Solving Large-Scale Multiple-Depot
Vehicle Scheduling Problems

Andreas Lobel

Konrad-Zuse-Zentrum fiir Informationstechnik Berlin (ZIB), Takustrafie 7,
D-14195 Berlin, Germany, E-mail: 1oebel@zib.de, URL: wuw.zib.de

Abstract: This paper presents an integer linear programming approach with
column generation for the N'P-hard Multiple-Depot Vehicle Scheduling Prob-
lem (MDVSP) in public mass transit. We describe in detail the basic ingredi-
ents of our approach that seem indispensable to solve truly large-scale prob-
lems to optimality, and we report on computational investigations that are
based on real-world instances of three large German public transportation
companies. These instances have up to 25 thousand timetabled trips and 70
million integer decision variables.

Compared to the results obtained with one of the best planning system
currently available in practice, our test runs indicate savings of several vehi-
cles and a cost reduction of about 10 %. Parts of our presented implementa-
tions are already integrated in the planning systems BERTA of the Berliner
Verkehrsbetriebe and MICROBUS II of the IVU Gesellschaft fiir Informatik,
Verkehrs- und Umweltplanung mbH, Berlin. Moreover, this system has also
been purchased by the research department of the SIEMENS AG, Munich.

1 Introduction

Solving transportation problems was and still is one of the driving forces
behind the development of mathematical disciplines such as optimization
and operations research (see Borndorfer /Grotschel /Lobel (1995)). Truly large
transportation problems have to be solved, for instance, in airline traffic (air-
line and crew scheduling) and public mass transit (vehicle and duty schedul-
ing). In the past, the corresponding transportation markets have often been
protected by monopolistic structures. However, deregulation of such monop-
olistic markets has led to a world-wide competition. It is therefore obvious
that competitive participants in these markets must use computer-aided tools
for their operational planning process to employ their resources as efficiently
as possible. Modern and sophisticated mathematical optimization techniques
can help to solve such planning problems.

For instance, public transportation in the European Community is subject
to such market deregulation. Monopolistic markets have become more liberal
or will soon be broken up. In order to prevent their complete extinction
from the market, monopolistic transportation companies will therefore have

to change from deficit-oriented monopolies to competitive market players.
One important factor in facing the challenges of a competitive market is, of
course, cost reduction, which can be obtained by making intelligent use of
the latest mathematical knowhow.

Vehicle scheduling is one important step in the hierarchical planning pro-
cess in public transportation. The Multiple-Depot Vehicle Scheduling Prob-
lem (MDVSP) is to assign a fleet of vehicles, possibly stationed at several
garages, to a given set of passenger trips such that operational, company-
specific, technical, and further side constraints are satisfied and the available
resources are employed as efficiently as possible. In the last three decades,
considerable research has gone into the development of academic as well as
practice-oriented solution techniques for the A"P-hard MDVSP and special,
often polynomially solvable cases of it. Review articles on this topic are, for in-
stance, Desrosiers/Dumas/Solomon/Soumis (1995), Daduna/Paixdo (1995),
and Bussieck/Winter /Zimmermann (1997).

The most successful solution approaches for the MDVSP are based on
network flow models and their integer programming analogues. In the liter-
ature, there are two basic mathematical models of this type: First, a direct
arc-oriented model leading to a multicommodity flow problem and, second,
a path-oriented model leading to a set partitioning problem. The latter can
also be derived from Dantzig-Wolfe decomposition applied to the first. Both
approaches lead to large-scale integer programs, and column generation tech-
niques are required to solve their LP relaxations. We shall explicitly discuss
the differences between these two models in Section 3.

We investigate in this paper the solution of the multicommodity flow for-
malation. Solution techniques for models of this flavour have been discussed
in various articles: Carpaneto/Dell’Amico/Fischetti/Toth (1989) describe an
integer LP (ILP) formulation based on an arc-oriented assignment problem
with additional path-oriented flow conservation constraints. They apply a
so-called “additive lower bounding” procedure to obtain a lower bound for
their ILP formulation. Ribeiro/Soumis (1994) show that this additive lower
bounding is a special case of Lagrangean relaxation and its corresponding
subgradient method. Forbes/Holt/Watts (1994) solve the integer linear pro-
gramming formulation of the multicommodity flow model by branch-and-
bound. The sizes of the problems that have been solved to optimality in
these publications are relatively small involving up to 600 timetabled trips
and 3 depots.

The contribution of this paper is the efficient solution of the ILP (de-
rived from the multicommodity flow formulation) by means of LP column
generation techniques. We use a new technique, called Lagrangean pricing,
that is based on Lagrangean relaxations of the multicommodity flow model.
Embedded within a branch-and-cut frame, this method makes it possible to
solve problems from practice to proven optimality. Lagrangean pricing has
been developed independently at the same time by Fischetti/Vigo (1996)

and Fischetti/Toth (1996) for solving the Asymmetric Travelling Salesman
Problem and the Resource-Constrained Arborescence Problem.

Our computational investigations are performed on large-scale data from
three German public transportation companies: the Berliner Verkehrsbetriebe
(BVG), the Hamburger Hochbahn AG (HHA), and the Verkehrsbetriebe
Hamburg-Holstein AG (VHH). These instances involve problems with up to
49 depots, about 25 thousand timetabled trips, and about 70 million integer
decision variables. These test instances have been provided by our partners
HanseCom GmbH, Hamburg, and IVU Gesellschaft fiir Informatik, Verkehrs-
und Umweltplanung mbH (IVU), Berlin. The test runs on this test set show
that our method is able to solve problems of this size optimally. These prob-
lems are orders of magnitude larger than the instances successfully solved
with other approaches, as far as we know.

In the following, we present our branch-and-cut approach with column
generation. We start in the next section by describing our multicommodity
flow version of the problem and present an ILP formulation and relaxations
thereof. In Sect. 3 follows a discussion of the model, e. g., we compare it with
problem relaxations often used in practice. Our algorithm is described in
Sect. 4 presenting various tools to solve MDVSP problems and subproblems
such as primal heuristics, a network simplex algorithm with column gener-
ation (Lobel (1996)), Lagrangean relaxations (Kokott/Lobel (1996)), linear
programming relaxations (Lobel (1997d)), and the branch-and-cut approach
composing all these ingredients. The tested real-world data are presented in
Sect. 5, and the computational results are discussed in Sect. 6. A comprehen-
sive report about this project can be found in our thesis (see Lobel (1997¢)).

2 The MDVSP

The following section refers to some basic terminology for MDVSPs that we
quickly resume here. For more details see Lobel (1997c¢).

The fleet of a transportation company is subdivided into depots. The
set of depots is denoted by D. With each depot d € D, we associate a start
point dT and an end point d~ where its vehicles start and terminate their
daily duty. Let Dt := {d*| d € D} and D~ := {d | d € D}. The number
of available vehicles, the depot capacity, of each depot d is denoted by xq4.
A given timetable defines a set of timetabled trips, denoted by 7, that
are used to carry passengers. We associate with each ¢ € T a first stop t—,
a last stop t*, a departure time s;, an arrival time e;, and a depot-group
G(t) € D. Each G(t) includes those depots whose vehicles are allowed and
able to service trip ¢. Let Tg:={t € T| d € G(t)}, T~ :={t"|t € T}, and
TH={tF|teT}.

There are further types of trips, which do not carry passengers: A pull-
out trip connects a start point d* with a first stop ¢t~, a pull-in trip
connects a last stop t+ with an end point d—, and a dead-head trip connects

a last stop t* with a succeeding first stop #'~ . For simplicity, these trips are
all called unloaded trips.

For two trips p,q € T,1et A, ; > 0 be given. In the literature, A, ; is often
be used as the duration (travel plus layover time) from the last stop pt to
the first stop ¢~ (e. g., see Dell’Amico/Fischetti/Toth (1993), Ribeiro/Soumis
(1994), and Daduna/Paixao (1995). However, our operating partners use such
a definition of A, ; only for those dead-head trips for which the idle time or
the difference s, — e, does not exceed a predefined maximum ranging from
40 to 120 minutes. Otherwise, A, 4 is set to infinity. We will show that such
a restriction in the degree of freedom can lead to a higher vehicle demand
and, therefore, to suboptimal solutions. To make it possible to use such links
in spite of this, we set A,, := s, — e, whenever it is possible to park a
vehicle between p and ¢ at the depot. We call these special dead-head trips
pull-in-pull-out trips. They were first described in Bokinge/Hasselstrom
(1980). (This concept has been considered unacceptable and has therefore
been rejected.) Whenever e, + A, ; < s, is satisfied, the corresponding dead-
head trip is called compatible.

A vehicle schedule or (duty) is a chain of trips such that the first trip is a
pull-out trip, the last trip is a pull-in trip, and the timetabled and unloaded
trips occur alternately. A vehicle schedule is called feasible if all its trips
belong to the same depot. A circulation is also called a block (or rotation)
if it includes no pull-in-pull-out trip. _

For each depot d € D, we introduce the following sets of trips: AP :=
{(t~,t")| t € Ta} (timetabled trips) and Ag‘“ip = {(d*,t7),(tT,d7)| t € Ta}
U{(p",q7)| p,q € TaNe,+Ap 4 < 5.} (unloaded trips). With each unloaded
trip a € Ag'mp, we associate a weight ¢ € Q representing its operational
costs. In addition, we add to the weight of each pull-out trip a sufficiently
large M representing the capital costs and being larger than the operational
costs of any feasible solution. The minimization of this “two-stage” objective
function first minimizes the fleet size and, subordinate, the operational costs
among all minimal fleet solutions. With this terminology, the MDVSP is
to find a weight minimal set of feasible vehicle schedules such that each
timetabled trip is covered by exactly one vehicle schedule.

The MDVSP can be stated as an integer multicommodity flow problem as
follows. For each depot d € D, let (d~,d*) denote an additional backward
arc (on which depot capacities can be controlled) and let A4 := A;’mp U
ATy {(d~,d)}. Let D = (V, A) be a digraph with node set V := D+ U
D-UT-UTt and arc set A := |J,.pAa- Figure 1 illustrates a small example
with D = {r,g}, T = {a,b,c,d,e}, Tr = {a,c,d}, and Tg = {a,b,c,e}.

An Integer Linear Program.

We introduce an integer variable z? for each a € A4 and each d € D. z¢
denotes a decision variable indicating whether a vehicle of depot d runs trip a

Figure 1: Digraph (V, A) and its single-depot graphs.

or not, unless a denotes the backward arc. In this case, ¢ counts all employed

vehicles of the depot d. The variables z¢ are combined into vectors z? :=
(2%)qeca, € R, d € D, and these into 2 := (2%)gep € R™.

Given a node v € V, let §*(v) denote all arcs of A with tail in v and,
accordingly, = (v) denote all arcs with head in v. For a given set A C A, we
define z4(A) := ¥ 1n4,7¢ and z(A) := 3, p2%(A). The self-suggesting
ILP formulation of the MDVSP is

minz Z ct zd (1a)

deD aeA;—trip

subject to
z(6ttT)né(tY) = 1, VteT, (1b)
z4(6T(v)) =26 (v)) = 0, VwveTgu{d',d} VdeD, (lLc)
;U((id_’d+) < Kg, VAdEeD, (1d)
2 > 0, VaeAy; VdeD, (le)
x integral. (1f)

Note that (0t () N6~ (t1)) = X year) x’(jt_ﬁ). Constraints (1b), the flow
conditions, ensure that each timetabled trip is serviced exactly once. Con-
straints (1c¢), the flow conservations, guarantee that the total flow value
of each depot d entering some node v € V must also leave v.

The ILP (1) includes many redundant constraints that can be eliminated
by performing some preprocessing steps as shown in Lobel (1997¢). The main
idea is to shrink ¢~ and t* to one node ¢, for all ¢t € T, and to shrink d~ and
d* to one node d, for all d € D. This corresponds to eliminating each arc not
belonging to some unloaded trip and leads to the following equivalent ILP:

minz Z ct xd (2a)

d€D g Ay P

subject to

z(6t(t) = 1, VteT, (2b)

24 (0T () —z4(67 (1)) = 0, VteTs VdeD, (2¢)
z4(67(d) < ke, VdeD, (2d)

3 > 0, Va€ AT™P VdeD, (2e)

z integral. (21)

Relaxations.

The natural relaxation of (2) is of course its LP relaxation

min Z Z cd zd. (3)
2 satisfying

(2b)-(2 e) deD g Ay trip

Let v € RT, 7= (r%€e Rn)dep, and0 < v € R? denote the dual multipliers
for (2b), (2¢), and (2d). Consider a subset A C AP, The LP containing
just the columns corresponding to A is called restricted LP of (3) and is
denoted by RLP.

We briefly give two possible Lagrangean relaxations for the MDVSP. For
notational simplicity, we use the same symbols for the dual variables of (3)
and for the Lagrangean multipliers of the two following Lagrangean relax-
ations.

Let 7 := (7% € R™)gep and 0 < v := (7% gep € RP denote the La-
grangean multipliers according to the flow conservations (2¢) and the depot
capacities (2d). Relaxing (2¢) and (2d), we obtain a Lagrangean dual LRy
reading maxy;>o Lies(7,) with inner minimization problem

Lialm) = min Yo Y etad = Yt (5%(6%0) - 267 0)

de€D " ey trie tETa
- (k= a'Gr @)} @)
subject to

x satisfies (2b), (2e), (2f), and —z(67(t)) =—1,Vt€T. (4b)

The subscript “fcs” of L¢s and LRy stands for Flow-ConServation. Note,
for fixed arguments, L. is a minimum-cost flow problem.

The second Lagrangean relaxation is based on the ILP (1). Let v :=
(W)eeT € R” denote the Lagrangean multipliers for to the flow conditions
(1b). Relaxing (1b), we obtain a Lagrangean dual LR¢.4 reading max,, Lgeq(v)
with inner minimization problem

Lica(v) :=v"1 + Zmin{ Z clad — ZVtml(it—,ﬁ)}(|
da

deD aeAZ'"ip t€Tq
subject to

z satisfies (1¢)—(1f) and x‘(it_’t+) <1, VteTq YdeD. (5b)

The subscript “fcd” of Lgq and LRg.q stands for Flow-ConDition. Note that
L¢cq decomposes a constant part v"1 and into |D| independently solvable
minimum-cost flow circulation problems.

It is easy to see that the additional constraints in (4b) and (5b) are
redundant in (2) and (1), respectively, but necessary to receive convenient
inner minimization problems that are efficiently solvable minimum-cost flow
problems.

3 Discussion of the Model

In this section, we discuss the relation and differences between the arc-
oriented multicommodity flow and the path-oriented set partitioning formu-
lations. We will also distinguish our multicommodity flow formulation from
some other (arc-oriented) models that have been presented in the literature.

Multicommodity Flow and Set Partitioning Models.

Arc-oriented multicommodity flow and path-oriented Dantzig-Wolfe (DW)
set partitioning formulations are usually used to model the MDVSP. Applied
to vehicle scheduling problems from practice, their corresponding ILP formu-
lations can provide several million integer variables. Solving such large ILPs
requires column generation techniques.

For the arc-oriented model, column generation can be seen as an implicit
pricing technique (see Schrijver (1989)): one works on restricted subsets of
active arcs that are generated and eliminated in a dynamic process. For the
DW decomposition, column generation usually leads to pricing problems in
the form of constraint shortest path problems. Many researchers automati-
cally associate the term “column generation” with the solution process used
in a DW decomposition (e. g., see Soumis (1997)). To distinguish this use of
the term “column generation” from those as a general LP pricing technique
in the sense of Schrijver, DW column generation is also called delayed column
generation as proposed in Chvétal (1980). To avoid misunderstandings, we
will use in this paper the term “column generation” as a general LP pricing
technique in the sense of Schrijver.

Direct approaches to the multicommodity flow formulation can be used
if all side constraints can be formulated solely in terms of the arcs of the
network. This is the case for the MDVSP considered here. DW decomposi-
tion is in particular needed for problems that involve path constraints. It
applies not only to vehicle scheduling problems, but also to applications of
similar flavour, e.g., to crew and airline scheduling. For a survey on DW

set partitioning approaches to such problems, we refer the reader, e.g., to
Desrosiers/Dumas/Solomon/Soumis (1995) and Soumis (1997).

Differences to Other Arc Oriented Models.

Practice-oriented methods for the MDVSP are in most cases based on a single-
commodity minimum-cost flow relaxation within a schedule first — cluster
second approach (see Daduna/Paixdo (1995) for a detailed description of
this approach). The multiple-depot formulation is reduced to a single-depot
relaxation. Unlike multicommodity flow formulations, however, those single-
depot relaxations yield two significant drawbacks:

Depot-groups and flow conservation: It is only possible to consider a
single (depot independent) dead-head trip — we better call it link — between
two timetabled trips. Such a link (¢,¢’) is considered to be feasible with re-
spect to the depot-groups if G(t) N G(t') # 0. But if depot-groups must only
be satisfied locally between two trips, the intersection of the depot-groups
of a generated block may be empty. In other words, the solution would be
infeasible, see Fig. 2. Splitting such infeasible block into its feasible parts can
lead to suboptimal solutions.

I
|
Figure 2: Invalid block.

To avoid falling in such traps, the MDVSP should be modelled as a
multicommodity flow problem. Many research groups have considered the
MDVSP as a multicommodity flow problem long before we started our in-
vestigations. The requirement of many real-world applications to consider
different depot-groups, however, was just realized in the last years, e.g., by
Forbes/Holt/Watts (1994). It is obvious that multicommodity flow formula-
tions are natural for this kind of scheduling problems.

Limited duration for dead-head trips: It is often the case that single-
depot relaxations consider dead-head trips with a limited duration (e. g., see
Daduna/Mojsilovic/Schiitze (1993)). It is therefore only possible to generate
blocks that must be linked to vehicle schedules in a succeeding step. Based
on heuristic ideas, the main objective is to use as many dead-head trips
as possible and, subordinate, to minimize operational costs. Obviously, this
objective function does indeed minimize the number of blocks if depot-groups
are handled correctly. At the same time, it is assumed that a block minimal
solution provides also a fleet minimal solution. It can be shown, however,
that this is not true in general, see Fig. 3. The blocks, which have been
determined by this strategy are subdivided to the depots and depot-wise
linked to vehicle schedules. These links correspond to pull-in-pull-out trips.

d 10:40 - 11:10

Ih 8:15 - 9:05 1 { ¢ 9:55 -10:45 1

a 7:50 - 8:20

Figure 3: Minimal block solution is not fleet minimal.

It is clear that such a problem decomposition into two successive steps can
lead to suboptimal solutions.

Figure 3 displays a multiple-depot instance with two depots for which
the fleet minimal solution cannot be obtained with a block minimal solution:
The first depot can service trips “b, “c”, and “d”, and the second depot can
service “a”, “b”, and “c”. Two timetabled trips may be linked by a pull-in-
pull-out trip if the depot-groups are satisfied and if the two timetabled trips
do not overlap. The maximum allowed duration of a dead-head trip is set to
60 minutes such that for both depots just the dead-head trip between “b”
and “c” is possible. The block minimal number is three (“d” is assigned to
the first depot, “a” is assigned to the second depot, and “b—c” is assigned
to the first or the second depot) and requires three vehicles, but two vehicles
are optimal ({a,c} and {b,d}) if each timetabled trip defines its own block.

Since it is insufficient to generate a fleet minimal solution in such a two
step approach, linking blocks optimally and selecting user-defined unloaded
trips must be done simultaneously. Pull-in-pull-out trips translate the deci-
sion of linking blocks into the terminology of dead-head trips. Therefore, using
pull-in-pull-out trips makes it possible to generate a fleet minimal solution
with minimum operational costs in one step.

Each pull-in-pull-out trip stands for a pull-in trip followed by a pull-out
trip. The set of all pull-in-pull-out trips represents all feasible possibilities
to link blocks to vehicle schedules. If we enlarge the user-defined unloaded
trips by the pull-in-pull-out trips, the number of necessary vehicles is nothing
but the number of used pull-out trips (or, equivalently, pull-in trips). Vice
versa, if we replace each pull-in-pull-out trip of a vehicle schedule by the
corresponding pull-in and pull-out trip, it is always possible to assign all
resulting blocks of this vehicle schedule to a single vehicle.

4 Solving MDVSPs

The following section sketches the branch-and-cut method to solve the MD-
VSP. We give here a brief summary of the basic ingredients that we have
required to solve our test instances. Because of a limited space, it is here not
possible to explain each detail. Therefore, we refer the reader to our thesis
(see Lobel (1997¢)) which gives a full description of the following items.
Real-world problems of large cities such as Berlin have up to 25 thou-
sand daily timetabled trips and 70 million unloaded trips. At first glance, it

seems impossible to solve such large ILPs and their LP relaxations exactly
using commercial or publicly available standard software, even on the newest
and fastest workstations or supercomputers. Nonetheless, with an intelligent
combination of available LP and minimum-cost flow software together with
implementations of many concepts of combinatorial optimization and integer
programming, it has become possible to solve such problems to optimality
by column generation and branch-and-cut on fast workstations. The basic
components and concepts are:

o Lagrangean relaxations to quickly obtain tight lower bounds for the
minimum fleet size and the minimum operational costs thereof as close
as possible to the integer optimum value.

e Primal opening heuristics to obtain a first integer feasible solution and
a good starting point for the LP relaxation.

e The LP relaxation approach with a column generation scheme including
Lagrangean pricing.

e LP-plunging to exploit the information compiled in each (R)LP and its
optimal solution.

e Branch-and-cut to solve a problem to proven optimality.

o The workhorses: MCF combined with a column generation and the LP
solver CPLEX.

Our basic method to solve the MDVSP is to solve the integer linear pro-
gramming formulation by primal and dual heuristics, column generation, and
branch-and-cut (see Fig. 4).

First, we determine a “fast” and “tight” lower bound ¢; by Lagrangean
relaxation and compute an upper bound ¢y using opening heuristics. Second,
the LP relaxation is solved to optimality using a column generation and col-
umn elimination scheme. The column generation procedure is based on new
Lagrangean pricing and on standard reduced cost pricing, the column elim-
ination procedure uses only the reduced cost criterion. Within this iterative
process, we optionally call an LP-plunging heuristic to find a better integer
feasible solution. If the upper bound has been improved by the LP-plunging,
we check whether m is “small enough” from a practical point of view
and stop in this case.

Up to the point where the LP relaxation has been solved to optimality, our
method generates for most test instances an optimal solution or a minimal
fleet solution with a small gap in the operational costs. For many instances,
the current solution obtained by LP-plunging is (almost) optimal, and we
have already terminated the optimization process. Otherwise, let ¢pp denote
the optimal LP value. We generate as many nonactive columns as possible
(respecting the main memory limit of the used computer) that have reduced

costs smaller than ¢y — ¢z p. Note that none of the other inactive variables
can have a positive value in an integer solution yielding a smaller objective
value than cgr. The resulting RLP is then fixed and solved by branch-and-cut.
Of course, branch-and-cut solves the complete problem to proven optimality
only if all necessary variables have been generated that may be included in
an optimal integer solution. Otherwise, branch-and-cut is only a heuristic
that solves the integer version of the last RLP to optimality. Our branch-
and-cut approach turned out to be not a very important part of our method.
Therefore, it is not described in this paper, but we refer the interested reader
to Lobel (1997c).

We have also investigated a Dantzig-Wolfe decomposition. It turned out
that such a decomposition approach is unsuitable for the MDVSP, at least
for the test set that we have investigated. The major obstacle here is that the
continuous master problem relaxations become too hard to solve efficiently.
Especially for problems with more than one thousand timetabled trips, the
LU factorization in solving a restricted master problem takes far too much
time.

4.1 Lagrangean Relaxations

The first important use of the Lagrangean relaxations LRg.s and LRgq is to
compute quickly lower bounds as close as possible to the integer optimum
value. The trivial problem relaxation Lgs(0,0), which is equivalent to the
neglection of the flow conservation constraints and the depot capacities, al-
ready gives very good lower bounds. These lower bounds can be improved
using a computationally expensive subgradient method.

Let cy denote the value of an integer feasible solution and ¢* denote the
optimal integer solution value. Since 0 < Lg(0,0) < ¢* < cy, the percentage
deviation between ¢y and ¢* can be approximated and estimated by

cy — ¢ _ cu — Lges(0,0)
c* = LfCS(O, 0)

0<

Thus, as long as the LP relaxation is not solved to optimality, the somewhat
weaker lower bound Lg.s(0,0) can be used to estimate the quality of integer
feasible solutions that have been generated by the opening or LP-plunging
heuristics.

4.2 Opening Heuristics

We have implemented two opening heuristics considering depot capacities
only heuristically:

e ND: a cluster first — schedule second method based on a nearest depot
heuristic. It simply assigns each trip ¢ € 7 to one of its depots of G(t)
that provides the cheapest pull-out and pull-in trips.

(START)

Y

Compute lower bound c;, by Lagrangean relaxation. |

Y

Compute initial upper bound cy. |

Y

Initialize column generation. |

Y

Solve current RLP. |

Y

Improve cy by LP-plunging (optional). |

es
Y »(STOP)

Column elimination by reduced cost criterion. |

Y

Col. gen. by Lagrangean and reduced cost pricing. |

RLP

no globally

optimal
?

Branch-and-Cut on fixed RLP. STOP

Figure 4: Solving MDVSPs: Flow chart.

e SCR: a schedule — cluster — reschedule method. This heuristic is not
based on an assignment approach, but rather on minimum-cost flow
that retains all degrees of freedom. The individual depot nodes in Dt
and D~ are contracted to single depot nodes D, and the depot indi-
vidual flow conservations are aggregated to one flow conservation. This
relaxed system is solved to optimality. The resulting vehicle schedules
may violate some individual flow conservations, and these violations
can be repaired heuristically: the vehicle schedules are pieced together
into feasible blocks defining a cluster that considers depot capacities.
This cluster can than be (re-)scheduled optimally. This procedure is
embedded in a tabu search that forbids the use of certain dead-head
trips that create the infeasibilities of a current (relaxed) solution.

Complexity theory tells us that it is A”P-hard just to find a feasible solu-
tion if depot capacities are considered (see Lobel (1997¢)). However, it turned
out that depot capacities are often soft constraints and can thus sometimes
be violated somewhat since vehicles can often be shifted from one garage (or
depot) to another.

4.3 Solving the LP Relaxation

Our computational investigations on real-world test data have shown that
the hard part in solving the MDVSP to proven optimality is to solve the LP
relazation. Standard software alone (e.g., pure CPLEX) as well as standard
approaches from integer linear programming (e.g., column generation and
column elimination schemes based on the reduced cost criterion) are unable
to solve larger instances with several thousand timetabled trips. We have
developed a column generation method including new techniques based on
the two Lagrangean relaxations LRgs and LRg.q. Lagrangean pricing is a new
idea that makes it possible to solve the LP relaxation (3) of even large-scale
instances.

The basic idea of Lagrangean pricing is to approximate the LP relaxation
with all active and inactive variables. It is important that dual information
compiled in the last RLP are used as it is done by the reduced cost pric-
ing method: Let 7, 7, and 4 denote the values of the dual LP multipliers
according to the flow conditions (2b), the flow conservations (2c¢), and the
depot capacities (2d) of the last basis of the current RLP. We evaluate Ly
and Lgq at (7,7) and D, respectively, using the complete variable set. The
solutions L¢es and Lgeq can be interpreted as a set of vehicle schedules and/or
unloaded trips that seem to be advantageous for the given shadow prices of
the current RLP relaxation. Each still nonactive variable according to such
an unloaded trip is therefore generated and added to the next RLP. The new
idea of Lagrangean pricing is to generate, in addition to columns with neg-
ative reduced costs, also those that have nonnegative reduced costs, but are
necessary to complete (almost) optimal solutions.

Computational tests have shown that the LP relaxations of our problems
can only be solved if we use advanced starting solutions that yield a value as
close as possible to the LP optimum. Therefore, the set of all unloaded trips,
used hitherto by the solutions of Lgs(0,0) and the opening heuristics, define
the first restricted arc set A of the initial RLP.

4.4 LP-Plunging

Our real-world MDVSP instances exhibit in practice a nice “almost-integrality
property”: solutions x of the LP relaxation (3) or an RLP include few frac-
tional variables. It is often the case that x is integral or there exists some
integral solution already yielding (almost) the same objective value. More-
over, the gap between the optimal LP or RLP value and its optimal integer
value is often small or zero. LP-plunging makes use of this property by itera-
tively rounding up and fixing components of the LP solution and reoptimizing
the enlarged LP.

Given an LP (3) or an RLP and a nonintegral feasible vector z. Let A €
(0.5,1.0) denote some threshold value for which all fractional variables having
a value within (A, 1) are rounded up and fixed to one, and let a € (0.5,1.0)
denote some shrink factor for A. The standard values for A and a are 0.95
and 0.9. As long as the current z is nonintegral and the current (R)LP is
primal feasible, the following steps are performed:

1. All variables z¢ € (A, 1) are rounded up and fixed to 1.

2. If no variable was fixed to 1 and if aA > 0.5, we reset A := aA and
go to 1. Otherwise, each fractional variable yields z¢ < 0.5, and we fix
the first variable z? to 1 yielding the largest fractional value.

3. Logical implications are performed, i.e., for each variable x‘fj being
fixed to one, we fix the variables of all arcs (6 (i) U 6~ (5)) N AY™P and
(6(3) U8(5)) \ AT to zero.

4. The LP enlarged by the variable fixings is reoptimized with the dual
simplex algorithm.

If the LP-plunging succeeds, the clustering defined by the last (integral) z is
depot-wise rescheduled to optimality using all possible unloaded trips.

Since the restricted column set of an RLP generally includes only a small
part of A"trP the LP-plunging generates in many cases only poor or in-
feasible integer solutions. If this is the case, we enlarge the current RLP
parameter controlled by inactive columns (such that the probability to find
a better integer solution is presumably increased, but the dual feasibility of
the optimal basis of the RLP is not destroyed and the main memory limit of
the workstation is not exceeded) and apply the LP-plunging a second time.

4.5 The Workhorses: Minimum-Cost Flow and LP

Solving the MDVSP with our algorithm requires the efficient solution of
minimum-cost flow problems and LPs at several steps: the minimum-cost flow
problems stem from single-depot subproblems and Lagrangean functions (4)
and (5), the LPs are RLPs from the LP relaxation (3).

Standard tools in vehicle scheduling are, of course, network flow models
and algorithms, which have been profoundly investigated and are well under-
stood. We have implemented a network simplex algorithm, called MCF, and
combined it with column generation.! This implementation allows solving the
single-depot problems and subproblems to optimality in a few seconds. The
Lagrangean functions can also be evaluated in a few seconds up to a few min-
utes, depending on the problem size. For instance, the Lagrangean function
Lgcs of the problem with 70 million unloaded trips can be exactly evaluated
in about 15 minutes. MCF (without column generation) is available free of
charge for academic use via WWW at www.zib.de/Optimization (see Lobel
(1997b)).

We solve the linear programs with the primal as well as the dual simplex
solver of CPLEX, currently version 4.0.9 CPLEX (1997). CPLEX turned out
to be a reliable and robust method for our degenerate (R)LP problems.

5 Test Data

Our computational investigations are based on real-world data from the city
of Berlin (BVG), the city of Hamburg (HHA), and the region around Ham-
burg (VHH). Different parameter settings and optimization aspects yielded
in the test instances, which are illustrated in Tab. 1 (@G := Y, G (t)/|T]
denotes the average depot-group size). Note that the number of equations of
(3) is equal to the number of flow conditions and flow conservations.
Currently, BVG maintains 9 garages and runs 10 different vehicle types
resulting in 44 depots. For a normal weekday, about 28,000 timetabled trips

!Due to the very special (“almost transportation”) structure of the considered minimum
cost flow problems and the importance of fast solutions, an anonymous referee proposed
to try also more specialized algorithms like augmenting path methods. We have doubts
that such methods could improve the performance of our branch-and-cut method: First, the
portion of the total run time spend in the minimum cost flow subroutines can be neglected.
Second, the considered minimum cost flow problems are not assignment or transportation
problem although they include such substructures. Therefore, very specialized assignment
or transportation algorithms cannot be used. Third, the cost coefficients of the inner mini-
mizations problems L¢.s and L¢.q can also be negative. Augmenting path methods require
a nonnegative objective function, otherwise, nontrivial network transformations are nec-
essary. A general purpose network simplex code, however, can handle arbitrary objective
function easily. Last, we believe that augmenting path methods cannot handle up to 70
million variables efficiently. We have also compared MCF with other efficient network flow
solver such as RELAX IV and the cost scaling code CS 2 (see Lobel (1996)). For our special
minimum-cost flow problems, MCF turned out to be, on the average, the fastest code.

|A"*P| /1,000 no. of

Test Sets Pl 71 User® | All oG equations
Berlin 1 44 24,906 846 | 69,700 | 4.03 125,255
Berlin 2 49 24,906 304 | 13,200 | 1.56 63,641
Berlin 3 3 1,313 77| 2,300 | 2.33 4,370
Berlin-Spandau 1 9 2,424 164 | 3,700 | 4.94 14,418
Berlin-Spandau 2 9 3,308 327 | 8,800 | 5.49 21,470
Berlin-Spandau 3 13 2,424 39 590 | 1.92 7,103
Berlin-Spandau 4 13 3,308 72 | 1,530 | 2.25 10,753
Berlin-Spandau 5 13 3,331 75| 1,550 | 2.25 10,834
Berlin-Spandau 6 13 1,998 28 380 | 1.90 5,798
Berlin-Spandau 7 7 2,424 145 | 3,300 | 4.16 12,506
Berlin-Spandau 8 7 3,308 283 | 7,800 | 5.02 18,376
Hamburg 1 12 8,563 | 1,322 | 10,900 | 2.23 27,696
Hamburg 2 9 1,834 99 | 1,000 | 2.02 5,549
Hamburg 3 2 791 30 200 | 1.32 1,835
Hamburg 4 2 238 2 23 | 1.04 487
Hamburg 5 2 1,461 85 580 | 1.31 3,379
Hamburg 6 2 2,283 176 | 1,600 | 1.33 5,323
Hamburg 7 2 341 6 34| 1.32 795
Hamburg-Holstein 1 4 3,413 230 | 4,000 | 1.68 9,167
Hamburg-Holstein 2 19 5,447 | 1,054 | 9,400 | 3.65 25,334

%The unloaded trips without pull-in-pull-out trips.

Table 1: Real-world test sets.

have to be serviced. Since BVG outsources some trips to third-party compa-
nies, this number reduces to 24,906. Using all degrees of freedom, these 25
thousand trips can be linked with about 70 million unloaded trips.

Berlin 1: This is the complete BVG problem with all possible degrees of
freedom.

Berlin 2: This problem is based on the timetabled trip set of Berlin 1, but
the depots and the dead-head trips are generated with different rules resulting
in fewer degrees of freedom.

Berlin 3: This is a small test instance including 9 lines from the south of
Berlin and 3 depots from one single garage.

Berlin-Spandau 1 — 8: All the test sets denoted by Berlin-Spandau are
defined on the data of the district of Spandau for different weekdays and
different depot generation rules.

HHA together with some other transportation companies maintain 14
garages with 9 different vehicle types resulting in 40 depots. More than 16,000
daily timetabled trips must be scheduled with about 15.1 million unloaded
trips. This problem decomposes into a 12-depot problem, a 9-depot problem,
five smaller 2-depot problems, and nine small 1-depot problems.

Hamburg 1 — 7: Here we consider the multiple-depot subproblems of HHA.
VHH currently plans 10 garages with 9 different vehicle types. The garage-

vehicle combinations define 19 depots. The 5,447 timetabled trips of VHH

can be linked with about 10 million unloaded trips.

Hamburg-Holstein 1: This is a subset of VHH containing not all its depots

and trips.

Hamburg-Holstein 2: This test set is based on the complete data of VHH.

6 Computational Results

In the following, we want to prove the effectiveness of our developed and
implemented method to solve large MDVSP instances from practice. All the
computational tests have been performed on a SUN Model 170 UltraSPARC
with 512 MByte main memory and 1.7 MByte virtual memory. We have
been the only user on this machine during our test runs. All linear programs
have been solved with CPLEX, version 4.0.7 and 4.0.9, all minimum-cost flow
problems and single-depot subproblems have been solved with our network
simplex code MCF combined with a column generation.

The following objective values (fleet sizes and operational weights) are
given in Tab. 2: (i) the lower bounds obtained with Lgs(0,0) and the LP
relaxations; (ii) the integer optimum or, if the optimum is still unknown, the
best integer solution values; (iii) the upper bounds obtained by our opening
heuristics as well as by our branch-and-cut method starting with SCR or ND
and terminating after a maximum run time limit of 10 hours (and 16 hours
for Berlin 1 starting with ND). The largest problem, Berlin 1, has not been
solved to optimality. Berlin 2 and Berlin-Spandau 2 and 8 have been solved
fleet minimally, but not to proven cost minimality.

The run times that have been required to solve the function Lge(0,0),
the LP relaxation pure without LP-plunging, the opening heuristics SCR
and ND, and our exact method (with and without using the optional LP-
plunging within the column generation) are given in Tab. 3.

Lower Bounds.

To obtain lower bounds by Lagrangean relaxations, we have only consid-
ered Lics(0,0). For Lgs(0,0), let v+ and v~ denote optimal dual variables
associated with the flow conditions z(6%(¢)) = 1 and —z (0~ (t)) = -1, re-
spectively. We have shown in Lobel (1997¢) that Le.q(vt —v~) and Lgs(0, 0)
yield the same optimal value. The values obtained by Lg.s(0,0) give excellent
approximations. The minimum integral fleet sizes can be approximated, on
the average, by 99.94 %. It is remarkable that the trivial problem relaxation
- simply neglecting the flow conservations — gives such tight approximations.
For 15 out of our 20 instances, the fleet sizes can be exactly approximated.
Ignoring for those problems the values for the fleet size, the gap between the

‘(proq ur are senyea -jut rewrnydo) syyStom Teuoryerodo pue sozIs 199[] g S[JeL

Lower bounds Optimum or Upper bounds
L4c5(0,0) LP relaxation best solution SCR heuristic ND heuristic

Fl ioh pure + LP method | pure®| + LP method
Fleet | Weight | Fleet | Weight cet | Weight Fleet | Weight | Fleet | Weight | Fleet | Fleet | Weight

B1 1323 | 715714 1323 | 7591627 || 1329 | 850680 || 1347 | 1317379 | 1335 | 1118287 | 1575 | 1356 | 982914
B2 1350 | 715623 | 1353.7 | 797919 || 1354 | 777823 || 1366 | 1318085 | 1354 | 809611 | 1655 | 1354 | 788958
B3 69 | 14043 69 | 14119 69 | 14119 69 14122 69 | 14119 70 69 | 14119
BS 1 125 | 65585 125 65611 125 | 65611 125 | 125786 | 125 65835 139 | 125 65901
BS 2 184 | 78947 | 184.5 79110 185 79052 185 | 289262 | 185 80430 207 | 185 92249
BS 3 127 | 90514 127 | 93745 127 | 93745 || 127 | 152109 | 127 | 93745 135 | 127 | 93745
BS 4 191 | 195844 191 | 230846 191 | 230846 192 | 395891 | 191 | 230846 222 | 191 | 230846
BS 5 191 | 191141 191 | 227580 191 | 227580 194 | 393922 | 191 | 227580 220 | 191 | 227580
BS 6 98 | 91109 98 | 101075 98 | 101075 98 | 132650 98 | 101075 109 98 | 101075
BS7 125 | 65585 125 65611 125 | 65611 125 | 105853 | 125 | 65611 139 | 125 65724
BS 8 184 | 78947 | 184.5 79110 185 79093 || 185 | 259406 | 185 79273 207 | 185 79959

H1 432 | 66874 432 71068 432 | 71069 446 70291 434 73066 489 | 432 71270
H2 103 | 15356 103 | 16070 103 | 16070 104 16792 | 103 | 16070 114 | 103 | 16070

Test
Sets®

H3 39 5557 39 5860 39 5860 39 6298 39 5860 41 39 5860
H4 6 1358 6 1358 6 1358 6 1358 6 1358 6 6 1358
H5 62 | 12092 62| 12502 62| 12502 62 13535 62| 12502 65 62 | 12502
H6 111 | 15705 111 | 15791 111 | 15791 111 165688 | 111 | 15791 | 111 | 111 | 15791
HT 15 2832 15 2961 15 2961 16 2836 15 2961 16 15 2961

HH 1 201 | 28697 201 | 29027 201 | 29027 || 201 30497 | 201 | 29027 213 | 201 | 29027
HH 2 360 | 51084 362 52788 362 | 52788 363 72700 | 362 52986 393 | 362 53090

“Results obtained with SCR and ND: using only the heuristics (“pure”), and using each as the opening method within our exact
LP method (“+ LP method”). In addition, we used a run time limit of ten hours and 16 hours for Berlin 1 starting with ND.

*B = Berlin, BS = Berlin-Spandau, H = Hamburg, HH = Hamburg-Holstein

°The results of the operational weights are not satisfying and, because of a lack of space, omitted. They are given in Lobel (1997c).

9Best known feasible LP value.

*SPUO029S UI SOWI) UNY g S[qel,

Lower bounds

Upper bound (or optimum)

Pure LP times

SCR heuristic

Nearest depot heuristic

Test Sets Lagrangean starting with + Exact method + Exact method
relaxation: — —%
Ltes (0, 0) SCR ND pure LP-plunging pure LP-plunging
always | bé&c always | bé&c

Berlin 1 916 —' —° || 12386 —° —] 1m —° —°
Berlin 2 229 | 34795 | 32767 3810 —* | 35202° 79 | 30985° | 33248°
Berlin 3 17 431 311 25 389 435 7 249 330
B-Spandau 1 27 | 43777 | 66501 343 59337 44053 15 | 68487 | 134386
B-Spandau 2 93 | 112337 | 165048 1939 —b | 138212° 39 —b | 240852°
B-Spandau 3 9 975 739 42 1626 990 7 953 758
B-Spandau 4 25 6014 4384 334 6228 6077 14 6773 4433
B-Spandau 5 31 5264 5618 354 6896 5304 15 | 13821 5666
B-Spandau 6 17 162 227 7 211 173 6 188 244
B-Spandau 7 23 | 24717 | 46597 259 26606 24793 14 | 45810 52031
B-Spandau 8 67 | 82284 | 62041 1238 | 146284° | 84725° 36 —b] 63215°
Hamburg 1 185 —b 1 50246 || 2868 —b —b 29 | 88767 53971
Hamburg 2 12 875 685 103 732 902 7 926 708
Hamburg 3 4 35 31 16 37 41 2 34 38
Hamburg 4 2 3 3 1 3 3 1 3 3
Hamburg 5 10 258 155 86 288 279 5 119 174
Hamburg 6 18 148 84 30 158 181 11 124 86
Hamburg 7 2 8 9 2 11 10 1 8 11
H-Holstein 1 40 2619 2087 199 2166 2695 18 2445 2158
H-Holstein 2 101 | 46673 | 64489 1696 55915 54604 40 | 68534 71562

2LP-plunging is only used in the branch-and-cut part on a fixed RLP or always whenever an RLP has been solved.
bNot solved to optimality since, for instance, the objective progress was too small or stalling occurred.
¢The problem has been solved fleet minimally, but not to proven cost minimality.

operational costs of Lgs(0,0) and the optimum is at most 16 % and 5% on
the average. The computing times are quite fast: For Berlin 1, L¢(0,0) with
70 million variables can be evaluated in about 15 minutes; for all the other
instances together, it can be computed in 15 minutes.

All LP relaxations, except for Berlin 1, have been solved to optimality.
To find a fleet minimal LP value for Berlin 1, our column generation requires
about 200 hours cpu time. The values obtained by the LP relaxation give
lower bounds quite close to the integer optimal values. For 12 out of the 20
considered instances, the LP relaxation already provides the integer optimal
value, and for 3 instances, it can be obtained by rounding up the LP value
to the next integer value. For Berlin 1, we do not know the minimal number
of vehicles, but expect that the fleet size lower bound provided by the LP
relaxation is also tight. Whenever the LP relaxation provides an exact fleet
size, it also provides the minimal operational weights.

We have seen that the LP values are quite tight. A similar phenomenon is
observed by Forbes/Holt/Watts (1994): 22 of their 30 test instances with up
to 600 trips have integral LP solutions, and the largest gap between the LP
value and the integral optimum is at most 0.003 % for the remaining problems.
So, this observation does not seem to be a small scale phenomenon.

The value of the operational weights in the objective value of the lower
bounds do not necessarily define lower bounds for the integer optimal weights
among all minimal fleet solutions. To estimate the quality of the operational
weights requires that the lower bound of the fleet size is tight. For all problems
that do not satisfy this condition, however, we believe that they nevertheless
give good estimated values for the minimal operational weights.

Comparing the run times of the Lagrangean and LP relaxation, it is ob-
vious that Lagrangean relaxations Lg.s(0,0) are the faster method to obtain
good lower bounds quickly. The better lower bounds provided by the LP
relaxation require long run times that are only justified by a succeeding
branch-and-cut method. The solution produced by SCR are always signif-
icantly better than those of ND. On the average, however, SCR used as the
opening heuristic for the branch-and-cut algorithm does not provide better
starting points. It is worth mentioning that starting without any heuristi-
cally generated solution, our LP method is unable to solve any of our larger
problem instances at all.

Upper Bounds.

We will now consider the upper bounds obtained by the two opening heuris-
tics (SCR and ND) and obtained by the exact branch-and-bound method
starting with SCR and ND, using LP-plunging between two RLPs, and ter-
minating after a given run time limit of 10 hours (and 16 hours for Berlin 1
starting with ND).

The trivial opening heuristic ND already delivers good results: The fleet
size gap is, on the average, about 10 % with a standard deviation of 6 %. From

a practical point of view, however, the operational costs of these solutions
are not acceptable. The better results are obtained from the SCR heuristic:
The average fleet size gap is 0.8 % with a standard deviation of 1.6 %. The
operational costs of these solutions are comparable to the results obtained by
the best codes currently used in practice.

We almost always obtain optimal results if we apply our exact branch-
and-cut method with a time limit of 10 hours. The objective gaps are, on
the average, less than 0.12 %. It does not make any difference which opening
heuristic we use for the exact method since the run times are comparable for
both. The run times of our exact method may be decreased if we use both
opening heuristics together to determine the first RLP. This may be the basis
for further computational tests.

Figures 5-8 display the development of the upper bound values (fleet sizes
and operational weights) obtained by the LP-plunging heuristic in proportion
to the integer optimal (or lower bound) values. Starting our method with
the solution obtained with ND, the fleet sizes can be approximated in two
hours with a gap less than 3%, in 4 four hours with gap of about 1%, and
in 6 hours with a gap less than 1% for all problems except Berlin 1, see
Fig. 5. Starting with the solution obtained with SCR, the fleet sizes can be
approximated in one hour with a gap less than 2% and in 10 hours with
a gap less than 1%, see Fig. 7. There is also a positive development of the
operational costs: compared with the optimal integer costs of fleet minimal
solutions, the operational costs can be approximated with a small gap, see
Figs. 6 and 8. If the run time limit is 10 hours or more, the four figures show
that it is meaningless which opening heuristic is used, the results are in any
case comparable. However, if there is a stronger time limit of two or three
hours, starting with SCR provides better results.

Optimal Solutions

Without any run time limit, each instance of our test set, with the exception
of the problem Berlin 1, can be solved to proven fleet minimality. With the
exceptions of the problems Berlin 2, Berlin-Spandau 2, and Berlin-Spandau 8,
each instance can be solved to proven fleet and cost optimality.

With the current version of our branch-and-cut method, solving really
large-scale problems to proven optimality leads to impractical run times. In
particular, solving Berlin 1 with 70 million variables to optimality is still
a challenge to us. Nevertheless, the results obtained with our methods are
currently the best obtainable. Solutions providing possibly a gap of a few
vehicles, but with reasonable operational weights can be computed in ac-
ceptable run times.

Berlin 1 — -
Berlin2 -----
Berlin-Spandau 1 ------
Berlin-Spandau 2
Berlin-Spandau 5 -~
Berlin-Spandau 7 -----
Berlin-Spandau 8
Hamburg 1
Hamburg-Holstein 2 - -

10.00

5.00 |- 1

4.00 - 1

Relative fleet size gaps in %.

100 F ! - : -

0.00 -

Hours.

Figure 5: Development of fleet size upper bounds of problems requiring more than
2 hours run time to obtain a fleet minimal solution; starting with the
ND heuristic.

T T T
Berlin-Spandau 1 ------
Berlin-Spandau 5 -~
Berlin-Spandau 7 ----

Hamburg 1

Hamburg-Holstein 2 -

30.00

20.00

10.00

Relative cost gaps in %.

Figure 6: Development of operational weight upper bounds of problems requiring
more than 2 hours run time to obtain a fleet minimal solution and know-
ing the minimum weight among all minimal fleet solutions; starting with
the ND heuristic.

T
Berlinl —
Berlin2 -—--—-
| Hamburg 1 ------ i
3.00 Hamburg-Holstein 2
u’é
£
2
g 2.00 1
B0
L
3
g
=
3
3
ks
] 1.00 - -
0.00 |-
| | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Hours.

Figure 7: Development of fleet size upper bounds of problems requiring more than
2 hours run time to obtain the optimum; starting with the SCR heuristic.

30.00

Hamburg 1
Hamburg-Holstein 2

20.00

10.00

Relative cost gaps in %.

Figure 8: Development of operational weight upper bounds of problems requiring
more than 2 hours run time to obtain the optimum and knowing the
minimum weight among all minimal fleet solutions; starting with the
SCR heuristic.

7 Conclusions

This paper is devoted to the Multiple-Depot Vehicle Scheduling Problem
(MDVSP). We have presented a branch-and-cut method for its solution. A
well-chosen combination of these methods turned out to be able to solve (al-
most) all problems of practical interest in accepatable running times. The
success of the implementations, of course, gains from the (in the recent years
drastically increased) computing power of modern workstations and sophis-
ticated commercial optimization software (such as the LP solver CPLEX).
We summarize some of our findings:

Upper bounds that have been generated with the schedule — cluster —
reschedule heuristic (SCR) can be computed quickly and are of high
quality. Compared with the optimal integer solutions, SCR provides so-
lutions with a fleet size and operational weight gap of less than 1.25%
and 5.2 %, respectively.

Lagrangean relaxations allow to compute tight lower bounds even for
large multiple-depot instances. Lagrangean relaxations can be used to
quickly simulate fleet and cost effects of different parameter settings
and, thus, to easily find out a useful scenario.

Branch-and-cut is capable of solving even very large multiple-depot in-
stances to optimality, see Tab. 2.

Lagrangean pricing is a good idea to solve the large degenerate LPs that
come up in solving multiple-depot instances with branch-and-cut. Our
initial code used the well known standard reduced cost pricing tech-
niques. However, this did not work at all because of stalling. To cure
stalling, we introduced (what we call) Lagrangean pricing. We propose
it as one of the basic ingredients of an effective method to solve multiple-
depot vehicle scheduling problems. Similar positive results have been
observed by Fischetti/Toth (1996) and Fischetti/Vigo (1996) also deal-
ing with large degenerate LPs. We believe that variable pricing based
on Lagrangean relaxation is a useful tool that can help to solve many
combinatorial optimization problems.

Computational breakthrough: to our knowledge, at present no other im-
plementation is able to solve MDVSPs with more than 1,000 timetabled
trips to optimality. Our code has successfully produced optimal solu-
tions of various real-world problem instances with up to 25 thousand
timetabled trips. The integer multicommodity flow problems arising
this way are orders of magnitude larger than what other codes are able
to handle. The largest real instance we encountered gave rise to an
integral multicommodity flow problem with about 125 thousand equa-
tions and 70 million integer variables. We could not produce an optimal
solution, but found a solution with a fleet size gap of less than 0.5 %.

Possible savings indicated by our test runs are immense. Compared with a
manual planning process, the SCR heuristic indicates savings of about
19 % of the vehicles and about 14 % of the operational costs. Compared
with an assignment heuristic, our branch-and-cut method indicates sav-
ings of several vehicles and about 10 % cost reduction. However, the final
evaluations of the SCR generated solutions have not been finished by
BVG, HHA, and VHH yet. It still has to be checked whether our vehicle
schedules provide a useful input for duty scheduling, the next step in
the hierarchical planning process. It is therefore not clear how much of
these indicated savings can be obtained in practice. Nonetheless, our
methods can solve large problems optimally. The Berliner Verkehrsbe-
triebe, for instance, expect to save about DM 100 million per year with
our SCR heuristic (see Schmidt (1997)).

There is a high demand within industry for efficient methods for the
MDYVSP. Parts of our system have been purchased by BVG for their planning
system BERTA, by IVU for MICROBUS II, and by the research department
of the STEMENS AG in Munich.

8 Acknowledgements

We are grateful to Manfred Vélker and Anna Neufeld of HanseCom GmbH for
their support to model the MDVSP and providing us with real-world prob-
lems from the Hamburger Hochbahn AG and the Verkehrsbetriebe Hamburg-
Holstein AG. We are grateful to Uwe Strubbe of IVU GmbH for providing us
with real-world problems from the Berliner Verkehrsbetriebe. We are grate-
ful to the Berliner Verkehrsbetriebe, the Hamburger Hochbahn AG, and the
Verkehrsbetriebe Hamburg-Holstein AG for their kind permission to use and
publish their data. We are indebted to Martin Grétschel, Ralf Borndorfer, and
Alexander Martin (all at ZIB), and Bob Bixby for their helpful discussions.
We are also grateful to Bob Bixby and ILOG CPLEX Division for regularly
providing us access to the newest versions of CPLEX and the CPLEX Callable
Library. This work has been supported by the German Federal Ministry of
Education, Science, Research, and Technology grant no. 03-GR7ZIB -7.

References

Ball, M.O. /Magnanti, T.L./Monma, C.L./Nemhauser, G.L. (editors)
(1995): Network Routing, volume 8 of Handbooks in Operations Research and
Management Science. Elsevier Science B.V.

Bokinge, U. / Hasselstrom, D. (1980): Improved vehicle scheduling in public
transport through systematic changes in the time-table. European Journal of
Operational Research, 5:388-395.

Borndorfer, R. / Grotschel, M. / Lobel, A. (1995): Alcuin’s transportation
problems and integer programming. Preprint SC 95-27, Konrad-Zuse-Zentrum
fiir Informationstechnik Berlin. Available at www.zib.de. To appear in Butzer,
P.L. / Jongen, H.T. / Oberschelp, W. (editors), Charlemagne and his Heritage:
1200 Years of Civilization and Science in Europe, Volume II: The Mathemat-
ical Arts, Brepols Publishers.

Bussieck, M. / Winter, T. / Zimmermann, U.T. (1997): Discrete optimiza-
tion in public rail transport. In Liebling, T.M. / de Werra, D. (editors), Math-
ematical Programming: A Publication of the Mathematical Programming Soci-
ety, pages 415-444. Elsevier Science B.V.

Carpaneto, G. / Dell’Amico, M. / Fischetti, M. / Toth, P. (1989): A branch
and bound algorithm for the multiple depot vehicle scheduling problem. Net-
works, 19:5631-548.

Chvatal, V. (1980): Linear programming. W. H. Freeman and Company, New
York.

CPLEX (1997): Using the CPLEX Callable Library. ILOG CPLEX Division, 889
Alder Avenue, Suite 200, Incline Village, NV 89451, USA. Information about
CPLEX available at www.cplex.com.

Daduna, J.R. / Branco, 1. / Paixao, J.M.P. (editors) (1995): Computer-Aided
Transit Scheduling, Lecture Notes in Economics and Mathematical Systems.
Springer Verlag.

Daduna, J.R./ Mojsilovic, M. / Schiitze, P. (1993): Practical experiences
using an interactive optimization procedure for vehicle scheduling. In Du, D.-
Z. / Pardalos, P.M. (editors), Network Optimization Problems: Algorithms, Ap-
plications and Complezity, volume 2 of Series on Applied Mathematics, pages
37-52. World Scientific Publishing Co. Pte. Ltd.

Daduna, J.R./Paixdo, J.M.P. (1995): Vehicle scheduling for public mass
transit — an overview. In Daduna/Branco/Paixdo (1995).

Dell’Amico, M. / Fischetti, M. / Toth, P. (1993): Heuristic algorithms for the
multiple depot vehicle scheduling problem. Management Science, 39(1):115—
125.

Desrosiers, J./Dumas, Y./ Solomon, M.M. / Soumis, F. (1995): Time
Constrained Routing and Scheduling. In Ball/Magnanti/Monma/Nemhauser
(1995), chapter 2, pages 35-139.

Fischetti, M. / Toth, P. (1996): A polyhedral approach to the asymmetric trav-
eling salesman problem. Technical report, University of Bologna. To appear
in Management Science.

Fischetti, M. / Vigo, D. (1996): A branch-and-cut algorithm for the resource-
constrained arborescence problem. Networks, 29:55—67.

Forbes, M.A. /Holt, J.N. / Watts, A.M. (1994): An exact algorithm for
multiple depot bus scheduling. FEuropean Journal of Operational Research,
72(1):115-124.

Freling, R. / Paixdo, J.M.P. (1995): Vehicle scheduling with time constraint.
In Daduna/Branco/Paixdo (1995).

Kokott, A. / Lébel, A. (1996): Lagrangean relaxations and subgradient methods
for multiple-depot vehicle scheduling problems. Preprint SC 96-22, Konrad-
Zuse-Zentrum fiir Informationstechnik Berlin. Available at www.zib.de.

Lobel, A. (1996): Solving large-scale real-world minimum-cost flow problems
by a network simplex method. Preprint SC 96-7, Konrad-Zuse-Zentrum fiir
Informationstechnik Berlin. Available at www.zib.de.

Lébel, A. (1997a): Experiments with a Dantzig-Wolfe decomposition for
multiple-depot vehicle scheduling problems. Preprint SC 97-16, Konrad-Zuse-
Zentrum fiir Informationstechnik Berlin. Available at www.zib.de.

Lébel, A. (1997b): MCF Version 1.0 — A network simplez implementation. Avail-
able for academic use free of charge at www.zib.de.

Lébel, A. (1997c): Optimal Vehicle Scheduling in Public Transit. PhD thesis,
Technische Universitdt Berlin.

Lobel, A. (1997d): Vehicle scheduling in public transit and Lagrangean pric-
ing. Revised Preprint SC 96-26, Konrad-Zuse-Zentrum fiir Informationstech-
nik Berlin. Available at www.zib.de.

Ribeiro, C.C./Soumis, F. (1994): A column generation approach to the
multiple-depot vehicle scheduling problem. Operations Research, 42(1):41-52.

Schmidt, V. A. (1997): Auf Sparkurs zum Ziel. Rheinischer Merkur, number 39,
page 37, 26th September 1997. In German.

Schrijver, A. (1989): Theory of Linear and Integer Programming. John Wiley &
Sons Ltd., Chichester.

Soumis, F. (1997): Decomposition and Column Generation. Chapter 8 in
Dell’Amico, M. / Maffioli, F. / Martello, S. (editors), Annotated Bibliographies
in Combinatorial Optimization, pages 115-126. John Wiley & Sons Ltd, Chich-
ester.

