,E) predominates a vertex y if one of the
following three situations occurs :

(o) V = {x} = {y},

(i) x �= y, xy ∈ E, and every maximum clique containing y contains x,

(ii) x �= y, xy �∈ E, and every maximum independent set containing x contains y.

A graph is called preperfect if each of its subgraphs has a predominant vertex (i.e., an
x ∈ V that predominates some y ∈ V ). It follows by definition that preperfectness is
closed under induced subgraphs and complementation. Hammer and Maffray have
shown that every preperfect graph is perfect, and that the class of preperfect graphs
contains all bipartite, i-triangulated, and parity graphs (see [2] for the definitions of
those graph classes).

In order to understand a graph property P better, it is often useful to investigate
extremal cases with respect to P, i.e., graphs having P but losing it by a small
modification. Two interesting types of such graphs are the minimal graphs (they
possess P but lose it by the deletion of any vertex ) and the critical graphs (they
have P but lose it by the deletion of any edge). In the context of preperfect graphs,
the former approach seems to be more fruitful so far.

Hammer and Maffray observed that every odd hole and odd antihole is mini-
mally non-preperfect, moreover they presented an infinite sequence of perfect but
minimally non-preperfect graphs (one graph for every even order n ≡ 2 (mod 4), cf.
Section 1.2). Later a different sequence of minimally non-preperfect graphs, includ-
ing a graph for every even n, was found (but not published) by Hougardy, Maffray
and Sebő [3].

Our goal here is to exhibit a much larger family of such graphs, hence answering
in a way an open question of [2, p. 205]. Our two main results are the complete
characterization of minimally non-preperfect graphs of maximum degree 4 (Theo-
rem 1), and a strong property of non-preperfect line graphs (Theorem 2) that can
be turned to a necessary and sufficient condition to describe all the minimal ones.
These results are formulated in Section 2 and proved in the later sections.
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One of the key concepts in our investigations is the Matching Independence
Property (MIP, for short), see the definition below. We prove in Section 3 that for
regular bipartite graphs the MIP is equivalent to 3-edge-connectivity (Lemma 4).
We also present a characterization of perfect line graphs which is equivalent to —
but in some sense stronger than — a corresponding result of Maffray [4].

Our intuition says that the Matching Independence Property would deserve a
closer look on its own as well, but this will not be done in the present paper. On
the other hand, we mention that the MIP has some relationships with the critically
perfect graphs, a concept introduced and studied by the second author in [6]. This
connection will be described in a greater detail in the forthcoming manuscript [5].
We should note at this point that all perfect, minimally non-preperfect graphs found
so far are critically perfect line graphs or their complements .

1.1 Definitions and notation

As usual, the minimum degree of graph G will be denoted by δ(G), the degree of
vertex x by d(x) or dG(x) if the graph in question has to be emphasized. The open
neighborhood of x (i.e., the set of vertices adjacent to x) is denoted by N(x), and
N(x) ∪ {x} is called the closed neighborhood of x; 〈N(x)〉 stands for the subgraph
induced by N(x). Moreover, ω denotes the clique number of G.

Standard notation is applied for the particular types of graphs, too, such as Kn

(complete graph), Pn (path), Cn (cycle), Sn (star), each on n vertices. Finally, the
line graph of G will be denoted by L(G). (The vertices of L(G) are the edges of
G, and two vertices are adjacent in L(G) if and only if the corresponding two edges
share a vertex in G.)

Operations on graphs. In order to simplify the description of small graphs, we
write G′+G′′ for the (vertex-disjoint) union of G′ and G′′, and mG′ for the union of
m graphs each of which is isomorphic to G′ (m ≥ 2). The difference G−G′ denotes
a graph obtained from G by removing the edges of a subgraph isomorphic to G ′. (In
our cases, G−G′ will be unique up to isomorphism.) For a vertex x, G− x means
the subgraph obtained by removing x and all edges incident to it ; and for an edge
of G = (V,E), G − e is the graph (V,E \ {e}). The complement K|V | − G of G is
denoted by G.

Minimally non-preperfect graphs. For d ∈ Z+, we denote by NPRd the class
of those graphs of maximum degree d which are not preperfect but all of their
proper induced subgraphs are. Set NPR :=

S
i≥0 NPRi for the class of minimally

non-preperfect graphs.

Matching Independence Property (MIP). In a graph G = (V,E), an ordered
pair (e, e′) of edges will be called matching independent if there exists a maximum
matching M in G such that e ∈ M and e′ /∈ M . The graph G is said to have
the Matching Independence Property if each ordered pair of its edges is matching
independent.
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1.2 An example

It is immediately seen that the odd holes and odd antiholes are minimally non-
preperfect; but these graphs are minimally non-perfect as well (perhaps the unique
ones, by the Strong Perfect Graph Conjecture [1]). Hammer and Maffray [2] observed
that, beside these, there exist also some perfect graphs which are minimally non-
preperfect. Next, we recall this construction.

Example 1. For k ≥ 1, letC∗
4k+2 denote the graph obtained from the cycle C4k+2 =

v1v2 · · · v4k+2 by adding the chords vivi+2k+1 (the diagonals) for each i = 1, . . . , 2k+1 ;
and let Hk := L(C∗

4k+2) be the line graph of C∗
4k+2. Then Hk satisfies the following

three properties :

(i)’ Each vertex of Hk belongs to precisely two maximum cliques (triangles), and
these two cliques have no further vertex in common.

(ii)’ Each pair (e, e′) of edges in C∗
4k+2 is matching independent, i.e., some matching

of 2k + 1 edges contains e but not e′.

(iii)’ When some vertices of Hk are removed, the remaining subgraph is either bi-
partite or contains a vertex belonging to only one maximum clique.

It follows that these graphs Hk (k ≥ 1), as well as their complements H k, are
minimally non-preperfect. Indeed, they are non-preperfect by (i)’ and (ii)’, and
the minimality follows by (iii)’ (on applying the result that every bipartite graph is
preperfect, see [2, Theorem 2.1]).

This example already exhibits some important features, namely that if a line
graph L(G) is minimally non-preperfect, then G has to be regular (property (i)’),
and if in addition G is bipartite, then it has to satisfy the Matching Independence
Property (property (ii)’), since it always contains a perfect matching by Hall’s Mar-
riage Theorem.

2 Characterizations

Here we briefly summarize the theorems that will be proved in the sequel. Our
results on minimal non-preperfect graphs of given minimum or maximum degree are
collected in the following assertions.

Claim 0. There is no H ∈ NPR with δ(H) = 0.

Claim 1. There is no H ∈ NPR with δ(H) = 1.

Claim 2. The graphs H ∈ NPR with δ(H) = 2 are precisely the odd holes.
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Claim 3. There is no H ∈ NPR with δ(H) = 3.

Claim 4. If H is 4-regular, then H ∈ NPR if and only if H = C 7 or H is the line
graph of a 3-connected 3-regular bipartite graph.

Turning from H to its complement, analogous results can be obtained for mini-
mally non-preperfect graphs with vertices of degree at least |V (H)| − 5, too.

The combination of the above claims yields the complete description of NPR d for
d ≤ 4, as follows.

Theorem 1 A graph H of maximum degree 4 is minimally non-preperfect if and
only if either H = C2t+1 (t ≥ 2), or H = C7, or H is the line graph of a 3-connected
3-regular bipartite graph.

We also have a necessary condition for the minimal non-preperfectness of line
graphs , but it is not sufficient in general :

Theorem 2 Let G be a graph without isolated vertices. If its line graph L(G) is
minimally non-preperfect, then either G = C2t+1 (t ≥ 2), or G is a 3-edge-connected,
regular bipartite graph.

All graphs listed in the conclusion of this theorem are non-preperfect, and there-
fore the following set of conditions can be seen to be necessary and sufficient for all
line graphs L(G) �= C2t+1 to be minimally non-preperfect:

• G is bipartite,

• G is 3-edge-connected,

• G is d-regular for some d ≥ 3,

• G contains no 3-edge-connected d′-regular subgraph for any d′, 3 ≤ d′ < d.

We do not know at present, however, how to test the last condition, neither have we
constructions for minimally non-preperfect line graphs with larger vertex degrees.

A consequence of the above two theorems extends Example 1 as follows.

Corollary 1 The line graph of a 3-regular graph G is minimally non-preperfect
if and only if G is bipartite and 3-connected.
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3 Preliminaries

In this section we prove some facts that we shall need in the proofs of the main
results. The section is concluded with the proof of Theorem 2.

The first simple observation, to be applied several times later, follows directly
by definition : If H ∈ NPR, then

(∗) H contains no predominated vertex, and therefore

• each vertex is contained in some cliques of size ω(H), and

• the intersection of the ω-cliques containing any one x ∈ V (H) consists of
the single vertex x itself.

Another fact that we shall need is the following characterization of 2-connected
graphs without (not necessarily induced) odd cycles of length at least 5. It may
be viewed as an equivalent formulation of a result due to Maffray [4, Theorem 2]
characterizing perfect line graphs ; nevertheless, we shall need the assertion in the
stronger form given below.

Lemma 1 If a 2-connected graph G contains no C2t+1 (t ≥ 2) as a subgraph,
then one of the following cases occurs :

(i) G is bipartite, or

(ii) G = Kn −Kn−2, n ≥ 4, or

(iii) G = Kn, n ≤ 4.

Proof. If G is not bipartite, then it contains some odd cycle C. This C must be
a triangle, since the longer odd cycles are excluded. If G �= C, choose any vertex y
outside C. The 2-connectedness of G implies that there exist two internally disjoint
paths P, P ′ starting at y and ending in distinct vertices of C. Since the endpoints
of P and P ′ on C are adjacent and also are connected by a path of length 2, the
exclusion of longer odd cycles implies that both P and P ′ consist of a single edge.
Thus, the subgraph G′ induced by C ∪ {y} is either K4 or K4 − e.

If G′ = K4, then each pair of its vertices is joined by a path of length 3, and also
by a path of length 2. In this way, if G contains at least one further vertex, then the
argument above leads to the contradiction that G contains an odd cycle of length
greater than 3.

Finally, ifG′ = K4−e, then any two vertices ofG′ are joined by a path of length 2,
and the degree-3 vertices of G′ form the unique pair which is not connected by a path
of length 3. Thus, by the condition on odd cycles, each vertex outside G′ must have
degree 2, and has to be adjacent to the two degree-3 vertices of G′. Consequently,
G = Kn −Kn−2, as claimed. �
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From this result we deduce

Lemma 2 Let d ≥ 1, G a connected d-regular graph, and suppose that its line
graph L(G) contains no odd holes.

(i) If d ≥ 4, then G is bipartite .

(ii) If d = 3, then either G = K4, or G is bipartite .

(iii) If d = 2, then either G = K3, or G is an even cycle.

Proof. By Lemma 1 — where Kn − Kn−2 is the unique non-regular graph — it
suffices to show that G is 2-connected. Suppose on the contrary that G contains
some cut-vertices. Consider and endblock B of G incident to a cut-vertex x. Since
G is supposed to be regular, and the degree of x is greater in G than in B, the block
B itself cannot be regular. Consequently, B = Kn −Kn−2 should hold. But B is an
endblock, and therefore x is the unique cut-vertex of G in B. Thus, B − x contains
at least two vertices of unequal degree in G, a contradiction to regularity. �

3.1 Connectivity and matching independence

In the context of our paper, the Matching Independence Property is needed to ensure
that the line graph of a regular, bipartite graph is not preperfect. Below, the MIP
is analyzed in regular bipartite graphs.

The first lemma describes how the dependent pairs of edges are structurally
related.

Lemma 3 Let G be a regular bipartite graph, and suppose that e, e′ ∈ E(G)
are two edges such that every perfect matching of G containing e also contains e ′.
Then {e, e′} is an edge cut in G.

Proof. Suppose G has vertex classes X and Y , and let e = xy, e′ = x′y′ with
x, x′ ∈ X, y, y′ ∈ Y . Since G is regular, it has a 1-factorization, so that e is
contained in some perfect matching M . By assumption, e ′ ∈ M also holds. What is
more, the graph G′ := G− x− y − e′ has no perfect matching, therefore it contains
a set X ′ ∪ Y ′ (X ′ ⊂ X, Y ′ ⊂ Y ), |X ′ ∪ Y ′| = |X| − 2, that meets all edges of G′. In
particular, all neighbors of x′ and y′ belong to Y ′ and X ′, respectively, but y ′ and
x′ do not.

We denote X ′′ := X \ (X ′∪{x, x′}) and Y ′′ := Y \ (Y ′∪{y, y′}). (One may note
that X ′ and Y ′′, as well as X ′′ and Y ′, are matched along M \{e, e′}.) Then, setting

T ′ := X ′ ∪ Y ′ ∪ {x, y} , T ′′ := X ′′ ∪ Y ′′ ∪ {x′, y′} ,

each edge of the graph G′′ := G−e−e′ has at least one vertex in T ′ and at most one
vertex in T ′′. On the other hand, the degree sums in both T ′ and T ′′ are equal to
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d |X|−2, where d is the degree of regularity in G, as we have removed just the unique
edges e from T ′ and e′ from T ′′. Consequently, both T ′ and T ′′ are independent.
Recalling that X and Y are independent as well, it follows that G ′′ contains no edge
between X ′ ∪ Y ′′ ∪ {x, y′} and X ′′ ∪ Y ′ ∪ {x′, y} ; i.e., {e, e′} indeed is an edge cut.
�

With the help of this lemma, we can transform the MIP to the more transparent
and better understood property of edge connectivity.

Lemma 4 Let G be a connected, bipartite, regular graph of degree d ≥ 3. Then,
G satisfies the Matching Independence Property if and only if G is 3-edge-connected.

Proof. The “ if ” part follows from Lemma 3. The other direction will be proved
by contradiction.

Suppose that G has a cut of two edges e, e′. Let V ′, V ′′ be the vertex sets of the
two components in G − e − e′. Since G is d-regular and bipartite, the assumption
d ≥ 3 implies that the endpoints of e and e′ belong to distinct vertex classes of V ′.
Indeed, the number of edges induced by V ′ equals the degree sum in either vertex
class of V ′, therefore those two degree sums, say s1 and s2, must be equal. On the
other hand, precisely two vertices of V ′ (the endpoints of e and e′) have degree d−1
in the induced subgraph, and all the other vertices have degree d. Thus, if the two
endpoints were in the same vertex class, then we would obtain |s1−s2| ≡ 2 (mod d),
i.e., s1 �= s2 for d ≥ 3, a contradiction.

It follows further, again by comparing s1 and s2, that V ′ contains the same
number of vertices in both of its classes ; i.e., |V ′| is even. Consequently, every
perfect matching of G that contains e, has to contain a further edge joining V ′ and
V ′′. Since e′ is the unique such edge, we obtain the contradiction to the MIP that
there is no perfect matching in G containing e but not e ′. �

It is worth noting that in 3-regular graphs the concepts of 3-edge-connectivity
and 3-vertex-connectivity mean the same thing. Moreover, the standard argument
on vertex degrees yields that if a regular bipartite graph is connected, then it is
2-vertex-connected as well.

One may note further that the 2-regular bipartite graphs (i.e., the vertex-disjoint
unions of even cycles) do not satisfy the Matching Independence Property, because
each of their components has only two perfect matchings. Therefore, the condition
d ≥ 3 might be omitted from Lemma 4.

At the end of this section we prove the characterization theorem of minimally
non-preperfect line graphs.

Proof of Theorem 2. Suppose that L(G) is minimal non-preperfect, G �= C2t+1.
The minimality with respect to non-preperfectness implies that G is connected,
and regularity follows by (∗), because the maximum clique size in L(G) equals the
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maximum degree in G (for G �= K3). Thus, G has to be one of the graphs listed in
Lemma 2. Now, K3 and K4 are excluded because they are preperfect. Consequently,
G is bipartite, and hence also 3-edge-connected, by Lemma 4. �

4 The easy cases

In this short section we prove Claim i for i = 0, 1, 2, 3. We shall assume throughout
that H ∈ NPR.

Proof of Claim 0. By (∗), H should have no edges, but then it would be preper-
fect. �

Proof of Claim 1. No vertex of degree 1 can satisfy (∗). �

Proof of Claim 2. Suppose d(x) = 2. The two neighbors of x are nonadjacent,
otherwise we get a contradiction to (∗), independently of whether ω(H) = 3 or
ω(H) ≥ 4. Thus, ω(H) = 2, again by (∗) ; and, by a theorem of Hammer and
Maffray [2], H is nonbipartite as it is not preperfect. Consequently, H contains an
odd hole which must then be identical to H , by minimality. �

Proof of Claim 3. Suppose d(x) = 3. We shall deduce the contradiction that
x is predominated. Note that ω(H) ≥ 3, for otherwise either H contains (but is
not identical to) an odd hole, or H is bipartite, both contradicting the assumption
H ∈ NPR.

Consider now the subgraph 〈N(x)〉 induced by the three neighbors of x. It should
be one of the following four graphs :

1. 3K1

2. K1 +K2

3. P3

4. K3

For 〈N(x)〉 
 3K1, x cannot be contained in any maximum clique. In the other
three situations, x is adjacent to a vertex contained in all the largest cliques sitting
on x. Thus, in either case, we obtain a contradiction to (∗). �

5 Regular graphs of degree 4

Here we make the main preparations for the proof of Claim 4. The final argument
will then be presented in the next section.
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Assume that H ∈ NPR is 4-regular, and, similarly to the proof of Claim 3,
consider the subgraphs 〈N(x)〉 induced by the vertex neighborhoods. Now, those
subgraphs on four vertices can be of the following 11 types :

1. 4K1

2. 2K1 +K2

3. 2K2

4. K1 + P3

5. K1 +K3

6. P4

7. S4

8. K4 − P3

9. C4

10. K4 − e

11. K4

Eight of these eleven graphs are easily ruled out along the lines of the proof
of Claim 3, on applying (∗). (In the present situation, 4K1 does not admit any
maximum clique on x, and in seven further cases there exists at least one vertex in
the neighborhood of x which belongs to all largest cliques containing x.)

The hard cases are the 3rd, 6th, and 9th ones. We can classify the vertices
according to them, as follows. A vertex x of H is said to be a

M-vertex if its neighborhood induces a matching, i.e., 〈N(x)〉 
 2K2,

P-vertex if its neighborhood induces a path, i.e., 〈N(x)〉 
 P4,

C-vertex if its neighborhood induces a cycle, i.e., 〈N(x)〉 
 C4.

We shall see in the next subsections that each type behaves differently. The
M-vertices will provide us with the line graphs, the P-vertices create the “ isolated ”
example of C7, and it will turn out that the C-vertices cannot occur in any H ∈
NPR4. Actually, we do not know whether or not there exists any minimal non-
preperfect graph containing at least one C-vertex.
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5.1 C-vertices

In this subsection we prove the following

Lemma 5 If x is a C-vertex in a 4-regular graph H ∈ NPR, then the block
containing x is not an endblock of H .

Proof. Suppose that x is a C-vertex and that its neighbors v1, v2, v3, v4 form a C4

in this order. If x is not predominated, then the clique number of H equals 3, and if
x does not predominate any of its neighbors, then each vi (1 ≤ i ≤ 4) is incident to
at least one further triangle. Since each vi is adjacent to precisely one vertex outside
the closed neighborhood of x, there are two possible situations. Either there is a
vertex y adjacent to all the four vi, or there are two distinct vertices z, u such that
both {v1, v2, z} and {v3, v4, u} induce K3 in H . (It may be necessary to renumber
the vi to ensure that {v1, v2, z} is indeed a triangle, but this can always be done
since N(x) induces a cycle.)

In the first case, involving the single vertex y, the vertices v1, v2, v3, v4, x, y al-
ready induce a 4-regular subgraph in H , and since H is connected, this graph must
be the entire H . Consequently, H 
 K6 − 3K2, and therefore H is preperfect,
contrary to our assumptions.

In the second case, we claim that both z and u are cut-vertices of H . This will
immediately imply that x does not belong to an endblock.

Observe that all the four neighbors of x and of the vi are inside the set {v1, v2, v3,
v4, x, z, u}, therefore the other two neighbors of z and u not yet detected cannot
belong to the closed neighborhood of x. Moreover, z and u are nonadjacent, for
otherwise zv1xv3u is an induced C5 in H .

Choose a neighbor z′ of z and u′ of u, both outside of N(x), and consider the
graph H ′ = H − z − u. Clearly, {x, v1, v2, v3, v4} induces a connected component
in H ′, not containing any of z ′ and u′. We claim that z ′ and u′ belong to distinct
components of H ′. Indeed, otherwise we can choose a chordless path P = y0y1 · · · yt
joining z = y0 and u = yt in H ′ ∪ {z, u}. If P has odd length, then y0y1 · · · ytv3xv1
is an induced odd cycle, and if P has even length, then y0y1 · · · ytv3v2 is an induced
odd cycle. In either case, we have arrived at a contradiction. �

5.2 P-vertices

The goal of this subsection is to analyze the possible presence of P-vertices in
4-regular, minimally non-preperfect graphs. One important case will result in the
“ isolated ” example C 7.

Lemma 6 If an endblock of a 4-regular graph H ∈ NPR contains a P-vertex,
then H = C7.
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Proof. Let x be a P-vertex, and suppose that its neighbors v1, v2, v3, v4 induce
the path P4 in this order. The general viewpoint of the analysis below will be to
interpret the subgraph under consideration as the union of two vertex-disjoint paths

P ′ = x0x1x2 · · ·xt

and
P ′′ = y1y2 · · · yt

joined by the edges

yixi−1 , yixi ∀ 1 ≤ i ≤ t .

Already the starting configuration can be expressed in this way as P ′ = v1xv4 and
P ′′ = v2v3 (t = 2), but the small values up to t = 3 deserve separate attention,
therefore we treat them first.

To fix terminology, in a (not necessarily induced) subgraph H ′ of H , the missing
degree of a vertex x is defined as 4 − dH′(x), i.e., it is meant to express how many
further edges of H are incident to x. Those edges of H −H ′ will be referred to as
missing edges. For instance, in the starting configuration of N(x)∪{x}, the missing
degree is 0 for x, 1 for v2 and v3, and 2 for v1 and v4. Generally, in P ′ ∪ P ′′, it is 2
for x0 and xt, 1 for y1 and yt, and zero for all the other vertices.

The method of the proof below is to investigate an increasing part of the block
containing x, in order to show that either the block itself is isomorphic to C 7 (and
hence so is H , too), or it contains more than one cut-vertex in H (i.e., is not
an endblock), or contains an odd hole or a predominated vertex (these cases are
excluded by the minimality of non-preperfectness).

Case 1. Every triangle containing v2 (or v3) also contains x.

In this case, x predominates v2 (or v3). �

Therefore, we may assume in the sequel that the missing edge ei incident to
vi (i = 2, 3) is contained in a triangle. We distinguish between two situations,
depending on whether or not e2 and e3 share a vertex.

Case 2. v2 and v3 have a common neighbor y �= x.

In this situation, the role of v1, v4, and y is symmetric. Observe first that if
those three vertices are not mutually nonadjacent, then v2 or v3 is a C-vertex, and
therefore the 2-connected component of x is not an endblock, by Lemma 5. Hence,
assume that yv1, yv4 /∈ E(H). Now, any two of v1, v4, and y are joined by induced
paths of both lengths 2 and 3, therefore we can apply an argument similar to the
one in the last paragraph of the proof of Lemma 5. Namely, if v1, v4, y are not all
cut-vertices, then any shortest path in H − x− v2 − v3 that joins two of them, and
does not pass through the third one, can be completed to an odd hole in H . �

We may now suppose e2 ∩ e3 = ∅. Assuming that Case 1 does not apply, each of
e1 and e2 creates a triangle in H ; i.e., there exist (distinct) vertices z2, z3 such that
both {v1, v2, z2} and {v4, v3, z3} induce K3 in H .
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Case 3. z2z3 ∈ E(H).

Observe that in this case both xv2z2z3v4 and xv3z3z2v1 are cycles of length 5.
The only possibility to make them non-induced is to draw the edges v1z3 and v4z2,
because the missing degree of x, v2, and v3 is zero. Hence, we have obtained H = C7

(in the order xz2v3v1v4v2z3 along the complementary cycle H). �

Hence, we may assume z2z3 /∈ E(H). We can argue, again as in the first case,
that the (currently unique) missing edge at v1 has to be contained in a further
triangle v1z1z2, or else v2 predominates v1. Similarly, a triangle z3z4v4 is needed
to avoid the predominatedness of v4. Observe further that z1 �= z4, for otherwise
z1v1v2v3v4 induces a C5 in H .

At this point we arrived at the general case, mentioned at the very beginning
of the proof, viewing z1v1xv4z4 as P ′ and z2v2v3z3 as P ′′. In order to derive a final
contradiction, let us choose now the pair (P ′, P ′′) in the block containing x in such
a way that the value of t is as large as possible. By what has been said, we may
assume t ≥ 4.

To simplify notation, we denote x = x0, x
′ = xt, y = y1, y

′ = yt. The missing
degree is 2 for x and x′, 1 for y and y′, and zero for all the other vertices of P ′∪P ′′.
Let yz and y′z′ be the missing edges at y and y ′, respectively (where these two edges
may or may not coincide).

We may assume that zx, z ′x′ ∈ E(H), otherwise y or y′ would be predominated
by x1 or xt−1, respectively. We now distinguish between four situations, according
to the positions of z and z ′.

Case 4.1. y1yt ∈ E(H).

This case is equivalent to assuming z = y ′, and also z′ = y. Then

y1y2 · · · yt , y1x1x2 · · ·xt−1yt

are induced cycles of H , of lengths t and t+1. Since t ≥ 4, one of these cycles is an
odd hole in H .

Case 4.2. x0xt ∈ E(H) and y1yt /∈ E(H).

This assumption includes, as particular case, the situations where z = x ′ and/or
z′ = x. Now,

x0x1 · · ·xt , x0x1y2 · · · yt−1xt−1xt

are induced cycles of lengths t + 1 and t + 2, one of them inducing an odd hole in
H .

Case 4.3. z = z′ /∈ {x, x′, y, y′}, and x0xt /∈ E(H).

Now the subgraphs induced by P ′ ∪ {z} and P ′′ ∪ {z} are chordless cycles of
lengths t+ 2 and t+ 1, respectively, one of them being an odd hole.
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Case 4.4. z �= z′, z, z′ /∈ {x, x′, y, y′}, and x0xt /∈ E(H).

Extending P ′′ with the two new vertices z and z ′, we obtain an induced path P ′′′

of length t + 1. Rename the original P ′ as P ′′, and the new P ′′′ as P ′. In this way,
the corresponding value of t gets increased, contradicting the choice of the original
pair (P ′, P ′′). �

6 Proof of the characterization theorem

Here we combine the results of the previous sections, to complete the proof of
Claim 4, and so of Theorem 1 as well. We shall need one further observation,
summarized in the next assertion, that establishes the link between line graphs and
those 4-regular graphs in which every vertex is an M-vertex.

Lemma 7 Suppose that H ′ is a connected graph such that each of its vertices
has degree 2 or 4, and 〈N(x)〉 is a matching of d(x)/2 edges, for each x ∈ V (H ′).
Then H ′ is the line graph of a graph of maximum degree 3.

Proof. If H ′ = K3, then H ′ = L(S4), and the assertion is obvious. For larger
H ′, denote by T the set of triangles (subgraphs isomorphic to K3) in H ′. The
conditions above imply that the members of T are mutually edge-disjoint, and so
E(H ′) is partitioned into the triangles of H ′.

Let GT be the graph whose vertices are the triangles of H ′, two of its vertices
being adjacent if and only if the corresponding two triangles share a vertex in H ′.
(In other words, GT is the line graph of the 3-uniform hypergraph T .) Moreover, for
each degree-2 vertex x of H ′, we take a distinct new vertex and join it in GT to the
vertex that represents the unique triangle of H ′ containing x. In particular, if two
vertices of degree 2 in H ′ are adjacent, then the new pendant vertices corresponding
to them will have the same neighbor in GT . We denote by G′

T the graph obtained.

One can easily see that G′
T is a graph with all vertex degrees equal to 1 or 3,

and that H ′ = L(G′
T ). �

Returning to the proof of Claim 4, let H ∈ NPR be a 4-regular graph. We know
that H is connected. By the results of Section 5, the vertices of H are classified as
M-vertices, P-vertices, and C-vertices.

If H is 2-connected, then, by Lemmas 5 and 6, either H = C 7 or all vertices of H
are M-vertices. In the latter case, the conditions of Lemma 7 are fulfilled forH ′ = H ,
so that H = L(G) is a line graph of some graph G of maximum degree 3. Applying
Theorem 2, we conclude that G is bipartite, 3-regular, and 3-edge-connected. This
completes the proof for 2-connected H .

Suppose that H has some cut-vertices. Consider an endblock B of H , incident
to a cut-vertex y. Since the neighborhood of a C-vertex and also of a P-vertex is
connected, y has to be an M-vertex, having two of its (adjacent) neighbors inside
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B and the other two of them outside B. Moreover, Lemmas 5 and 6 imply that
each vertex z �= y of B is an M-vertex, with all its neighbors inside B. Thus, it
follows by Lemma 7 that B = L(GB) for some graph GB. From the proof of the
lemma we also see that GB has precisely one vertex z of degree 1, adjacent to the
vertex u representing the triangle incident to y, and all the other vertices in GB

have degree 3.

Consider the graph GB−z. It has just one vertex of degree 2 (namely, u), and all
its other vertices are of degree 3. Consequently, for each of its vertex partitions into
two classes, the partial degree sums are unequal. Thus, GB cannot be bipartite.
But, on the other hand, GB can contain no triangles (otherwise the endblock B
would contain a P-vertex or a C-vertex), and no odd cycles either (as an odd cycle
on at least 5 vertices in GB yields a cycle of the same length in B, and so is excluded
because H is supposed to be minimal with respect to non-preperfectness). This final
contradiction completes the proof.

7 Concluding remarks and open problems

In connection with the results presented above, some problems arise in a natural
way. First, in order to complete the characterization of minimally non-preperfect
line graphs, an answer to the following question would be needed in combination
with Theorem 2.

Problem 1 Describe the structure of those regular, 3-edge-connected bipartite
graphs which do not contain any regular, 3-edge-connected proper subgraph. In
particular, do there exist such graphs of arbitrarily large vertex degree ?

Another problem of central importance in the present context is the following
one, a negative answer to which has been conjectured by Hougardy, Maffray and
Sebő [3].

Problem 2 Does there exist any minimally non-preperfect graphs such that nei-
ther the graph nor its complement is a line graph ?

By Theorem 2, a negative answer would have several consequences ; but we are
not convinced that no such graph exists. On the other hand, it may be the case
that at least under some further assumptions, the line graphs are the really relevant
structures, e.g. if the clique number is bounded above by a fairly small integer. Here
we formulate the following subproblem.

Problem 3 Characterize those graphs H ∈ NPR which have ω(H) = 3.

If all these graphs turn out to be line graphs, then they get characterized by
Theorem 1, since H has to be 4-regular in that case. At this point it may be worth
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noting that in the class of the line graphs of connected 3-regular bipartite graphs,
non-preperfectness and minimal non-preperfectness are equivalent properties.

A more general question is

Problem 4 Do there exist non-regular graphs in NPR ?

Relating NPR to the class of critically perfect graphs [6], we ask

Problem 5 Does there exist a perfect, minimally non-preperfect graph such that
neither the graph nor its complement is critically perfect ?

Problems 2 and 5 are related in the following way. It is shown in [5] that the line
graph of every 2-connected bipartite graph satisfying the Matching Independence
Property is critically perfect. On the other hand, for every minimally non-preperfect
line graph L(G), the graph G is connected and regular (if we exclude isolated ver-
tices), therefore G is 2-connected as well. This argument shows that a negative
answer for Problem 2 would imply that for Problem 5, too. It may be the case,
however, that NPR \ {C2t+1, C2t+1 | t ≥ 2} is a subclass of the critically perfect
graphs even if not all H ∈ NPR are line graphs or complements of line graphs.

Problem 6 Prove that every minimally imperfect graph is minimally non-pre-
perfect.

Certainly, this would follow immediately from the validity of the Strong Perfect
Graph Conjecture, but we expect that there is an independent proof to it.

Finally, it may be noted that Claim 3 remains valid in a stronger form, namely
its proof exhibits clique-predominated vertices, without any need for maximum in-
dependent sets. In this way one can show that if a vertex of degree 3 is not predom-
inated by any of its neighbors, then the graph either is bipartite or contains an odd
hole. This is not the case anymore in 4-regular graphs, however, because e.g. in the
graph K6 − 3K2 only the three non-edges establish predomination.
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