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Abstract

The paper is concerned with the analysis of an s server queueing system in which the calls
become impatient and leave the system if their waiting time exceeds their own patience. The
individual patience times are assumed to be i.i.d. and arbitrary distributed. The arrival and
service rate may depend on the number of calls in the system and in service, respectively. For
this system, denoted by M(n)/M(m)/s + GI, where m = min(n, s) is the number of busy
servers in the system, we derive a system of integral equations for the vector of the resid-
ual patience times of the waiting calls and their original maximal patience times. By solving
these equations explicitly we get the stability condition and, for the steady state of the system,
the occupancy distribution and various waiting time distributions. As an application of the
M(n)/M(m)/s+GI system we give a performance analysis of an Automatic Call Distributor
system (ACD system) of finite capacity with outbound calls and impatient inbound calls, es-
pecially in case of patience times being the minimum of constant and exponentially distributed
times.

Mathematics Subject Classification (MSC 1991): 60K25, 68M20, 45F99, 60G10.

Keywords: M(n)/M(m)/s queue with impatient calls; state dependent arrivals and depar-
tures; finite capacity; integral equations; occupancy distribution; waiting time distribution;
ACD system.

1 Introduction

In this paper we consider an s server queueing system with an unlimited waiting room with
FCFS queueing discipline and where the calls waiting in the queue for service are impatient,
cf. Fig. 1.1. The arrival and service process are allowed to be state dependent with respect to
the number of calls in the system and busy servers, respectively. If n calls are in the system,
i.e. m = min(n, s) are in service and � = (n − s)+ are waiting, let λn ≥ 0 be the arrival rate
of calls and μm ≥ 0 the cumulative rate of finishing service by the servers. We assume that
the sequence of the arrival rates λn is bounded and that λn > 0 for n ≥ 0 or that there exists
a non-negative integer k such that λn > 0 for 0 ≤ n < s + k and λn = 0 for n ≥ s + k.
Concerning the cumulative rate of finishing service we assume that μ0 = 0, μs > 0. Each call
arriving at the system has a patience time U . If the virtual waiting time Wv (i.e. the time which
a call would have to wait until service) exceeds U then the call departs from the system and
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gets lost by impatience. The patience times are assumed to be i.i.d. with a general distribution
C(u) := P (U ≤ u), u ∈ IR+ which may be defective, i.e. P (U = ∞) > 0 is not excluded. This
system is denoted by M(n)/M(m)/s +GI, where M(n) denotes the arrival process depending
on the number of calls in the system, M(m) the service process depending on the number of
busy servers and GI stands for the i.i.d. patience times.

Remark 1.1. Note that if λn > 0 for 0 ≤ n < s + k and λn = 0 for n ≥ s + k then we have
the case of a limited waiting room with k waiting places. In case of λn = λ > 0 for n ≥ 0 and
μm = mμ for 0 ≤ m ≤ s the model corresponds to an M/M/s+GI system, cf. [BH]. The more
general case λn = λ > 0 for n ≥ s and μm = mμ for 0 ≤ m ≤ s is treated in [Ju2]. Relations to
the results of [BH] and [Ju2], which seem to be the mostly relevant papers to our, and further
references are given below.

λn
�

�

W v > U ��
��
s

..

.
��
��
1

μm

Fig. 1.1. The M(n)/M(m)/s+GI system with impatient calls and state dependent
arrival and departure rates, where n denotes the number of calls in the system,
m = min(n, s) the number of calls in service, Wv the virtual waiting time and U
the patience time.

The paper is organized as follows. In Sec. 2 a system of integral equations for the density
of the stationary process of the vector of the number of calls, residual patience times and
original maximal patience times of calls waiting for service in the system is derived. By a
separation approach corresponding to local balance, the integral equations are solved explicitly;
the densities are of an elementary structure. In Sec. 3 we derive the distribution of the number of
calls in the system (occupancy distribution), the stability condition and performance measures
as the impatience probability, the cumulative arrival rate and the waiting time distributions
of the served calls as well as of the calls leaving by impatience. In Sec. 4 an application of
the results to a performance analysis of an Automatic Call Distributor system (ACD system)
with impatient inbound calls and outbound calls is given. In case of patience times being the
minimum of constant and exponentially distributed times numerical algorithms and results are
presented. The results of the paper can also be used for constructing system approximations for
more complicated ACD systems. Such an approximation technique is given in [BB].

Let us now give some remarks concerning the literature and related papers. There is a lot of
papers dealing with impatience phenomena. It seems that Barrer [Ba1], [Ba2] was the first one
who dealt with the impatience problem; he analyzed the M/M/1+D system. Brodi [Br1], [Br2]
derived and solved for the M/M/1 +D system the corresponding integro differential equation.
The generalGI/GI/1+GI system is treated in Daley [Dal]. The many serverM/M/s+D system
was analyzed by [GK] by giving an explicit solution of the system of integro differential equations
for the work load of the s servers, which yields formulas for the performance measures. This
way was successfully proceeded by [Ju1] for impatience times being the minimum of a constant
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and an exponentially distributed time and [Ju2] for the general M/M/s+GI system where the
arrival intensities may depend on the number of busy servers (cf. also [GKo] p. 270). Later,
independently [HSk] and [BH] derived results for the M/M/s + GI system, too. Haugen and
Skogan [HSk] started with a result of Wallstrom [W], cf. also [Hau] for an s server system with
several Poisson input streams where each call type has an individual constant impatience time
and where the call in the system (waiting and served) may become ”exponentially” impatient.
By an appropriate limiting construction they obtained a formula for the waiting time distribution
for the M/M/s+GI system and a generalization of this by allowing departures for the case of
a limitation of the total time spent in the system (queue and server). In [BH] the Kolmogorov
equations are derived and solved for the virtual waiting time of a call with an unlimited patience.
By means of this quantity formulas for the relevant performance measures are derived. However,
the distribution of the number of calls in the M/M/s + GI system (those becoming impatient
and those which will be served) and of the more general model in [Ju2] was not treated in the
references mentioned above. Thus the results concerning the occupancy distribution given in
Sec. 3 are new – as far as we know – also for the special case of an M/M/s+GI system (treated
in [BH]) and of the model in [Ju2]. Note, that our model includes the case of a finite waiting
room, whereas this case is excluded in the models mentioned above.

In the literature, there are known several other mechanism where calls leave the system by
impatience: If the call can calculate its prospective waiting time at its arrival instant then it
leaves immediately if this time exceeds its patience. This strategy yields a better utilization of
the waiting places because they will not be occupied by calls which later abandon by impatience.
Also the patience may act on the sojourn times (waiting time plus service time). In this case
not all work is useful because a call may leave the system by impatience during its service. For
references and other more general models with impatience mechanism we refer to [BBH], [BH],
[Ju3], [Sin], [Teg] and the references therein.

2 A system of integral equations and its solution

Throughout this section we assume that the queueing system is stable and that the distribution
C(u) of the patience times is non-defective and has a continuous density c(u).

If n > s calls are in the system then there are � := (n−s)+ > 0 waiting calls in the system. (The
notation � := (n − s)+ will be used also in the following.) Accordingly to the FCFS discipline
we number the waiting calls consecutively in such a way that the i-th call arrived at the system
after the arrival of the (i − 1)-th call, i.e. they are numbered accordingly to their positions in
the queue. Let

N(t) – number of calls in the system at time t,

M(t) := min(N(t), s) – number of busy servers at time t,

L(t) := (N(t) − s)+ – number of waiting calls at time t,

(X1(t), . . . ,XL(t)(t)) – vector of the residual patience times of waiting calls ordered ac-
cordingly to their positions in the queue at t,

(U1(t), . . . , UL(t)(t)) – vector of the original maximal patience times of the waiting calls
ordered accordingly to their positions in the queue at t,
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p(n) := P (N(t) = n) – stationary distribution of the number of calls in the system,

P (n; x1, . . . , x�; u1, . . . , u�) := P (N(t) = n; X1(t) ≤ x1, . . . ,X�(t) ≤ x�;
U1(t) ≤ u1, . . . , U�(t) ≤ u�)

– stationary distribution on N(t) = n, where � := (n− s)+.

Obviously, for fixed n > s the support of P (n;x1, . . . , x�;u1, . . . , u�) is contained in

Ω� := {(x1, . . . , x�;u1, . . . , u�) ∈ IR2�
+ : u1 − x1 ≥ . . . ≥ u� − x� ≥ 0}. (2.1)

In view of the assumptions on C(u) the density

p(n;x1, . . . , x�;u1, . . . , u�) :=
∂2�

∂x1 · . . . · ∂x�∂u1 · . . . · ∂u�P (n;x1, . . . , x�;u1, . . . , u�) (2.2)

is continuous on Ω�; from a representation of this density given at the end of this section its
continuity on Ω� follows, too.

In case of n ≤ s we have the balance equations

(λn + μn)p(n) = 1I{n > 0}λn−1p(n− 1) + μn+1p(n+ 1), n = 0, 1, . . . , s− 1, (2.3)

(λs + μs)p(s) = λs−1p(s− 1) +

∫
IR+

p(s+ 1; 0;u)du + μs

∫
IR2

+

p(s+ 1;x;u)dxdu. (2.4)

In view of μ0 = 0 by summing the first n+ 1 equations of (2.3) we obtain

λnp(n) = μn+1p(n+ 1), n = 0, 1, . . . , s− 1. (2.5)

Therefore, (2.4) is equivalent to

λsp(s) =

∫
IR+

p(s+ 1; 0;u)du + μs

∫
IR2

+

p(s+ 1;x;u)dxdu. (2.6)

In case of n > s and (x1, . . . , x�;u1, . . . , u�) ∈ Ω�, which in view of (2.1) especially implies
0 ≤ x� ≤ u�, we get the balance conditions

p(n;x1, . . . , x�;u1, . . . , u�)

= p(n;x1 + h, . . . , x� + h;u1, . . . , u�)(1 − hλn − hμs)

+h
�+1∑
i=1

∫
IR+

p(n+ 1;x1, . . . , xi−1, 0, xi, . . . , x�;u1, . . . , ui−1, u, ui, . . . , u�)du

+hμs

∫
IR2

+

p(n+ 1;x, x1, . . . , x�;u, u1, . . . , u�)dxdu+ o(h), h > 0, x� < u�, (2.7)
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p(n;x1, . . . , x�−1, u�;u1, . . . , u�) = λn−1p(n− 1;x1, . . . , x�−1;u1, . . . , u�−1)c(u�). (2.8)

In the following from (2.7), (2.8) we’ll derive an equivalent system of integral equations for the
density p(n;x1, . . . , x�;u1, . . . , u�). Let n > s and (x1, . . . , x�;u1, . . . , u�) ∈ Ω� with x� < u� be
fixed. We define

ϕ(t) := p(n;x1+t, . . . , x�+t;u1, . . . , u�)e
−μst

+λn

∞∫
t

p(n;x1+ξ, . . . , x�+ξ;u1, . . . , u�)e
−μsξdξ

−
�+1∑
i=1

∞∫
t

∫
IR+

p(n+1;x1+ξ, . . . , xi−1+ξ, 0, xi+ξ, . . . , x�+ξ;

u1, . . . , ui−1, u, ui, . . . , u�)e
−μsξdudξ

−μs

∞∫
t

∫
IR2

+

p(n+1;x, x1+ξ, . . . , x�+ξ;u, u1, . . . , u�)e
−μsξdxdudξ, t ∈ [0, u�−x�].

Because of the continuity of p(n;x1, . . . , x�;u1, . . . , u�) on Ω� the function ϕ(t) is continuous,
too, and for t ∈ [0, u�−x�), h ∈ (0, u�−x�−t] by some algebra we get

(ϕ(t) − ϕ(t+h))eμst

= p(n;x1+t, . . . , x�+t;u1, . . . , u�)

−p(n;x1+t+h, . . . , x�+t+h;u1, . . . , u�)(1 − hλn−hμs)

−h
�+1∑
i=1

∫
IR+

p(n+1;x1+t, . . . , xi−1+t, 0, xi+t, . . . , x�+t;u1, . . . , ui−1, u, ui, . . . , u�)du

−hμs

∫
IR2

+

p(n+1;x, x1+t, . . . , x�+t;u, u1, . . . , u�)dxdu+ o(h).

Applying now (2.7) at the point (x1+t, . . . , x�+t;u1, . . . , u�) we obtain

ϕ(t+h) − ϕ(t) = o(h), t ∈ [0, u�−x�), h ∈ (0, u�−x�−t].

By the continuity of ϕ(t) therefore we conclude that ϕ(t) is constant, especially we obtain the
relation ϕ(0) = ϕ(u�−x�). In view of the definition of ϕ(t) and since the support of the density
p(n;x1, . . . , x�;u1, . . . , u�) is contained in Ω� the last relation reads

p(n;x1, . . . , x�;u1, . . . , u�)

+λn

∫
IR+

p(n;x1+ξ, . . . , x�+ξ;u1, . . . , u�)e
−μsξdξ
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−
�+1∑
i=1

∫
IR2

+

p(n+1;x1+ξ, . . . , xi−1+ξ, 0, xi+ξ, . . . , x�+ξ;

u1, . . . , ui−1, u, ui, . . . , u�)e
−μsξdudξ

−μs

∫
IR3

+

p(n+1;x, x1+ξ, . . . , x�+ξ;u, u1, . . . , u�)e
−μsξdxdudξ

= p(n;x1+u�−x�, . . . , x�−1+u�−x�, u�;u1, . . . , u�)e
−μs(u�−x�).

Because of the boundary condition (2.8) hence we get the following system of integral equations
for n > s and (x1, . . . , x�;u1, . . . , u�) ∈ Ω�:

p(n;x1, . . . , x�;u1, . . . , u�)

= λn−1p(n−1;x1+u�−x�, . . . , x�−1+u�−x�;u1, . . . , u�−1)c(u�)e
−μs(u�−x�)

−λn

∫
IR+

p(n;x1+ξ, . . . , x�+ξ;u1, . . . , u�)e
−μsξdξ

+
�+1∑
i=1

∫
IR2

+

p(n+1;x1+ξ, . . . , xi−1+ξ, 0, xi+ξ, . . . , x�+ξ;

u1, . . . , ui−1, u, ui, . . . , u�)e
−μsξdudξ

+μs

∫
IR3

+

p(n+1;x, x1+ξ, . . . , x�+ξ;u, u1, . . . , u�)e
−μsξdxdudξ. (2.9)

On the other hand, from the system of integral equations (2.9) the balance conditions (2.7) and
(2.8) may be derived.

In the following we’ll solve the system of equations (2.5), (2.6), (2.9). From (2.5) we get

p(n) = g

( n−1∏
i=0

λi

)( s∏
i=n+1

μi

)
, n ≤ s, (2.10)

where g > 0 is a normalizing factor.

Remark 2.1. In case of μm > 0 for m = 1, 2, . . . , s the representation

p(n) = g∗
n−1∏
i=0

λi

μi+1
, g∗ = g

s∏
i=1

μi

is possible for n ≤ s, too, being more closely to the birth death process notations.

In view of the representation (2.10) of p(n) for n ≤ s, in case of n ≥ s we choose the substitution

p(n;x1, . . . , x�;u1, . . . , u�) = g

( n−1∏
i=0

λi

)
q(n;x1, . . . , x�;u1, . . . , u�). (2.11)
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This substitution is verified by the fact that obviously we have p(n;x1, . . . , x�;u1, . . . , u�) = 0
in case of λ0 · . . . · λn−1 = 0. From (2.10), (2.11) it follows q(s) = 1. Hence equation (2.6) now
reads

1 =

∫
IR+

q(s+ 1; 0;u)du + μs

∫
IR2

+

q(s+ 1;x;u)dxdu, (2.12)

and for n > s, (x1, . . . , x�;u1, . . . , u�) ∈ Ω� equations (2.9) read

q(n;x1, . . . , x�;u1, . . . , u�)

= q(n−1;x1+u�−x�, . . . , x�−1+u�−x�;u1, . . . , u�−1)c(u�)e
−μs(u�−x�)

−λn

∫
IR+

q(n;x1+ξ, . . . , x�+ξ;u1, . . . , u�)e
−μsξdξ

+λn

�+1∑
i=1

∫
IR2

+

q(n+1;x1+ξ, . . . , xi−1+ξ, 0, xi+ξ, . . . , x�+ξ;

u1, . . . , ui−1, u, ui, . . . , u�)e
−μsξdudξ

+λnμs

∫
IR3

+

q(n+1;x, x1+ξ, . . . , x�+ξ;u, u1, . . . , u�)e
−μsξdxdudξ. (2.13)

In case of a finite waiting room with k waiting places, i.e. λn > 0 for 0 ≤ n < s+ k and λn = 0
for n ≥ s + k, equation (2.12) is relevant only in case of k > 0 and the equations (2.13) are
relevant only for s < n ≤ s+ k. The structure of (2.12) and (2.13) suggests to conjecture that
q(n;x1, . . . , x�;u1, . . . , u�) is independent of λn. Assuming this independence then for n > s,
(x1, . . . , x�;u1, . . . , u�) ∈ Ω� from (2.13) it follows

q(n;x1, . . . , x�;u1, . . . , u�)

= q(n−1;x1+u�−x�, . . . , x�−1+u�−x�;u1, . . . , u�−1)c(u�)e
−μs(u�−x�), (2.14)

∫
IR+

q(n;x1+ξ, . . . , x�+ξ;u1, . . . , u�)e
−μsξdξ

=
�+1∑
i=1

∫
IR2

+

q(n+1;x1+ξ, . . . , xi−1+ξ, 0, xi+ξ, . . . , x�+ξ;

u1, . . . , ui−1, u, ui, . . . , u�)e
−μsξdudξ

+μs

∫
IR3

+

q(n+1;x, x1+ξ, . . . , x�+ξ;u, u1, . . . , u�)e
−μsξdxdudξ. (2.15)

In view of q(s) = 1 and of the definition (2.1) of Ω� from (2.14) by induction over n > s we get

q(n;x1, . . . , x�;u1, . . . , u�)
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= 1I{(x1, . . . , x�;u1, . . . , u�) ∈ Ω�}
( �∏

i=1

c(ui)

)
e−μs(u1−x1), n > s. (2.16)

Since the distribution C(u) of the patience times is non-defective by integration it follows that
the function q(s + 1;x1;u1) defined by (2.16) satisfies (2.12). Moreover, using the conven-
tion x�+1 = u�+1 = 0 for the functions q(n;x1, . . . , x�;u1, . . . , u�) defined by (2.16) for n > s,
(x1, . . . , x�;u1, . . . , u�) ∈ Ω� we obtain

�+1∑
i=1

∫
IR+

q(n+1;x1, . . . , xi−1, 0, xi, . . . , x�;u1, . . . , ui−1, u, ui, . . . , u�)du

+μs

∫
IR2

+

q(n+1;x, x1, . . . , x�;u, u1, . . . , u�)dxdu

= 1I{(x1, . . . , x�;u1, . . . , u�) ∈ Ω�}
( �∏

i=1

c(ui)

)( ∞∫
u1−x1

c(u)e−μsudu

+e−μs(u1−x1)
�+1∑
i=2

ui�1−xi�1∫
ui−xi

c(u)du+ μs

∞∫
u1−x1

u−(u1−x1)∫
0

c(u)e−μs(u−x)dxdu

)

= q(n;x1, . . . , x�;u1, . . . , u�)e
μs(u1−x1)

( ∞∫
u1−x1

c(u)e−μsudu

+e−μs(u1−x1)

u1−x1∫
0

c(u)du+

∞∫
u1−x1

c(u)
(
e−μs(u1−x1)−e−μsu

)
du

)

= q(n;x1, . . . , x�;u1, . . . , u�).

From this equation applied at the point (x1+ξ, . . . , x�+ξ;u1, . . . , u�) it follows that the functions
q(n;x1, . . . , x�;u1, . . . , u�) defined by (2.16) satisfy (2.15), too. Hence these functions solve the
system of integral equations (2.12) and (2.13). Since the density p(n;x1, . . . , x�;u1, . . . , u�) is
uniquely determined as the normalized solution of (2.7) and (2.8) this density is given by (2.11)
and (2.16). Summarizing we get the representation

p(n;x1, . . . , x�;u1, . . . , u�)

= 1I{(x1, . . . , x�;u1, . . . , u�) ∈ Ω�}g
( n−1∏

i=0

λi

)( �∏
i=1

c(ui)

)
e−μs(u1−x1), n > s. (2.17)

3 Stability condition, occupancy and waiting time distribution

As in Section 2 let us assume that the queueing system is stable and that the distribution
C(u) of the patience times is non-defective and has a continuous density c(u). The stationary
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probability p(n) that n calls are in the system is given by (2.10) for n ≤ s. In case of n > s
from (2.17) it follows

p(n) =

∫
IR2�

+

p(n;x1, . . . , x�;u1, . . . , u�)dx1 . . . dx�du1 . . . du�

= g

( n−1∏
i=0

λi

)∫
Ω�

( �∏
i=1

c(ui)

)
e−μs(u1−x1)dx1 . . . dx�du1 . . . du�,

where � := (n − s)+. In view of the definition (2.1) of Ω� the substitution ui = ξi + xi for
i = 1, . . . , � yields

p(n) = g

( n−1∏
i=0

λi

) ∫
IR2�

+

1I{ξ1 ≥ ξ2 ≥ . . . ≥ ξ�}
( �∏

i=1

c(ξi + xi)

)
e−μsξ1dx1 . . . dx�dξ1 . . . dξ�

= g

( n−1∏
i=0

λi

) ∫
IR�

+

1I{ξ1 ≥ ξ2 ≥ . . . ≥ ξ�}
( �∏

i=1

(1 − C(ξi))

)
e−μsξ1dξ1 . . . dξ�

= g

( n−1∏
i=0

λi

) ∞∫
0

1

(�− 1)!

( ξ∫
0

(1 − C(η))dη

)�−1

(1 − C(ξ))e−μsξdξ

= g

( n−1∏
i=0

λi

)
μs

�!

∞∫
0

( ξ∫
0

(1 − C(η))dη

)�

e−μsξdξ, n > s. (3.1)

From (2.10) and (3.1) we get the normalizing factor g:

g−1 =
s−1∑
j=0

( j−1∏
i=0

λi

)( s∏
i=j+1

μi

)
+ μs

∞∑
j=0

( s+j−1∏
i=0

λi

)
1

j!

∞∫
0

( ξ∫
0

(1 − C(η))dη

)j

e−μsξdξ. (3.2)

Obviously, the stability of the system is equivalent to the finiteness of the right-hand side of
(3.2). Therefore, the stability condition reads

∞∑
j=0

( s+j−1∏
i=0

λi

)
1

j!

∞∫
0

( ξ∫
0

(1 − C(η))dη

)j

e−μsξdξ < ∞. (3.3)

The case of a general distribution C(u) of the patience times is obtained by considering C(u)
as the limit in distribution of a sequence of non-defective distributions Cν(u) with continuous
density. From (3.3), (2.10) and (3.1) applied to Cν(u) by arguments of continuity we get
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Theorem 3.1. Let the patience times be i.i.d. with a general distribution C(u). Then the
system is stable iff

∞∑
j=0

( s+j−1∏
i=0

λi

)
1

j!

∞∫
0

( ξ∫
0

(1 − C(η))dη

)j

e−μsξdξ < ∞. (3.4)

In case of a stable system for the stationary occupancy distribution it holds

p(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g

(
n−1∏
i=0

λi

)(
s∏

i=n+1
μi

)
, n = 0, 1, . . . , s,

g

(
n−1∏
i=0

λi

)
μs

(n−s)!

∞∫
0

( ξ∫
0
(1 − C(η))dη

)n−s

e−μsξdξ, n = s+1, s+2, . . . ,

(3.5)

where the normalizing factor g is given by (3.2).

Let the system be stable, i.e. let (3.4) be satisfied. For the investigation of the various waiting
time distributions of a typical arriving call we need some notations:

Λ – cumulative arrival intensity of the calls in the steady state,
pW – probability that a typical arriving call has to wait for service,
pI – probability that a typical arriving call will leave the system by

impatience later,
WS(x) = P (WS ≤ x) – distribution function of the waiting time WS of a typical arriving

call under the condition that it will be served,
WI(x) = P (WI ≤ x) – distribution function of the waiting time WI of a typical arriving

call under the condition that it will leave the system by impatience
later,

W (x) = P (W ≤ x) – distribution function of the (unconditional) waiting time W of a
typical arriving call.

The cumulative arrival intensity of the calls in the steady state Λ is given by

Λ =
∞∑
n=0

λnp(n). (3.6)

Since the sequence of the arrival intensities λn is bounded Λ is finite.

In the following we will make use of the Palm-distribution with respect to arrival epochs of
calls (cf. e.g. [FKAS], (1.2.6)) and of the conservation principle for stationary point processes
with respect to arrival epochs of calls and the epochs where the calls leave the waiting room,
respectively. (If a call finds at its arrival a free server, then it leaves the queue immediately,
i.e. its arrival epoch coincides with the epoch of leaving the queue.) The corresponding rigorous
proofs are not outlined here because the results are part of folklore. (However, exact proofs can
be given e.g. by means of Campbell’s formula along the lines as e.g. in [BFL], Sec. 6.4, (6.4.1).)
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The probability 1−pW is given by the ratio of the arrival intensity of calls finding at their arrival
a free server and of the total arrival intensity Λ, i.e.

1 − pW =
1

Λ

s−1∑
n=0

λnp(n). (3.7)

Hence in view of (2.5) for the probability pW that a typical arriving call has to wait for service
it holds

pW = 1− 1

Λ

s∑
n=1

μnp(n). (3.8)

(Note, that by the intensity conservation principle we have that the intensity of calls finding at
their arrival at least one free server equals to the intensity of served calls leaving behind at least
one free server. The latter intensity is just the sum in (3.8).)

The probability 1 − pI is given by the ratio of the intensity λ(S) of arriving calls which will be
served (immediately or after waiting in the queue) and of the total arrival intensity Λ. By the
conservation principle λ(S) is the intensity of calls leaving the waiting room for starting service.
This yields

1 − pI =
1

Λ

( s−1∑
n=0

λnp(n) +
∞∑

n=s+1

μsp(n)

)
=

1

Λ

( s∑
n=1

μnp(n) +
∞∑

n=s+1

μsp(n)

)
, (3.9)

where the last equality is again a consequence of (2.5). Note, that the expression in the bracket
of the last equation is just the intensity of served calls, which by the conservation principle is
equal to the intensity of calls leaving the waiting room for service (immediately after their arrival
or after waiting). Hence for the probability pI that a typical arriving call will leave the system
by impatience later we get

pI = 1 − 1

Λ

(
μs +

s−1∑
n=0

(μn − μs)p(n)

)
. (3.10)

Next we are interested in the waiting time distributions WS(x), WI(x) and W (x) of a typical
arriving call. Let us in the following assume that the queueing system is stable and that the
distribution C(u) of the patience times is non-defective and has a continuous density c(u). For
fixed x ∈ IR+ the probability P (WS > x) = 1−WS(x) is just the ratio of the intensity λ(S,x) of
arriving calls which will be served and whose waiting times up to service are larger than x to the
intensity λ(S) = (1−pI)Λ of all arriving calls which will be served. By the intensity conservation
principle λ(S,x) equals to the intensity of time instants where calls leave the waiting room for
starting service and which have waited longer than x. Hence we get

1 −WS(x)

=
1

(1−pI)Λ

∞∑
n=s+1

μs

∫
IR2�

+

1I{x<u1−x1}p(n;x1, . . . , x�;u1, . . . , u�)dx1 . . . dx�du1 . . . du�.
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Because of (2.1), (2.17) for n > s the substitution ui = ξi + xi yields

∫
IR2�

+

1I{x < u1−x1}p(n;x1, . . . , x�;u1, . . . , u�)dx1 . . . dx�du1 . . . du�

= g

( n−1∏
i=0

λi

)∫
Ω�

1I{x < u1 − x1}
( �∏

i=1

c(ui)

)
e−μs(u1−x1)dx1 . . . dx�du1 . . . du�

= g

( n−1∏
i=0

λi

) ∫
IR�

+

1I{x < ξ1}1I{ξ1 ≥ ξ2 ≥ . . . ≥ ξ�}
( �∏

i=1

(1 − C(ξi))

)
e−μsξ1dξ1 . . . dξ�

= g

( n−1∏
i=0

λi

)
1

(�−1)!

∞∫
x

( ξ∫
0

(1 − C(η))dη

)�−1

(1 − C(ξ))e−μsξdξ, x ≥ 0.

Thus for x ∈ IR+ it holds

1 −WS(x) =
g

(1−pI)Λ

∞∑
j=0

( s+j∏
i=0

λi

)
μs

j!

∞∫
x

( ξ∫
0

(1 − C(η))dη

)j

(1 − C(ξ))e−μsξdξ. (3.11)

For getting an explicit expression for WI(x) we proceed analogously to WS(x). The probability
P (WI > x) = 1 −WI(x) is the ratio of the intensity λ(I,x) of arriving calls departing from the
system by impatience later and whose time spent in the queue is larger than x to the intensity
λ(I) = pIΛ of all arriving calls becoming impatient later. By the conservation principle λ(I,x)

equals to the intensity of time instants where calls leave the waiting room by impatience and
which have waited longer than x. This yields

1 −WI(x) =
1

pIΛ

∞∑
n=s+1

�∑
i=1

∫
IR2��1

+

1I{x < ui}p(n;x1, . . . , xi−1, 0, xi+1, . . . , x�;u1, . . . , u�)

dx1 . . . dxi−1dxi+1 . . . dx�du1 . . . du�.

In view of (2.1), (2.17) and using the substitution ui = ξi + xi we get for n > s:

− d

dx

(
�∑

i=1

∫
IR2��1

+

1I{x < ui}p(n;x1, . . . , xi−1, 0, xi+1, . . . , x�;u1, . . . , u�)

dx1 . . . dxi−1dxi+1 . . . dx�du1 . . . du�

)

=
�∑

i=1

∫
IR2��2

+

p(n;x1, . . . , xi−1, 0, xi+1, . . . , x�;u1, . . . , ui−1, x, ui+1, . . . , u�)

dx1 . . . dxi−1dxi+1 . . . dx�du1 . . . dui−1dui+1 . . . du�

= g

( n−1∏
i=0

λi

)
c(x)

(
e−μsx

∫
IR��1

+

1I{x ≥ ξ2 ≥ . . . ≥ ξ�}
( �∏

j=2

(1 − C(ξj))

)
dξ2 . . . dξ�
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+
�∑

i=2

∫
IRi�1

+

1I{ξ1 ≥ . . . ≥ ξi−1 ≥ x}
( i−1∏

j=1

(1 − C(ξj))

)
e−μsξ1dξ1 . . . dξi−1

·
∫

IR��i
+

1I{x ≥ ξi+1 ≥ . . . ≥ ξ�}
( �∏

j=i+1

(1 − C(ξj))

)
dξi+1 . . . dξ�

)

= g

( n−1∏
i=0

λi

)
c(x)

�∑
i=1

μs

(i−1)!

∞∫
x

( ξ∫
x

(1 − C(η))dη

)i−1

e−μsξdξ

· 1

(�−i)!

( x∫
0

(1 − C(η))dη

)�−i

= g

( n−1∏
i=0

λi

)
c(x)

μs

(�−1)!

∞∫
x

( ξ∫
0

(1 − C(η))dη

)�−1

e−μsξdξ, x ≥ 0.

Hence by integration it follows

�∑
i=1

∫
IR2��1

+

1I{x < ui}p(n;x1, . . . , xi−1, 0, xi+1, . . . , x�;u1, . . . , u�)

dx1 . . . dxi−1dxi+1 . . . dx�du1 . . . du�

= g

( n−1∏
i=0

λi

)
μs

(�−1)!

∞∫
x

c(ϑ)

∞∫
ϑ

( ξ∫
0

(1 − C(η))dη

)�−1

e−μsξdξdϑ

= g

( n−1∏
i=0

λi

)
μs

(�−1)!

∞∫
x

( ξ∫
0

(1 − C(η))dη

)�−1

(C(ξ) − C(x))e−μsξdξ, x ≥ 0.

Thus for x ∈ IR+ it holds

1 −WI(x) =
g

pIΛ

∞∑
j=0

( s+j∏
i=0

λi

)
μs

j!

∞∫
x

( ξ∫
0

(1 − C(η))dη

)j

(C(ξ) − C(x))e−μsξdξ. (3.12)

The waiting time distribution W (x) is given by

W (x) = (1 − pI)WS(x) + pIWI(x). (3.13)

The case of a general distribution C(u) of the patience times is obtained again by considering
C(u) as the limit in distribution of a sequence of non-defective distributions Cν(u) with contin-
uous density. In view of (3.5), from (3.11), (3.12) and (3.13) applied to Cν(u) by arguments of
continuity we obtain
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Theorem 3.2. Let the system be stable with a general distribution C(u) of the i.i.d. patience
times. Then for the waiting time distributions for x ∈ IR+ it holds

1 −WS(x) =
p(s)

(1−pI)Λ

∞∑
j=0

( s+j∏
i=s

λi

)
μs

j!

∞∫
x

( ξ∫
0

(1 − C(η))dη

)j

(1 − C(ξ))e−μsξdξ, (3.14)

1 −WI(x) =
p(s)

pIΛ

∞∑
j=0

( s+j∏
i=s

λi

)
μs

j!

∞∫
x

( ξ∫
0

(1 − C(η))dη

)j

(C(ξ) − C(x))e−μsξdξ, (3.15)

1 −W (x) =
p(s)

Λ
(1 − C(x))

∞∑
j=0

( s+j∏
i=s

λi

)
μs

j!

∞∫
x

( ξ∫
0

(1 − C(η))dη

)j

e−μsξdξ, (3.16)

where the probability p(s) that exactly s calls are in the system, the probability pI that a typical
arriving call will leave the system by impatience later and the cumulative arrival intensity Λ in
the steady state are given by (3.5), (3.10) and (3.6), respectively.

Especially from (3.14) and (3.15) we get by integration over x ∈ IR+:

EWS =
p(s)

(1−pI)Λ

∞∑
j=1

( s+j−1∏
i=s

λi

)
μs

j!

∞∫
0

( ξ∫
0

(1 − C(η))dη

)j

(μsξ − 1)e−μsξdξ, (3.17)

EWI =
p(s)

pIΛ

∞∑
j=1

( s+j−1∏
i=s

λi

)
μs

j!

∞∫
0

( ξ∫
0

(1 − C(η))dη

)j

(j + 1 − μsξ)e
−μsξdξ. (3.18)

From Little’s formula we obtain for the (unconditional) mean waiting time EW of a typical
arriving call

EW =
1

Λ

∞∑
n=s+1

(n− s)p(n). (3.19)

4 Application: Performance analysis of an ACD system with
outbound calls and impatient inbound calls

In this section we apply the results of Section 3 to a performance analysis of the following
Automatic Call Distributor system (ACD system). At a call center, consisting of a finite number
s of agents and a finite number k of waiting places (i.e. s+k lines), there arrive calls from outside
(inbound calls) accordingly to a Poisson process of intensity λ. An arriving inbound call requires
an exponentially distributed service time with parameter μ. If there is at least one free line, i.e.
server or waiting place, then it will be accepted; otherwise it gets lost. An accepted call will be
served immediately by one of the agents if there is anyone free. If all agents are busy then it
begins to wait until one of the agents becomes free; the queueing discipline is FCFS. But the
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inbound calls are impatient, i.e. if the (virtual) waiting time until service exceeds a random time
(patience), then it gets lost. The maximal patience times are assumed to be i.i.d. with a general
distribution C(u) = P (U ≤ u), where U denotes a typical patience time. The patience times
may correspond to real patience times or/and to a special management for those inbound calls
whose waiting time exceeds an acceptable amount of time. Of special interest is the case that
U = min(X, τ), where X is exponentially distributed describing the individual patience time of
an inbound call and τ is deterministic describing the ”technical” impatience of the system, i.e.
τ may be the deterministic time after that the inbound call is routed e.g. to another call center
of the company.

For an improvement of the efficiency of the call center the agents dial outbound calls, too.
Specifically, we introduce a parameter, a ∈ {1, 2, . . . , s}, such that if more than a agents are
idle (and therefore no calls are in the queue) then one of the idle agents will dial an outbound
call rather than wait for an inbound call. Thus at each time instant with probability one at
least (s − a) agents are busy, c.f. [DPW]. We assume that there is an infinite reservoir of
possible outbound calls (list of customers) and that the service times of the outbound calls are
exponentially distributed with the same parameter μ as the inbound calls, cf. Fig. 4.1.

λ
�

�

pB

�

pI
k waiting places

impatience U s agents

μ

outbound calls

∞ . . . . .

inbound calls

�

s−N(t) > a

�

�

�

�

�

m1
m2
m3

.

.

.

ms

Fig. 4.1. Automatic Call Distributor system: combined inbound-outbound call
center with impatient inbound calls, s agents and k waiting places.

For the ACD system the following performance characteristics are of interest:

Λin – rate of accepted inbound calls,
Λout – rate of dialed outbound calls,
pB – probability that a typical arriving inbound call finds no free waiting place or

server (blocking probability, 1 − pB is the acceptance probability),
pW – probability that a typical accepted inbound call has to wait for service,
pI – probability that a typical accepted inbound call gets lost because of impatience

later (impatience probability),
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WS(x) – waiting time distribution of a typical accepted inbound call up to its service
under the condition that it will be served,

WI(x) – waiting time distribution of a typical accepted inbound call under the condition
that it will leave the system by impatience later,

W (x) – (unconditional) waiting time distribution of a typical accepted inbound call.

The ACD system may be modeled by an M(n)/M(m)/s+GI queueing system, where n corre-
sponds to the number of inbound and served outbound calls in the ACD system and m to the
number of busy agents, cf. Fig. 1.1. The state dependent arrival intensity λn is given by

λn = 1I{n < s+ k}λ, n = 0, 1, . . . (4.1)

and the state dependent service intensity μm by

μm = 1I{m > s− a}mμ, m = 0, 1, . . . , s. (4.2)

(Note, that the time instants where a new outbound call is started doesn’t correspond to changes
of the system state. However, for getting the relevant performance measures this doesn’t matter
as seen below.)

In view of Theorem 3.1 the system is stable and for the stationary occupancy distribution it
holds

p(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g s!μs (λ/μ)n

n! , s− a ≤ n ≤ s,

g λs μs

(n−s)!

∞∫
0

(
λ

ξ∫
0
(1 − C(η))dη

)n−s

e−μsξdξ, s < n ≤ s+ k,

0 elsewhere.

(4.3)

From (3.2), (4.1) and (4.2) we get the normalizing factor

g−1 = s!μs
s−1∑

j=s−a

(λ/μ)j

j!
+ λs

k∑
j=0

μs

j!

∞∫
0

(
λ

ξ∫
0

(1 − C(η))dη

)j

e−μsξdξ. (4.4)

For the ACD system p(n) is the stationary probability that n inbound and served outbound
calls are in the system. The cumulative arrival intensity Λ in the M(n)/M(m)/s+GI queueing
system in the steady state corresponds to the rate Λin of accepted inbound calls in the ACD
system. Hence from (3.6), (4.1) and (4.3) it follows

Λin = Λ = λ
s+k−1∑
n=s−a

p(n) = (1 − p(s+ k))λ. (4.5)

The acceptance probability 1− pB for inbound calls is given by the ratio of the rate of accepted
inbound calls and of the arrival intensity λ in the ACD system, i.e.

Λin = Λ = (1− pB)λ. (4.6)
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Consequently, in view of (4.5) for the blocking probability it holds

pB = p(s+ k). (4.7)

The service of an outbound call is started if n = s − a agents are busy and one of the service
times just finishes. The probability of being in the state n = s−a is p(s−a) and for the ACD
system the cumulative intensity of finishing service in this state is (s−a)μ. Therefore, for the
rate Λout of dialed outbound calls we get

Λout = (s− a)μp(s− a). (4.8)

From (3.7), (3.8), (4.2) and (4.6) we obtain the probability pW that an accepted inbound call
has to wait for service

pW = 1− 1

1 − pB

s−1∑
n=s−a

p(n) = 1 − μ

(1 − pB)λ

s∑
n=s−a+1

np(n) (4.9)

and from (3.9), (3.10), (4.2), (4.3) and (4.6) the probability pI that an accepted inbound call
gets lost because of impatience later

pI = 1− 1

(1 − pB)λ

⎛
⎝ s−1∑

n=s−a

λp(n) +
∞∑

n=s+1

μsp(n)

⎞
⎠

= 1− μ

(1 − pB)λ

(
s− sp(s−a)−

s−1∑
n=s−a+1

(s−n)p(n)

)
. (4.10)

From (3.14), (4.1) and (4.6) for the waiting time distribution of an accepted inbound call up to
its service under the condition that it will be served it follows for x ∈ IR+

1 −WS(x) =
p(s)

(1−pB)(1−pI)

k−1∑
j=0

μs

j!

∞∫
x

(
λ

ξ∫
0

(1 − C(η))dη

)j

(1 − C(ξ))e−μsξdξ. (4.11)

From (3.15), (4.1) and (4.6) for the waiting time distribution of an accepted inbound call under
the condition that it will leave the system by impatience later we get for x ∈ IR+

1 −WI(x) =
p(s)

(1−pB)pI

k−1∑
j=0

μs

j!

∞∫
x

(
λ

ξ∫
0

(1 − C(η))dη

)j

(C(ξ) − C(x))e−μsξdξ. (4.12)

From (3.16), (4.1) and (4.6) for the unconditional waiting time distribution of an accepted
inbound call we obtain for x ∈ IR+

1 −W (x) =
p(s)

1−pB
(1 − C(x))

k−1∑
j=0

μs

j!

∞∫
x

(
λ

ξ∫
0

(1 − C(η))dη

)j

e−μsξdξ. (4.13)
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The corresponding expectations result from (4.1), (4.6) and (3.17), (3.18), respectively:

EWS =
p(s)

(1−pB)(1−pI)λ

k∑
j=1

μs

j!

∞∫
0

(
λ

ξ∫
0

(1 − C(η))dη

)j

(μsξ − 1)e−μsξdξ, (4.14)

EWI =
p(s)

(1−pB)pIλ

k∑
j=1

μs

j!

∞∫
0

(
λ

ξ∫
0

(1 − C(η))dη

)j

(j + 1− μsξ)e
−μsξdξ. (4.15)

Little’s formula yields for the expectation EW of the unconditional waiting time of an arriving
inbound call

EW =
1

(1−pB)λ

s+k∑
n=s+1

(n− s)p(n). (4.16)

Remark 4.1. For k → ∞ we obtain the case of an unlimited waiting room. From (4.4) for the
normalizing factor we get

g−1 = s!μs
s−1∑

j=s−a

(λ/μ)j

j!
+ λsμs

∞∫
0

exp

(
λ

ξ∫
0

(1 − C(η))dη − μsξ

)
dξ.

The stability condition corresponds to g−1<∞ which is equivalent to (λ/μs) lim
u→∞(1−C(u)) < 1,

cf. [BH].

4.1 Special case: Impatience time as the minimum of a constant and an
exponentially distributed time

In this subsection we consider the special case that the typical maximal patience time U is
the minimum of a constant and an exponentially distributed time, i.e. U = min(X, τ), where
X is exponentially distributed with parameter α describing the individual patience time of an
inbound call and τ is deterministic describing the ”technical” impatience of the ACD system.
The distribution of U is given by

C(u;α, τ) :=

⎧⎨
⎩

1− e−αu, 0 ≤ u < τ,

1, u ≥ τ.
(4.17)

From (4.17) for ξ ≥ 0 we get

ξ∫
0

(1 − C(η;α, τ))dη =

min(ξ,τ)∫
0

e−αηdη =
1 − e−αmin(ξ,τ)

α
. (4.18)

Lemma 4.2. Let α, β, x be positive real numbers and j a non-negative integer.
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Then it holds

1

j!

x∫
0

(
1 − e−αξ

α

)j

e−βξdξ

=

( j∏
i=0

1

β + iα

)(
1− e−βx

j∑
i=0

(
−β/α

i

)(
e−αx − 1

)i)
(4.19)

=

( j∏
i=0

1

β + iα

)
e−βx

∞∑
i=j+1

(
−β/α

i

)(
e−αx − 1

)i
, (4.20)

1

j!

x∫
0

(
1 − e−αξ

α

)j

e−βξξdξ −
( j∑

�=0

1

β + �α

)
1

j!

x∫
0

(
1− e−αξ

α

)j

e−βξdξ

= −
( j∏

i=0

1

β + iα

)
e−βx

j∑
i=0

(
x−

i−1∑
�=0

1

β + �α

)(−β/α

i

)(
e−αx − 1

)i
(4.21)

=

( j∏
i=0

1

β + iα

)
e−βx

∞∑
i=j+1

(
x−

i−1∑
�=0

1

β + �α

)(−β/α

i

)(
e−αx − 1

)i
. (4.22)

Proof. For j = 1, 2, . . . integration by parts yields

1

j!

x∫
0

(
1 − e−αξ

α

)j

e−βξdξ =
1

j!

x∫
0

(
eαξ − 1

α

)j

e−(β+jα)ξdξ

=
1

(j + 1)!

(
(j + 1)!

(β + jα) . . . (β + α)β

−
j∑

i=0

(j + 1) . . . (i+ 1)

(β + jα) . . . (β + iα)

(
eαx − 1

α

)i

e−(β+iα)x

)
.

Since this equation also holds in case of j=0 we get (4.19). Using the binomial series from (4.19)
it follows (4.20). Multiplication of (4.19), (4.20) by β(β+α) . . . (β+jα) and differentiation with
respect to β yields the representations (4.21) and (4.22), respectively.

Firstly, we investigate the integrals occurring in the representation (4.3) of the stationary occu-
pancy distribution. In view of (4.18) for j = 1, 2, . . . , k integration by parts yields

Ij(τ) :=
μs

j!

∞∫
0

(
λ

ξ∫
0

(1 − C(η;α, τ))dη

)j

e−μsξdξ

=
λj

(j − 1)!

τ∫
0

(
1 − e−αξ

α

)j−1

e−(μs+α)ξdξ. (4.23)
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Hence from Lemma 4.2, (4.19) and (4.20), for j = 1, 2, . . . , k we get

Ij(τ) =

( j∏
i=1

λ

μs + iα

)(
1 − e−(μs+α)τ

j−1∑
i=0

(
−μs/α− 1

i

)(
e−ατ − 1

)i)
(4.24)

=

( j∏
i=1

λ

μs + iα

)
e−(μs+α)τ

∞∑
i=j

(
−μs/α− 1

i

)(
e−ατ − 1

)i
. (4.25)

Obviously, equations (4.24) and (4.25) also hold in case of j = 0. The first equation (4.24) allows
to compute Ij(τ) recursively for j = 0, 1, . . . , k. But this recursion may become numerically un-
stable. The second equation (4.25) yields convergent series with positive members and therefore
a stable method for computing Ij(τ) in case of j=k. After the computation of the integral for
j = k the integrals for j=k−1, k−2, . . . , 0 may be computed recursively by means of (4.25).

In view of (4.17), (4.18) and (4.23) for the integrals occurring in the representation (4.11) of
the waiting time distribution WS(x) of an accepted inbound call up to its service under the
condition that it will be served for x ∈ [0, τ) and j = 0, 1, . . . , k − 1 it follows

μs

j!

∞∫
x

(
λ

ξ∫
0

(1 − C(η;α, τ))dη

)j

(1 − C(ξ;α, τ))e−μsξdξ

=
μsλ

j

j!

τ∫
x

(
1 − e−αξ

α

)j

e−(μs+α)ξdξ =
μs

λ

(
Ij+1(τ) − Ij+1(x)

)
. (4.26)

In view of (4.17), (4.18) and (4.23) for the integrals occurring in the representation (4.13) of
the unconditional waiting time distribution W (x) of an accepted inbound call for x ∈ [0, τ) and
j = 0, 1, . . . , k − 1 integration by parts yields

μs

j!

∞∫
x

(
λ

ξ∫
0

(1 − C(η;α, τ))dη

)j

e−μsξdξ

=
μsλ

j

j!

( τ∫
x

(
1− e−αξ

α

)j

e−μsξdξ +

∞∫
τ

(
1− e−ατ

α

)j

e−μsξdξ

)

=
λj

j!

(
1− e−αx

α

)j

e−μsx +
(
Ij(τ) − Ij(x)

)
. (4.27)

Using (3.13) the waiting time distribution WI(x) of an accepted inbound call under the con-
dition that it will leave the system by impatience later may be computed from the waiting
time distributions WS(x) and W (x). Analogously, the corresponding expectation EWI may be
computed from the expectations EWS and EW . Because of (4.16) the expectation EW of the
unconditional waiting time is given by the stationary occupancy distribution. In view of (4.18)
for the integrals occurring in the representation (4.14) of the expectation EWS for j = 1, 2, . . . , k
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integration by parts yields

μs

j!

∞∫
0

(
λ

ξ∫
0

(1 − C(η;α, τ))dη

)j

(μsξ − 1)e−μsξdξ

=
μsλ

j

(j − 1)!

τ∫
0

(
1− e−αξ

α

)j−1

e−(μs+α)ξξdξ.

Hence from Lemma 4.2, (4.21) and (4.22), and from (4.23), (4.24), (4.25) for j = 1, 2, . . . , k we
get

μs

j!

∞∫
0

(
λ

ξ∫
0

(1 − C(η;α, τ))dη

)j

(μsξ − 1)e−μsξdξ

=

( j∑
�=1

μs

μs+�α

)
Ij(τ)

−
( j∏

i=1

λ

μs+iα

)
e−(μs+α)τ

j−1∑
i=0

(
μsτ −

i∑
�=1

μs

μs+�α

)(−μs/α−1

i

)(
e−ατ−1

)i

= μsτIj(τ) −
( j∏

i=1

λ

μs+iα

)

(
μsτ −

j∑
�=1

μs

μs+�α

(
1 − e−(μs+α)τ

�−1∑
i=0

(
−μs/α−1

i

)(
e−ατ−1

)i))
(4.28)

=

( j∑
�=1

μs

μs+�α

)
Ij(τ)

+

( j∏
i=1

λ

μs+iα

)
e−(μs+α)τ

∞∑
i=j

(
μsτ −

i∑
�=1

μs

μs+�α

)(−μs/α−1

i

)(
e−ατ−1

)i

= μsτIj(τ)

−
( j∏

i=1

λ

μs+iα

)
e−(μs+α)τ

∞∑
i=j+1

( i∑
�=j+1

μs

μs+�α

)(−μs/α−1

i

)(
e−ατ−1

)i
. (4.29)

The first representation (4.28) allows to compute the integrals at the left-hand side recursively for
j = 1, 2, . . . , k. But this recursion may become numerically unstable. The second representation
(4.29) yields convergent series with positive members and therefore a stable method for the
computation of the integral at the left-hand side in case of j=k. After the computation of the
integral for j = k the integrals for j=k−1, k−2, . . . , 1 may be computed recursively by means
of (4.29).

Remark 4.3. The limiting case k → ∞ with λn = λ for n ≥ s and μm = mμ for 0 ≤ m ≤ s
was earlier analyzed in [Ju1]. For several performance measures, basing on the waiting time
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vector process, in this case formulas are available. However, they don’t cover the occupancy
distribution.

Remark 4.4. The considered case covers two special cases. For τ → ∞ the process N(t) of the
number of calls in the system converges to a birth death process which can be analyzed in the
usual manner. For α → 0 we get a system with constant patience times; for earlier results we
refer to [GK].

4.2 Numerical results

In this subsection we give some numerical results. The basic parameter set is as follows:

– mean service time 1/μ: 120 seconds,
– mean individual patience time 1/α: 90 seconds,
– deterministic patience time τ : 60 seconds.

In table 4.2 the offered load λ/μ is 10 Erl, in table 4.3 the offered load is 100 Erl. The number
s of agents, the number k of waiting places and the outbound parameter a vary in these tables.
The blocking probability pB , the impatience probability pI , the expectations EWS and EWI

of the conditional waiting time distributions and the rate of dialed outbound calls Λout are
presented. In the last four lines of the tables the corresponding performance measures for an
ACD system without outbound calls are given.

s k a λ/μ 1/μ 1/α τ pB pI EWS EWI Λout

8 3 3 10 120 90 60 0.137 0.170 11.472 22.286 0.003
12 3 3 10 120 90 60 0.049 0.061 4.729 14.258 0.015
16 3 3 10 120 90 60 0.016 0.024 1.955 9.988 0.039
20 3 3 10 120 90 60 0.006 0.011 0.884 7.687 0.067

8 6 3 10 120 90 60 0.024 0.254 15.696 26.739 0.002
12 6 3 10 120 90 60 0.006 0.088 6.341 17.738 0.015
16 6 3 10 120 90 60 0.001 0.031 2.446 11.960 0.038
20 6 3 10 120 90 60 0.000 0.013 1.037 8.769 0.067

8 3 6 10 120 90 60 0.131 0.162 10.769 22.286 0.000
12 3 6 10 120 90 60 0.034 0.042 3.174 14.258 0.004
16 3 6 10 120 90 60 0.006 0.009 0.723 9.988 0.019
20 3 6 10 120 90 60 0.001 0.002 0.173 7.687 0.045

8 3 8 10 120 90 60 0.131 0.162 10.758 22.286 0.000
12 3 12 10 120 90 60 0.031 0.039 2.931 14.258 0.000
16 3 16 10 120 90 60 0.003 0.005 0.388 9.988 0.000
20 3 20 10 120 90 60 0.000 0.000 0.023 7.687 0.000

Tab. 4.2: Blocking probability pB, impatience probability pI , the expectations EWS and
EWI of the conditional waiting time distributions and the rate of dialed outbound calls
Λout for an offered load of 10 Erl.
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s k a λ/μ 1/μ 1/α τ pB pI EWS EWI Λout

90 15 10 100 120 90 60 0.037 0.081 7.365 6.568 0.006
100 15 10 100 120 90 60 0.012 0.042 3.681 5.328 0.025
110 15 10 100 120 90 60 0.003 0.018 1.551 4.307 0.067
120 15 10 100 120 90 60 0.001 0.007 0.608 3.501 0.127

90 30 10 100 120 90 60 0.002 0.111 10.155 8.817 0.005
100 30 10 100 120 90 60 0.000 0.050 4.442 6.466 0.024
110 30 10 100 120 90 60 0.000 0.020 1.702 4.827 0.066
120 30 10 100 120 90 60 0.000 0.007 0.634 3.726 0.127

90 15 20 100 120 90 60 0.037 0.079 7.146 6.568 0.000
100 15 20 100 120 90 60 0.010 0.036 3.117 5.328 0.004
110 15 20 100 120 90 60 0.002 0.011 0.913 4.307 0.022
120 15 20 100 120 90 60 0.000 0.002 0.200 3.501 0.065

90 15 90 100 120 90 60 0.036 0.079 7.138 6.568 0.000
100 15 100 100 120 90 60 0.010 0.035 3.053 5.328 0.000
110 15 110 100 120 90 60 0.001 0.009 0.776 4.307 0.000
120 15 120 100 120 90 60 0.000 0.001 0.102 3.501 0.000

Tab. 4.3: Blocking probability pB, impatience probability pI , the expectations EWS and
EWI of the conditional waiting time distributions and the rate of dialed outbound calls
Λout for an offered load of 100 Erl.

The numerical results show the impact of the operational strategy (outbound parameter a) on
the system performance. Also they illustrate the tradeoff between the blocking probability pB
and the impatience probability pI if k varies. There is no obvious relation between the mean
conditional waiting times EWS and EWI .
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