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Abstract

Designing low-cost networks that survive certain failure situations is one of the prime

tasks in the telecommunication industry. In this paper we survey the development of models

for network survivability used in practice in the last ten years. We show how algorithms

integrating polyhedral combinatorics, linear programming, and various heuristic ideas can

help solve real-world network dimensioning instances to optimality or within reasonable

quality guarantees in acceptable running times.

The most general problem type we address is the following. Let a communication demand

between each pair of nodes of a telecommunication network be given. We consider the

problem of choosing, among a discrete set of possible capacities, which capacity to install

on each of the possible edges of the network in order to

(i) satisfy all demands,

(ii) minimize the building cost of the network.

In addition to determining the network topology and the edge capacities we have to provide,

for each demand, a routing such that

(iii) no path can carry more than a given percentage of the demand,

(iv) no path in the routing exceeds a given length.

We also have to make sure that

(v) for every single node or edge failure, a certain percentage of the demand is reroutable.

Moreover, for all failure situations feasible routings must be computed.

The model described above has been developed in cooperation with a German mobile

phone provider. We present a mixed-integer programming formulation of this model and

computational results with data from practice.

1 Introduction and Survey

In this paper we describe a series of mathematical models that have been developed in the recent

years to describe and solve various telecommunication network design problems. Along with the

solution methodology the users of these models have become more sophisticated, demanding

the integration of tasks into one model that have traditionally been solved in a hierarchical

fashion. A typical sequence of such decisions consists, among other issues to be considered, of

the choice of technologies to be used, the topological design of the network, the planning of the
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capacities of the network components, a decision about routing strategies, and the treatment

of failure situations. Some companies, such as our partner e-plus, handle this complex suite of

decisions in one integrated mixed-integer linear programming model, as we will describe later.

Before reviewing the literature on telecommunication network design we present a framework

that enables us to classify the models.

The problems we consider have the following in common. The input consists of two graphs on

the same node-set V , the supply graph G = (V,E) and the demand graph H = (V,D).

The set V consists of the nodes of the logical transport network. In the application we will

focus on, V is the set of MSC locations (MSC = Mobile Switching Center); in some cases BSC

locations are included (BSC = Base Station Controller). The edge-set E of the supply graph G

is the set of all physical links that may potentially be used (in the planning period). Different

types of links (representing different technologies, e.g., microwave connections, copper or fiber

optic cables, leased lines, etc.) are represented by parallel edges. The demand graph H (for

the planning period) contains an edge whenever there is a positive demand between its two end

nodes. For each edge uv ∈ D of the demand graph, the value

• duv ∈ Z+ is the communication demand between nodes u and v.

While the characteristics of the supply graph are relatively stable (they change, e.g., with

hardware and suppliers), demand predictions are based on statistics and marketing forecasts.

They are altered frequently, and scenario analysis has to be made to take different possible

evolvements of the market into account.

Given this as basic input there are several levels of possible network design problems.

Capacities

It may be that the network designer is only interested in the topological structure and has

decided to determine link capacities in a later stage. It may also be that capacities are no issue

since the standard technology supplies enough for the application in question. We label this

situation no capacities. If capacity planning is necessary, capacity may be selected arbitrarily

from a certain range, or only finitely many choices may be available. We label these possibilities

continuous capacities and discrete capacities.

Survivability

It has become common to call a network survivable if it has been designed in such a way

that the network is operational (in some sense to be made specific) even if certain network

components fail. If the network components are very reliable and impact on the components

from outside is unlikely, survivability may not be an issue. We say that no survivability

is considered. A frequently used method to guarantee topological survivability is to require

that the supply network to be designed contains, for each pair of nodes, a certain (node-pair

dependent) number of node- and/or edge-disjoint paths between these nodes. Making reference
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to the graph theoretical background of this concept we say that k-connectivity is required.

If routing is an integral part of the network design problem a reasonable strategy to keep the

network “alive” in failure situations is to require, that for every pair of demand nodes, no

path of the network carries more than a certain percentage of the total traffic between the two

nodes. This concept runs under the name diversification. In case a model integrates capacity

planning and routing, a natural variation of the k-connectivity concept is to require, that, for

every pair of demand nodes and for every failure situation, a certain percentage of the traffic

demand between the node pair can be routed. This concept is called reservation. We present

in Section 2 two different reservation methods which differ in the way the rerouting is treated.

Path length

In case of very tight capacities, some connections, i.e., paths carrying traffic between demand

nodes, turn out to be long. For various reasons (e.g., to reduce time delay or computer load) it

may be advisable to restrict the length of communication paths. Thus there are models with

and without path-length restriction.

Network Dimensioning Models: A Survey

In the last years several groups of authors considered various combinations of capacity and

survivability models. We briefly review the four main directions.

No capacities and k-connectivity

The uncapacitated problem with connectivity requirements was one of the first network design

problems investigated. It includes the Steiner-tree problem as a special case. Monma and

Shallcross present a heuristic approach for the 2-connectivity case in [15]. Their heuristics

produce good solutions for the “LATA networks” of Bellcore (with up to 116 nodes) in short

running times. Theoretical investigations on the structure of optimal solutions can be found

in Monma, Munson and Pulleyblank [14]. Grötschel, Monma and Stoer develop in [8, 9] a

framework (based on branch&cut methods) to solve the LATA networks of Bellcore for low-

connectivity (k ≤ 2) instances to optimality. Furthermore, Stoer [17] reports that special

high-connectivity problems (k > 2) can be solved to optimality for up to 500 nodes. A detailed

survey of the work on this type of survivable networks can be found in [10].

Continuous capacities and reservation

Minoux [13] was the first to consider survivability in a generalized multicommodity-flow model

with continuous capacities. He reports that instances with up to 40 nodes can be solved

with an accuracy of about 5%. In cooperation with France Telecom, Lisser, Sarkissian and

Vial [11] develop another model including non-discrete capacities and survivability. In [11]

two survivability models are presented, both different from ours. In both models, part of the
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demand is routed in a separate network, called spare network, in case of a failure. The local-

survivability model routes only the failing flow, and the global-survivability model routes only

the affected demands in the spare network. Tests with up to 53 nodes are reported.

Discrete capacities and no survivability

Several models in the literature consider the installation of discrete capacities without address-

ing survivability issues. Moreover, these models restrict the possible capacities to multiples of

one or two basic capacities. Bienstock and Günlük [5] solve ATM network design problems

with real-life data for instances of up to 16 nodes to optimality. Their model includes flow

costs, and the capacities can be chosen as combinations of two basic technologies (OC3 and

OC12 facilities). In another study with one basic technology Bienstock, Chopra, Günlük, and

Tsai (see [4]) solve “New York area problems” with up to 15 nodes and “Norwegian Problems”

with up to 27 nodes (supplied by M. Stoer) almost to optimality. Magnanti, Mirchandani, and

Vachani [12] investigate the same problem without flow costs and solve randomly generated

instances with up to 15 nodes with gaps about 10%. Considering a relaxation (based on cut

inequalities) of a network design problem for one basic technology Barahona [3] solves instances

with up to 47 cities with an accuracy of 5-10%.

Discrete capacities and diversification/reservation

Dahl and Stoer [6, 7] were the first to consider a discrete capacity structure and survivability

issues in the same model (for Norwegian Telecom Research). They solve a large number of

the instances (from 37 to 118 nodes with a very sparse supply graph) to optimality. But they

also report considerable difficulties with some of the instances. Their work is the basis of our

investigations. We are, in particular, grateful for the contributions of Mechthild Stoer who was

a member of the project team at Zib (Konrad-Zuse-Zentrum für Informationstechnik Berlin)

in the beginning of our study. Models that incorporate discrete capacities and survivability are

the main topic of the following sections.

2 Discnet – Models

After having reviewed various models considered by other authors, we now present the models

that we developed for e-plus Mobilfunk GmbH, one of the mobile-communication service

providers in Germany. We distinguish between different capacity and survivability models. In

particular, we consider two ways to model the discrete capacity structure and three ways to

achieve survivability in the network. Any combination of the two leads to a different mixed-

integer programming formulation. All of these are integrated in our network dimensioning

tool Discnet (DImensioning Survivable Cellular-phone NETworks). Our solution approach is

sketched in Section 3, results and an outlook are given in Section 4.
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2.1 Capacity Models

We distinguish between two different capacity models. First, we consider the case of an arbi-

trary, but finite, set of possible capacities for each edge of the supply graph. Then we discuss

the case where a small set of basic capacities is given such that each capacity is an integral

multiple of each smaller capacity; a reasonable assumption in telecommunications. In Germany,

for instance, Deutsche Telekom offers the basic capacities 30, 480 and 1920 channels and in the

United States the technologies DS0, DS1 and DS3 (DS = Digital Signal Level) come along with

capacities 1, 24 and 672.

In our practical application, it was natural to assume that every edge e ∈ E of the supply graph

is already equipped with an initial capacity C0
e ∈ Z+ (possibly C0

e = 0) of cost K0
e = 0, the

so-called free capacity. This applies to both capacity models.

Discrete Capacities

For each e ∈ E, there is a finite set of capacities specified by the following data:

• Te ∈ Z+, where Te is the number of possible additional capacities that can be

installed,

• Ct
e ∈ Z+, 1 ≤ t ≤ Te, the potential capacities (we assume that C0

e < C1
e <· · · < CTe

e ),

• Kt
e ∈ Q+ , 1 ≤ t ≤ Te, the cost of installing capacity Ct

e .

It has turned out to be useful to call the capacities C1
e, . . . , C

Te
e breakpoint capacities, and

hence Te the number of breakpoints, and to consider the incremental capacities and costs

• cte := Ct
e − Ct−1

e , 1 ≤ t ≤ Te,

• kte := Kt
e −Kt−1

e , 1 ≤ t ≤ Te,

instead of the original values. For notational reasons, we set c0e := C0
e and k0e := K0

e.

For each edge e ∈ E we introduce an ordered set of 0/1 variables x0e ≥ x1e ≥ · · · ≥ xTe
e . Since

we assume that a free capacity C0
e is always installed, we set x0e := 1. Choosing capacity Cτ

e ,

0 ≤ τ ≤ Te, is equivalent to setting x0e = x1e = · · · = xτe = 1 and xτ+1
e = · · · = xTe

e = 0.

The objective is to minimize the total cost of installing the necessary capacities on the edges of

the supply graph. This is formulated as

min
∑

e∈E

Te∑

t=1

ktex
t
e . (1)

The 0/1-variables associated with a supply edge must satisfy the ordering constraints

1 = x0e ≥ x1e ≥ · · · ≥ xTe
e ≥ 0 for all e ∈ E , (2)
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and the integrality constraints

xte ∈ {0, 1} for all e ∈ E and t = 1, . . . , Te , (3)

by definition. For notational convenience, we introduce auxiliary variables

ye :=
Te∑

t=0

ctex
t
e for all e ∈ E , (4)

representing the capacities installed on the supply edges.

Divisible Basic Capacities

In the second capacity model we can install on all supply edges combinations of a common set

of basic capacities. These basic capacities satisfy the property that each capacity is an integral

multiple of each smaller capacity.

We are given a set T = {τ1, . . . , τn} of technologies, one for each different type of line that can

be installed on a supply edge. With each technology τ ∈ T , we associate a basic capacity Cτ

(assuming w.l.o.g. Cτ1 ≤ · · · ≤ Cτn) and the edge dependent installation costs (which include

a fixed cost and a length-dependent cost that varies with the total length of a link). We assume

that the basic capacities satisfy the divisibility property, i.e.,

Cτi+1

Cτi
∈ Z+

for all i = 1, . . . , n− 1. We refer to the smallest basic capacity as the unit capacity.

For each supply edge e ∈ E we are given a set t(e) ⊆ T of available technologies. The capacities

that can be installed on edge e are integer combinations of the basic capacities of the available

technologies. For this purpose we introduce, for every supply edge e ∈ E and every technology

τ ∈ t(e), a nonnegative integer variable xτe to denote the integral multiple of Cτ . The variables

xτe may be restricted by an upper bound uτe . For each τ ∈ t(e) we denote by Kτ
e the cost of

installing the basic capacity Cτ on supply edge e ∈ E.

Again, the objective is to minimize the total cost of installing the necessary capacities on the

edges of the supply graph. This is formulated as

min
∑

e∈E

∑

τ∈t(e)
Kτ

e x
τ
e . (5)

The constraints that must be satisfied are the nonnegativity, the integrality, and possibly the

upper bound constraints

0 ≤ xτe ≤ uτe and xτe ∈ Z+ for all e ∈ E and all τ ∈ t(e) , (6)

where the capacity ye of a supply edge e ∈ E is

ye = C0
e +

∑

τ∈t(e)
Cτxτe . (7)
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2.2 Combining Capacities, Demands and Routings

Combining any of the two capacity models with the multicommodity flow conditions for the

non-failure situations, to be described below, we obtain the basic mixed-integer programming

formulations mentioned in the beginning.

For the network we want to design, we also wish to determine the routings of the demands

uv ∈ D for each operating state s of the network. The operating states are

• the normal state (s = 0), which is the state with all nodes and edges operational,

and, in case we wish to consider failure situations,

• the failure states, which (in our case) are the states with a single node u (s = u) or a

single edge e (s = e) nonoperational.

We denote by Gs = (Vs, Es) the supply graph for the operating state s, where Vs is the set of

nodes that are still operational in operating state s, and, likewise, Es is the set of the operational

edges in operating state s. Similar notational conventions apply to the demand graph.

We impose another condition to the paths used to route the demands in the normal operating

state. For each demand uv ∈ D we introduce

• �uv ∈ Z+, the path length restriction; �uv is the maximum number of supply edges

allowed in any path on which demand between u and v is routed.

For each operating state s and each demand edge uv ∈ Ds, let P(s, uv) denote the set of valid

[u, v]-paths in Gs. If s is the normal operating state, a [u, v]-path in G = G0 is valid if its

length (number of edges) is at most �uv. We call such a path short. If s is a failure state then

any [u.v]-path in Gs is valid. For each operating state s, each edge uv ∈ Ds, and each path

P ∈ P(s, uv), we define a variable f(s, uv, P ), called flow or routing variable, that represents

the communication traffic between the nodes u and v routed on path P in operating state s.

The constraints for the routings in the normal operating state are the capacity, demand and

nonnegativity constraints. The capacity constraints imply that for each supply edge e ∈ E the

flow through e may not exceed its capacity; the routing variables must be chosen in such a way

that all the demands duv in the normal operating state are satisfied. This yields the demand

constraints. Putting this together with the nonnegativity of the routing variables we get
∑

uv∈D

∑

P∈P(0,uv):e∈P
f(0, uv, P ) ≤ ye for all e ∈ E , (8)

∑

P∈P(0,uv)

f(0, uv, P ) = duv for all uv ∈ D , (9)

f(0, uv, P ) ≥ 0 for all uv ∈ D and P ∈ P(0, uv) . (10)

Combining the capacity constraints (1) - (4) or (5) - (7) with the routing constraints (8), (9),

(10) for the normal operating state we obtain two network design models that do not incorporate

survivability at all:
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(ND1) defined by the Discrete Capacities constraints (1) - (4) and (8), (9), (10), and

(ND2) defined by the Divisible Basic Capacities constraints (5) - (7) and (8), (9), (10)

If we only use one or two different technologies and if we do not impose any length restriction

on the paths our basic model (ND2) is exactly the model studied in [12, 5, 3] (see the paragraph

“Discrete capacities and no survivability” in Section 1).

2.3 Survivability Models

We now consider three different concepts to model survivability. Using diversified paths to

satisfy the demands, i.e., node-disjoint paths that do not carry more than a certain percentage

of a given demand, it is possible to achieve survivability with the advantage of no maintenance in

case of a component failure. However, as an obvious disadvantage it is not possible to guarantee

saving 100% of the demands in case of a failure; and, e.g., for more than 50% of each demand to

survive, at least three paths are required for each demand. An additional empirical drawback is

the high cost of implementing diversification. In order to satisfy a specified percentage of each

demand, in case a network component fails, the two other concepts make use of rerouting. If the

network designer opts for the reservation concept he also decides that, in case of a component

failure, the routings for all demands can (and in general have to be) changed. An alternative is

to consider the rerouting of those demands only that are affected by a failure. Both concepts

require higher maintenance efforts, but yield smaller network dimensioning costs.

Diversification

To implement this concept, the network designer has to specify

• the diversification parameter δuv, 0 < δuv ≤ 1, for all uv ∈ D; δuv is the maximum

fraction of the demand duv allowed to flow through any supply edge or node (other than

nodes u and v).

The node-flow constraints

∑

P∈P(0,uv):w∈P
f(0, uv, P ) ≤ δuvduv for all uv ∈ D and w ∈ V \{u, v} , (11)

and the edge-flow constraints

f(0, uv, P ) ≤ δuvduv for all uv ∈ D and P = {uv} , (12)

are the diversification constraints. The summation in the node-flow constraints is over all

short paths between nodes u and v that contain node w. These constraints restrict the amount

of flow dedicated to a particular demand that goes through a particular node, i.e., they ensure

that in the normal operating state, no more than a fraction δuv of the total demand duv between

nodes u and v flows through a single node w. The node-flow constraints imply that every edge
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e ∈ E carries no more than δuvduv of the traffic between u and v, unless e = uv. To cover

the latter case, the edge-flow constraints are used. These are employed only, of course, if E

contains edges between u and v (which are considered as paths P = {uv}). The constraints

(11) and (12) yield that the flow between u and v is diversified, i.e., is routed on at least � 1
δuv

�
node-disjoint paths.

Reservation

Here, the network designer has to specify

• the reservation parameter ρuv, 0 ≤ ρuv ≤ 1, for all uv ∈ D; ρuv is the fraction of the

demand duv that must be satisfied in a single node failure or a single supply edge failure.

The capacity and demand constraints for failure situations are
∑

uv∈Ds

∑

P∈P(s,uv):e∈P
f(s, uv, P ) ≤ ye for all s �= 0 and e ∈ Es, (13)

∑

P∈P(s,uv)

f(s, uv, P ) = ρuvduv for all s �= 0 and uv ∈ Ds . (14)

With inequality (13), the flow through a supply edge does not exceed its capacity in failure

situations, and with inequality (14), 100ρuv percent of the demand duv survive the failure of an

edge or a node, in case the network routing is switched to the new routings.

Rerouting of Affected Demands

For this concept the network designer has to specify

• the rerouting parameter σuv, 0 ≤ σuv ≤ 1 for all uv ∈ D; σuv is the fraction of the

demand duv that must be satisfied in a single node failure or a single supply edge failure,

without rerouting the paths that are not affected by the particular failure situation.

Here, the capacity and demand constraints for failure situations have to take care of the

unaffected normal operating state routings. Since we possibly impose a length-restriction on

the paths used to route a demand in the normal operating state, we introduce for each demand

uv ∈ Ds and each failure situation s ( �= 0) the symbol Ps(0, uv) to denote the set of short paths

in P(s, uv), i.e., P ∈ Ps(0, uv) iff P ∈ P(s, uv) and P has at most luv supply edges. We get the

additional constraints
∑

uv∈Ds

(
∑

P∈Ps(0,uv):e∈P
f(0, uv, P ) +

∑

P∈P(s,uv):e∈P
f(s, uv, P )) ≤ ye s �= 0, e ∈ Es, (15)

∑

P∈Ps(0,uv)

f(0, uv, P ) +
∑

P∈P(s,uv)

f(s, uv, P ) ≥ σuvduv s �= 0, uv ∈ Ds.(16)

Note, in case the normal operating state routings suffice to satisfy a demand uv ∈ D in a

particular failure situation s, i.e., if
∑

P∈Ps(0,uv)
f(0, uv, P ) ≥ σuvduv, there is no rerouting at

all necessary. Thus the maintenance effort is reduced.
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2.4 Mixed-Integer Linear Programming Formulations

Combining the two capacity and the three survivability models we get six mixed-integer linear

programming models for capacitated network dimensioning problems taking survivability issues

into account.

1. Divisible basic capacities + Diversification

2. Divisible basic capacities + Reservation

3. Divisible basic capacities + Rerouting of affected demands

4. Discrete (arbitrary) capacities + Diversification

5. Discrete (arbitrary) capacities + Reservation

6. Discrete (arbitrary) capacities + Rerouting of affected demands

Dahl and Stoer investigate the models 4. and 5. in [6, 7]. If we consider continuous instead

of discrete capacities then 2. (or 5.) is the model Minoux investigates in [13], and 3. (or 6.)

is the model of Lisser, Sarkissian and Vial (see [11]), if the affected demands are rerouted in a

separate network.

3 General Approach

In this section we recall the high-level description of the cutting-plane algorithm we developed

to solve the problems described in the previous section. In Figure 1 we show the flow chart of

the algorithm.

The algorithm consists of three main parts:

1. the multicommodity flow problems (FP) to test the feasibility of given capacities,

2. the cutting plane part to obtain a lower bound to the optimal solution value, and,

3. the heuristic algorithms to obtain feasible solutions.

The multicommodity flow problems are given by the constraints (8), (9), (10) plus the appro-

priate survivability constraints. These are, for diversification, the constraints (11) and (12); for

reservation the constraints (13) and (14), and for the survivability model rerouting of affected

demands the constraints (15) and (16). We apply a solution approach suggested by Minoux and

already used by Dahl and Stoer. See [13], [6] and [1] for details. However, if we use rerouting of

affected demands as the survivability model then the multicommodity flow problems are much

more complicated than in the other two cases, because the different operating states are linked

through the normal operating state routing.

In the cutting plane part we solve at each iteration a relaxation of the integer program defined

in the decision variables x of the chosen capacity model. In particular, we relax the integrality
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Figure 1: Flow chart of the algorithm.

conditions and we add inequalities valid for the polyhedron defined by the integral feasible

x-vectors.

For the capacity model Discrete Capacities, the valid inequalities we use are

(i) strengthened band inequalities, introduced by Dahl and Stoer [6],

(ii) strengthened metric inequalities, see [1], and

(iii) diversification bands, see [1], if diversification is the chosen survivability model,

and, for the capacity model Divisible Basic Capacities, the valid inequalities we use are

(i) partition inequalities introduced by Pochet and Wolsey [16],

(i) strengthened partition inequalities, see [2],

(iii) strengthened metric inequalities, see [2], and

(iv) diversification-cut inequalities, see [2], if diversification is the chosen survivability model.

Various exact and heuristic separation algorithms (see [6, 16, 1, 2]) have been developed for these

inequalities. We iterate the separation algorithms and the multicommodity-flow algorithms, for

the solution of (FP), as long as we can find violated inequalities. When this process stops, the

fractional solution in x-variables permits feasible solutions to all multicommodity-flow problems,

11



i.e., given these fractional capacities we can determine routings of all demands in all operating

states. If the x-variables are integral we have found an optimal solution. Otherwise, we resort

to heuristic algorithms (see [1, 2]) to obtain “good” integer solutions.

The cutting plane phase provides a lower bound and the best heuristic solution provides an

upper bound to the optimal solution value (the minimum cost for dimensioning the network).

Thus, we have a guaranteed quality of the solutions.

4 Computational Results and Conclusions

In this paper we have indicated various ways to define and mathematically model “survivability”

of telecommunication networks. We have described a general model that integrates several

concepts and sketched a cutting plane algorithm to solve it. This algorithm is the core of a

network design tool, called Discnet (DImensioning Survivable Cellular phone NETworks), we

developed for e-plusMobilfunk GmbH. The tool has been implemented in C++ and is already

being used at e-plus.

Our algorithm is able to produce reasonable solutions for practical instances in acceptable

running times. The e-plus instance sizes range from 11 nodes, 34 supply edges, 24 demand

edges to 17 nodes, 64 supply edges, 106 demand edges resulting in mixed-integer programs with

up to 1,000 integral and 100,000 continuous variables. The time to compute a lower and an upper

bound for the optimum value with a cutting plane algorithm and a set of 12 different heuristics,

respectively, ranges from a few seconds up to several hours, depending on the used survivability

model. The solutions calculated with diversification as survivability model turned out to be the

most expensive. We expected this observation since, in this model, the edge capacities for the

normal operating state must be chosen in such a way that all failure situations can be handled

without rerouting of traffic. The cheapest solutions are produced with the reservation concept,

which, however, requires additional hard- and software for the rerouting effort in failure cases.

The best compromise between cost and maintenance effort seems to be obtainable with the

survivability model rerouting of affected demands. The solutions are not much more expensive

than the comparable reservation solutions, and the rerouting effort is relatively small.

The quality of the solutions our methodology produces is, from a theoretical point of view, not

satisfactory yet. The “integrality gap” is still large and may even be in the range of 50% – 60%

for particularly difficult cases. We believe that this is due to a poor lower bound since, in this

complex mix of models, our cutting planes tend to be rather weak. Further investigations of

the polyhedral structure of the convex hull of the feasible solution are necessary.

However, the solutions we determine are about 15% – 20% better than the ones produced by

the network designers (using more traditional techniques) and result in considerable savings.

Moreover, with our approach we do guarantee that all side constraints are satisfied. Our

program DISCNET has become an intensively used planning tool. The designers compute the

topology and edge capacities under several different assumptions and parameter settings and,

after analysing all results, choose a network dimensioning suitable for the company needs that
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provides a good compromise between installation and maintenance costs.
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