Konrad-Zuse-Zentrum fiir Informationstechnik Berlin
Takustrale 7, D-14195 Berlin-Dahlem, Germany

Andreas Lobel

Experiments with a Dantzig-Wolfe
Decomposition for Multiple-Depot Vehicle
Scheduling Problems

Preprint SC 97-16 (May 1997)






Experiments with a Dantzig-Wolfe Decomposition for
Multiple-Depot Vehicle Scheduling Problems*

Andreas Lobel**

Abstract

In this paper, we present a Dantzig-Wolfe decomposition for the AP-hard multiple-depot vehicle
scheduling problem in public mass transit. It turned out that such a decomposition approach is
an unsuitable method to solve such kind of multicommodity flow problems. The major obstacle
to solve such problems is that the continuous master problem relaxations become too hard to be
solved efficiently. Especially for problems with more than one thousand timetabled trips, the LU
factorization in solving a restricted master problem takes far too much time. We will describe
our computational experiments in detail and discuss the reasons why the decomposition method
fails in this case.

Our computational investigations are based on real-world problems from the city of Hamburg
with up to 2,283 timetabled trips. Our decomposition implementation is compared with a
delayed column generation to solve the linear programming (LP) relaxation directly. This LP
method can solve the LP relaxations of the integer linear programming formulation exactly for
truly large-scale real-world problems of the cities of Berlin and Hamburg,.

Mathematics Subject Classification (1991): 49M27, 90B06, 90CO05.

1 Introduction

In recent years, many research groups have reported on successful applications of a
Dantzig-Wolfe column generation applied to multicommodity flow problems, especially
in the fields of transportation and telecommunication. For instance, Ribeiro and Soumis
[1994] report on a column generation approach for the Multiple-Depot Vehicle Schedul-
ing Problem (MDVSP) and give computational results for randomly generated problems
with up to 300 timetabled trips. Carraresi, Girardi, and Nonato [1995] and Desrosiers and
Rousseau [1995] have worked on crew scheduling problems: The first report on real-world
airline and bus crew scheduling problems having up to 2.2 billion columns; the latter do
not report about the details of their test problems, but claim that their system is success-
fully applied to bus crew scheduling problems of several cities. Barnhart, Hane, and Vance
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[1996] report on experiments with randomly generated problems and commercial trans-
portation problems. A further successful application of a column generation approach is
given to on a project in telecommunication in Alevras, Grétschel, and Wessily [1996].

On the other side, Ahuja, Magnanti, and Orlin [1993] claim that Dantzig-Wolfe decom-
position is only an efficient method if we measure efficiency by the number of iterations
of the decomposition algorithm. However, solving the Dantzig-Wolfe master problems
can be a computationally expensive task, and the Dantzig-Wolfe decomposition method
has generally not proven to be an efficient method for solving the multicommodity flow
problem. Indeed, we will see that it can be too expensive.

This paper is addressed to a Dantzig-Wolfe decomposition for the NP-hard Multiple-
Depot Vehicle Scheduling Problem (MDVSP) in public mass transit. The MDVSP has the
task to assign vehicles stationed at different depots to a given set of timetabled tripssuch
that some operational restrictions are satisfied and a given objective function is minimized.
A detailed problem description can be found, e.g., in Lébel [1997b], Lébel [1997¢c|, or a
German version in Grotschel, Lobel, and Volker [1997]; we give here only a summary.

We compare the decomposition approach with a direct LP method that is based on
delayed column generation, see Lobel [1996]. This method employs new column genera-
tion techniques that are based on two different Lagrangean relaxation approaches. The
implementation can solve the LP relaxation of all our real-world instances considered here
to optimality within reasonable running times. Combining this LP method and an itera-
tive LP rounding heuristic within a branch-and-cut method, we are able to compute an
optimal integral solution for all of our test instances, see Lobel [1997b] or Lobel [1997c].

The results of this comparison is that the decomposition implementation is completely
inferior compared to the direct LP method. We will report about our computational tests
and discuss some difficulties we have encountered in solving our test problems using
decomposition.

Our work is related to Ribeiro and Soumis [1994], who have reported on their experi-
ence with a decomposition for the capacitated MDVSP already in 1991 (preprint).

The decomposition method presented here for the MDVSP is due to Dantzig and Wolfe
[1960]. The general decomposition principle and its economic interpretation is outlined
in Chvétal [1980] and for network multicommodity flow problems in Ahuja, Magnanti,
and Orlin [1993]. We will use most of the column generation concepts proposed for
the MDVSP by Desrosiers, Dumas, Solomon, and Soumis [1995]. In the following, we
assume the reader to be familiar with linear programming, decomposition and relaxation
approaches, and network flows.

In order to prevent misunderstandings, we want to state explicitly that our paper
does not make any judgements about the efficiency or the capability of the Dantzig-
Wolfe decomposition in general. It just reports on an application of the Dantzig-Wolfe
decomposition method for some concrete real-world vehicle scheduling problems, for which
the decomposition method turned out to be completely useless, especially compared with
a tailor-made LP method.



2 Mathematical Models

We first give a summary of the MDVSP: The set of vehicles of a transportation company is
divided into so-called depots, denoted by D. A given set of lines together with a timetable
define a set of so-called timetabled trips (or passenger trips), denoted by 7. There
are given for each trip ¢t € 7 its departure time s;, its arrival time e;, and a nonempty
set of valid depots, called depot-group and denoted by G(¢) C D. Only the vehicles of
the depots G(t) are allowed to service the trip ¢t € T; let Ty :={t € T|d € G(t)} for all
d € D. There are further types of trips, all running without passengers: A pull-out trip
connecting a depot with some timetabled trip, a pull-in trip connecting some timetabled
trip with a depot, and a dead-head trip connecting two successive timetabled trips. For
simplification, we call them all unloaded trips.

For two trips ¢ and ¢’ € T, let A,y > 0 be given. The term A;, can have different
meanings: In the literature, it is mostly equivalent to the duration (travel plus layover
time) from the location of the last stop of ¢ to the location of the first stop of ', e. g., see
Ribeiro and Soumis [1994]. However, our partners from practice use such a definition of
Aty only for those dead-head trips for which their idle times or the differences sy — e,
do not exceed a predefined maximum duration ranging from 40 to 120 minutes, e.g.,
see Daduna and Mojsilovic [1988]. Otherwise, A,y is set to infinity. Dead-head trips
exceeding the maximum allowed duration are currently not considered in practice for
various reasons, e.g., the driver’s idle time (e. g., break) would become too long etc. To
make it nevertheless possible to link two successive trips ¢t and t' with some dead-head
trip exceeding a maximum allowed duration, we set A,y := sy — e, whenever it is possible
to park a vehicle between ¢ and ' at the depot. We call these artificially generated trips
also pull-in-pull-out trips.

If e, + Ay < sy is satisfied, the corresponding dead-head trip is called compatible.
Pull-in and pull-out trips are always considered to be compatible. The unloaded trips are
used to link the timetabled trips to vehicle schedules, each being a chain of trips such
that the first trip is a pull-out trip, the last trip is a pull-in trip, and the timetabled and
unloaded trips occur alternately. A vehicle schedule is feasible if there exists a depot that
can service all its trips. If a vehicle schedule contains no pull-in-pull-out trip, it is also
called a block (or rotation), and a block that contains just one single timetabled trip is
also called a tripper.

The task of the MDVSP is to provide a set of feasible vehicle schedules covering each
tript € T exactly once. The main objective is to use as few vehicles, i. e., vehicle schedules,
as possible and, subordinate, with minimum operational costs for the used trips among
all fleet minimal solutions.

We will now state an integer linear programming (ILP) model for the MDVSP. For
each depot d € D, we introduce a digraph Dy = (V, A4) with node set V, := T, U {d}
and arc set Ay := {a € V3 X V| a is a compatible unloaded trip}. The tuple (d, d) is not
considered to be compatible. For each d € D and each a € Ay, we introduce an integer
variable z¢ that denotes a decision variable indicating whether a vehicle of the depot d
runs the trip a or not. The variables z¢ are combined to vectors z¢ := (1%),c4, € R4,



d € D, and 7 := (2%)4ep € RA. Our two-stage cost function is realized as follows: With

each unloaded trip a € A4, we associate a weight c¢? € Q representing its operational costs.

In addition, we add to the weight of each pull-out trip a sufficiently large big M standing

for the capital costs and being larger than the operational costs of any feasible solution.
Our ILP of the MDVSP reads

minz Z cfj xfj (1a)
deD (i,j)€Aq
subject to

oo Doah, = 1, VteT, (1b)
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Constraints (1b), the so-called flow conditions, ensure that each timetabled trip is
serviced exactly once, and constraints (1c¢) are the so-called flow conservations. For
notational simplification, we deliberately do not consider depot capacities for our compu-
tational investigations. The LP relaxation of (1) is given by

min Z Z ctzd, (2)

z > 0 satisfying
(Ib)and (1c) dEDa€Ay

The LP relaxation (2) is formulated in terms of arc flows. It is also possible to reformulate
the flow, which satisfies condition (1c¢), in terms of nonnegative cycle flows as follows (see
the Flow Decomposition Theorem in Ahuja, Magnanti, and Orlin [1993] and its special
application if z is a circulation as in our case):

For all d € D, let Xy := {z¢ € R44| 2 > 0 satisfying (1c)}, Wy := {S C 44| S is a
vehicle schedule for depot d}, and W, := {x°| S € W;} (each W, describes exactly the
set of directed cycles in D, and W, descyibes the incidence vectors thereof). The set of
all incidence vectors is denoted by W := UdeDWd' We will consider W, also as the matrix
(x%)sew that is defined by arranging the elements of W, column- Wise Now, for each
d G D, it is easy to show that ¢ e Xy 1f and only if there exists 0 < p? € R4 such that

= W, u®. Inserting each z¢ = W, u? into (2) results in a so-called master problem
(MP)

minz Z ct ol (3a)
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where each ¢ := > A c?w, denotes the costs of the vehicle schedule associated with
the cycle w € Wy, and each a, is set to 1 if w € Wy covers the trip t € T and is set to
0 otherwise. Obviously, the master problem (3) is a set partitioning problem and yields
the same optimal value as the LP relaxation (2). Moreover, each solution of (3) has a
representation in (2) and vice versa.

Although the master problem (3) has significantly fewer equations than the LP relax-
ation, it contains exponentially many variables. Nevertheless, we can solve MP with a
delayed column generation approach.

Let the restricted master problem (RMP) be the linear program that is defined
by the columns of MP corresponding with some W C W. We assume that RMP is at least
primal feasible. Let v € R denote the dual multipliers of (3b) for the optimal basis of a
current RMP. For convenience of notation, we define for each d € D an artificial variable
vy € R and set it to zero. The reduced costs of the columns of the master problem are
given by €}, := cf =37, v, af,, which can easily be rewritten as ¢, = Y7, 4 (cf; — i) wij.
A given basis is optimal if and only if for all w € W, and for all d € D the reduced costs
¢? are nonnegative. Thus, a given basis of RMP is also optimal for MP if the so-called
pricing problem (PP)

. . da _ ., -
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yields a nonnegative value.

3 Implementation

We have implemented such a delayed column generation approach of the Dantzig-Wolfe
decomposition for our MDVSP. Since we assume that the initial RMP is at least primal
feasible, we initialize it with the columns associated with a feasible set of vehicle schedules,
e.g., given by some primal heuristic as the nearest depot (ND) heuristic, see Lobel [1996].
ND assigns each timetabled trip to one depot of its depot-group (cluster first) and solves
each resulting single-depot instance to optimality (schedule second).

We attack the pricing problem as follows: Let PP, denote the pricing problem for a
fixed d € D. We split the depot node d into two new nodes d* and d~ such that d*
becomes the new tail node of all pull-out trips, and d~ becomes the new head node of all
pull-in trips. Then, PPy is the problem to find the shortest path from d* to d~ according
to the arc weights ¢4 := (cgj — V;)ijea,- Fortunately, the underlying network for each PP,
with the two new depot nodes is acyclic. The shortest paths — even if negative arc weights
occur — can therefore be computed in O(|A4|) time using, e. g., the reaching algorithm as
proposed in Ahuja, Magnanti, and Orlin [1993].

The algorithm proceeds in the following way: For d € D, let @w? denote the shortest
path for PP,. If é@w? > 0 for all d € D, the optimal basis of the current RMP is also
optimal for MP, and we are done. Otherwise, the column of at least one w? violating the
optimality condition is generated and added to RMP, the enlarged RMP is reoptimized,



and we iterate. Between two consecutive RMPs, we generate for each depot d the column
corresponding with the shortest path w¢ if & w? < 0.

Lagrangean relaxation can also be used to generate columns. This column generation
technique, which we call Lagrangean pricing, can significantly accelerate the column
generation. We explain Lagrangean pricing for our decomposition: Consider a slightly
different, formulation of the LP relaxation (2) where each node t € T is replaced by two
nodes ¢~ and ¢*. ¢t~ becomes the new head and ¢* becomes the new tail of all arcs that
are incident to t. For each d € D, let fld denote the modified set A4 due to this node
splitting. We introduce for each depot and each t € T4 a new arc (¢7,¢"), a new variable
xf,ﬁ, and a new, but redundant constraint xf,t+ < 1. The enlarged LP relaxation reads

min Z Z c;-ij l’% (5a)
aeD (Zaj)EAd
subject to

oo N ah, = 1, VteT, (5b)
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zt, < 1, VteT, VdeD, (5d)
z =2 0 (5d)

Consider the Lagrangean function of (5) where the flow conditions (5b) have been put
into the objective function. It is easy to see that this Lagrangean function decomposes
into |D| independently solvable minimum-cost flow circulation problems. The solution of
each of these minimum-cost flow problems can be interpreted as a set of vehicle schedules
that seem to be advantageous with respect to the given Lagrangean multipliers.

This simple observation can be used within a column generation as follows: We use the
value of the optimal dual multipliers v of the last RMP as estimators of the Lagrangean
multipliers of (5b) and evaluate the Lagrangean function at v. Then, we generate the
columns of those vehicle schedules proposed by the Lagrangean relaxation for which the
reduced cost criterion for MP is not satisfied and which are currently not active. In
addition to the standard column generation scheme, this Lagrangean pricing is always
used between two consecutive RMPs to generate further columns.

The concept of Lagrangean pricing is also used for the direct LP method that we
compare to our decomposition implementation. Further details of the Lagrangean pricing
for the LP method are given in Lébel [1996].



4 Computational Experiments

Our test data for the computational tests of this paper are based on some smaller and
not so hard problems from the Hamburger Hochbahn AG (HHA). At the moment, HHA
together with other transportation companies maintain 14 garages with 9 different vehicle
types. The existing garage-vehicle combinations define 40 depots. In Hamburg, more than
16 thousand daily timetabled trips must be scheduled with about 15.1 million unloaded
trips and about 800 buses. The problem in Hamburg decomposes into a 12-depot problem,
a 9-depot problem, five smaller 2-depot problems, and nine small 1-depot problems. We
consider for our tests the 19 smallest of the 40 depots as single-depot instances by assuming
that all timetabled trips of 7; have to be serviced alone by the depot d. The other 21
depots are too large to be solved by decomposition. From the multiple-depot problems,
we just consider the five 2-depot problems and the 9-depot problem. These considered
problems have in common that the optimal LP and MP value is equal to the integer
optimum.

Table 1 gives some statistics of our test set as the number of depots (|D]), the number
of timetabled trips (|7), the number of unloaded trips (|A|), the average number of
depots in G(t), the number of possible vehicle schedules, and the number of possible
blocks. Besides the total number of arcs in A*"'P, we also give the number of unloaded
trips without pull-in-pull-out trips, which we denote as user-defined trips.

In the following, we first give some general observations about our computational tests.
Second, we report on specific results for the single-depot problems and, third, on specific
results for the multiple-depot problems. All tests have been performed on a SUN Model
170 UltraSPARC with 512 MByte main memory, all linear programs have been solved
with CPLEX, version 4.0.7. For each test problem, we have used a time limit of three
hours. This time limit is sufficiently large since the LP relaxation of the biggest test
problem Hamburg 2 can be solved to optimality within less than 400 seconds using the
direct LP method described in Lébel [1996].

General Observations.

e For our test set, the pricing problems PP, are efficiently solvable within a small part
of the total running time, which can be neglected.

e The right-hand side of MP is equal to 1 leading to degenerate LPs. From version 4.0
on, CPLEX provides a new, less aggressive perturbation method that can handle
degenerate LPs efficiently. And indeed, we have never recognized any numerical
problems stemming from degeneracy since we have used the first beta version of
CPLEX 4.0.

e In one of the first versions of our implementation, each cost coefficient ¢ was just
the sum of big M and the operational costs of the corresponding vehicle schedule
w € Wy. The naive use of this two stage objective function with a big M equal to
10® has caused numerical difficulties in proving global optimality: The optimality
tolerance of CPLEX can only be set to a value between 10~ and 10~*. This means



A

Test Set® D] | |T] User-def.| | | Total o|G(t)] |W| #blocks
Hamburg 14 1 109 617 5,241 1.0 [2.0-103[2.3-10'
Hamburg 15 1 183 1,025 14,347 1.0 [2.0-106| 7.1-10°
Hamburg 2 - Depot 4 1 211 2,651 16,854 1.0 [3.9-10*|7.5-1010
Hamburg 7 - Depot 2 1 220 2,348 21,315 1.0 |5.5-10'6|7.0-10"
Hamburg 7 - Depot 1 1 232 3,922 12,510 1.0 [1.1-10'6|4.7-10"
Hamburg 2 - Depot 8 1 493 8,322 | 104,153 1.0 |1.6-10'8|8.0-10"
Hamburg 3 - Depot 1 1 521 19,003 65,650 1.0 [8.8-10'8|2.4-10'
Hamburg 2 - Depot 5 1 648 | 14,136 | 180,554 1.0 |3.9-10'8]4.3-10!"
Hamburg 2 - Depot 7 1 695 16,526 | 186,863 1.0 [1.3-10%° |6.3-10'3
Hamburg 1 - Depot 7 1 728 13,654 | 233,010 1.0 |2.3-10%3|5.9.10'
Hamburg 1 - Depot 12| 1 892 | 25,100 | 348,230 1.0 |3.2-10%*|1.8-10'7
Hamburg 5 - Depot 2 1 930 | 27,452 | 368,242 1.0 |5.3-10% |1.1-10%
Hamburg 5 - Depot 1 1 986 | 56,760 | 211,153 1.0 [1.1-10%*|1.6-10'8
Hamburg 1 - Depot 4 1 |[1,065 31,520 | 488,655 1.0 [1.4-10% |1.0-10"
Hamburg 1 - Depot 11 || 1 |1,296 | 77,201 | 459,468 1.0 |1.3-10%" |2.3-10%
Hamburg 6 - Depot 1 1 | 1,345 | 102,253 | 322,546 1.0 [2.4-10%?|1.2-10'6
Hamburg 1 - Depot 10 1 [1,588 79,955 | 404,016 1.0 [5.1-10%0 | 1.4-10
Hamburg 6 - Depot 2 1 [1,693 72,882 | 1,233,766 1.0 |5.0-10%8 | 4.1-10%
Hamburg 1 - Depot 3 1 |1,716 | 116,142 | 850,828 1.0 [5.6-10% | 1.3-10%
Hamburg 4 2 238 2,000 23,000 1.04 [1.5-10%'|2.4.10"
Hamburg 7 2 341 6,000 34,000 | 1.32 |59-.106|1.2-10"
Hamburg 3 2 791 | 30,000 | 200,000 | 1.32 |2.3-10%23.9-10'
Hamburg 5 2 1,461 | 85,000| 580,000 1.31 |5.3-10%°|1.1-10%
Hamburg 6 2 2,283 | 176,000 | 1,600,000 | 1.33 |5.0-10%%|4.2.10%
Hamburg 2 9 |1,834| 99,000 | 1,000,000 | 2.02 |3.3-10%']|5.3-10%

®The problems are taken from Lobel [1996] and Lobel [1997Db].

Table 1: Real-world test set taken from the city of Hamburg.

that the reduced costs é w? must be at least greater than or equal to —10~* for each
w € W. If the total fleet size needs 3 digits or more and if the optimality tolerance
is at least 4 decimal places, we have to compute accurately for at least 3+8+4 digits
(the fleet size plus the operational costs plus the optimality tolerance), which is
close to and can be smaller than the machine precision. For an “almost” optimal
RMP (i.e., the value of PP (4) is smaller than, but close to —107*), cancellation of
important digits can occur in computing the reduced costs. Sometimes the reduced
costs of a generated column turned out to be feasible within the next RMP, but
have been indicated to be infeasible within PP.

To keep out of such numerical troubles, we scale down the objective coefficients by
10® and set the optimality tolerance to 10~°. Then, we have to compute accurately
for 8 digits less than before. This simple trick makes the implementation more



robust. Since then, we have never recognized any further cancellation of important
digits in solving PP.

e Initializing the first RMP only with all columns corresponding with trippers leads
to quite bad starting points: Within the time limit, none of the problems could
be solved to optimality within, and only the single-depot problems with up to 493
timetabled trips and the multiple-depot problem Hamburg 7 could be solved fleet
minimally with cost gaps ranging from 14 % up to 138 %. For all the other problems,
we could not generate an (MP) solution yielding the minimum number of vehicles.
Moreover, the basis solutions of the last RMPs are completely fractional and there
are almost no variables with a value greater than or equal to 0.5, but most nonzero
values are smaller than 0.2. This may have a negative influence on the performance
of a branch-and-price algorithm.

Instead of starting with all trippers, we use the columns corresponding with a heuris-
tically generated nearest depot solution or, to see some computational effects, with
an integer optimal solution provided by Lébel [1997b]. Note that ND already gen-
erates an optimal solution for single-depot instances.

e The average number of nonzero elements per column of the occurring RMPs is
approximated by the average number ot timetabled trips of the generated vehicle
schedules. For our test set, this number is 17.3 with a standard deviation of 4.8; the
lowest average column length of our problems is 8.4 and the largest is 35.2. Our MPs
are quite dense set partitioning problems. It is known that the LU factorization be-
comes the bottleneck in solving such problems with more than thousand timetabled
trips (a similar observation has been made by Borndorfer [1997], he solves set par-
titioning problems arising from large-scale vehicle routing from a dial-a-ride system
for handicapped people in Berlin).

e Fixing the number of timetabled trips, the investigations of Ribeiro and Soumis
[1994] indicate that the running time is linear in the number of depots. We have too
few test problems to make such a statement, but this result of Ribeiro and Soumis
sounds reasonable.

The Single-Depot Problems.

To get a feeling about the size that a problem can have to be successfully solved with
a decomposition approach, we have first investigated our single-depot instances. The
results are displayed in Fig. 1 showing on the axis of ordinates the running times with
respect to the number of timetabled trips, unloaded trips, and vehicle schedules. The left
column shows the results that we have obtained without Lagrangean pricing: We started
with an optimal integral solution and always generated only the column delivered by PP.
Stopping whenever the time limit was reached, it turned out that this strategy solves only
the master problem of tiny problems with up to 200 timetabled trips (which are about 20
thousand dead-head trips and 10 vehicle schedules) to optimality. If we just want to find
an RMP including a fleet minimal solution (proved via sufficiently small negative reduced



costs), it is possible to solve problems with up to 700 timetabled trips (200 thousand dead-
head trips and 10%° vehicle schedules). The right column shows the results that we have
obtained using in addition Lagrangean pricing, which significantly accelerates the solution
convergence. With this technique, we are able to solve the master problem of problems
with up to 700 timetabled trips optimally and with up to 1700 timetabled trips fleet
minimally. A negative side effect of Lagrangean pricing is that there are more columns
generated between two consecutive RMPs making each single RMP much harder to solve.
It is not clear to us whether there is some break even point where this acceleration of
iteration convergence is canceled out by larger LP running times.

It is well known that minimum-cost flow algorithms are efficient tools to solve (single
commodity) flow problems. This might be a lame comparison, but using our network
simplex algorithm MCF together with a delayed column generation, all the single-depot
instances can be solved to optimality in less than 20 seconds, see Lobel [1997b]. MCF is an
implementation of the primal and the dual network simplex algorithm in C and is available
for academic use free of charge via WWW at URL http://www.zib.de/Optimization, see
Lébel [1997a).

The Multiple-Depot Problems.

As we have already stated, starting from scratch (with all columns corresponding with
trippers) does not work at all. So, we have used the solution computed with our ND heuris-
tic as a starting point. The decomposition running times with and without Lagrangean
pricing of these tests are compared with those provided in Lobel [1996]. All times are
displayed in Tab. 2 showing that the decomposition without Lagrangean pricing solves
only the two small problems Hamburg 4 and 7 fleet minimal, but not to global optimality.
Using Lagrangean pricing accelerates this solution times, but does not lead to further
significant improvements, e. g., solving more problems at least fleet minimal. Compared
to a direct LP method, the decomposition implementation is completely inferior.

To see whether the decomposition method can at least prove the optimality of an
optimal solution, we started the decomposition and the LP method with an integer optimal
solution generated with the method presented in Lébel [1997b] and Lobel [1997¢]. Table 3
gives the running times, the number of solved RMPs and restricted LPs, the number of
generated columns, and the number of CPLEX iterations being performed.

First of all, the LP method is able to prove optimality for each of these problems within
less than 400 seconds running time. Within a time limit of three hours, our decomposition
implementation was unable to prove optimality of any of these problems, only the fleet
minimality could be shown for the problems with up to 791 timetabled trips.

The larger the number of timetabled trips of an instance is, the more time is spent
within the LU factorization. The worst case example is Hamburg 2: Applying in addition
the Lagrangean pricing, only 34 RMPs could be solved within the time limit, which are
by far too less to have a chance to solve such large problems within reasonable time.

10
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Figure 1: Decomposition running times for the single-depot instances
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Decomposition

Test Set® Default? Lagr. pricing® Lpe

fleet® | global/ | fleet® | global’ || fleet® | global/
Hamburg 4 84 TL 25 TL 2 3
Hamburg 7 || 4,210 TL | 1,663 TL 8 9
Hamburg 3 || TLY — | TLJ — 18 31
Hamburg 5 TLY — TL — 135 155
Hamburg 6 TL — TL — 80 84
Hamburg 2 TL9 — | TLY — 679 685

2ND generates an optimal solution for Hamburg 4 and 6.
®Without Lagrangean pricing.

‘With Lagrangean pricing.

YRunning times taken from Libel [1996)].

¢Time to prove that the starting solution is fleet minimal.
fTime to prove global optimality of the last RMP and restr. LP.
9No objective improvement within the time limit.

Table 2: Running times starting with a solution generated with the ND heuristic.

5 Comparison to Ribeiro and Soumis

Already in 1991, Ribeiro and Soumis [1994] have reported about their computational
results using a Dantzig-Wolfe decomposition for the MDVSP. They solved randomly gen-
erated capacitated MDVSPs with up to 300 timetabled trips and 6 depots to optimality
using a branch-and-bound algorithm. Compared with our computational results, we won-
der how they can solve even the integer formulation of their problems to optimality while
we are unable to just solve the MP relaxations of our uncapacitated problems with a
similar number of timetabled trips using a considerably faster workstation and a more
sophisticated version of CPLEX:

e They do not mention the number of dead-head trips. If this number is small, the
number of possible vehicle schedules is also relatively small. Each problem instance
of Ribeiro and Soumis includes 60 % long timetabled trips with a duration uniformly
distributed between three and five hours. The other 40 % are short timetabled trips
with a duration uniformly distributed between 5 and 40 minutes. On the average,
each timetabled trip has therefore a duration of 2 hours and 33 minutes. 70 % of the
short timetabled trips are defined between 8.00 a.m. and 5.00 p.m. The duration
of the timetabled trips given by our test set is, on the average, about 30 minutes,
the morning peak begins earlier and the afternoon peak ends later than the peaks
of their problems.

e The used depot capacities of Ribeiro and Soumis seem to be quite generous: For
each test instance, they provide one vehicle for at most two up to three timetabled
trips. In a city like Berlin, about 10 thousand buses would be necessary to run about
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Decomposition
Test Set Default® Lagr. pricing?
AT ] B° |AT] B AT ] Be

Running times

Hamburg 4 84 TL | 27 TL 2 3
Hamburg 7 || 1,031 TL | 204 TL 8 9
Hamburg 3 TL — | 656 TL || 22| 17
Hamburg 5 TL — | TL — || 72| 78
Hamburg 6 TL — | TL — || 128 | 179
Hamburg 2 TL — | TL — || 388 | 397

Number of RMPs and RLPs

Hamburg 4 329 | 5,658 | 76 3,991 3 4
Hamburg 7 435 | 1,882 | 87 1,439 || 19| 23
Hamburg 3 667 — | 50 301 3| 13
Hamburg 5 707 — | 61 — | 19| 23
Hamburg 6 668 — | 45 — || 10| 18
Hamburg 2 353 — | 34 — || 14| 18
Generated columns / 1,000
Hamburg 4 0 6 1 5 2 2
Hamburg 7 1 4 1 4 14| 15
Hamburg 3 1 — 2 2 6| 16
Hamburg 5 1 — 3 — || 87| 62
Hamburg 6 1 — 3 — || 56| 73
Hamburg 2 2 — 4 — || 55| 55
CPLEX iterations / 1,000
Hamburg 4 5| 487 3 332 0 0
Hamburg 7 41 293 | 11 210 1 1
Hamburg 3 o7 — 7 54 0 1
Hamburg 5 3 — | 26 — 2 3
Hamburg 6 1 — | 12 — 4 7
Hamburg 2 38 — | 19 — | 19| 19

*Without Lagrangean pricing.

"With Lagrangean pricing.

“Results obtained for the LP (2) with the delayed column generation code of Lobel [1996].
9Time, iterations, etc. to prove that the starting solution is fleet minimal.

¢Time, iterations, etc. to prove global optimality of last RMP and restricted LP.

Table 3: Starting with an integer optimal solution.
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25 thousand timetabled trips that have to be serviced daily in Berlin. The truth is
that the Berliner Verkehrsbetriebe (BVG) maintain less than 2,000 buses. Even if
we assume that for their problems only one half of the available fleet size is used
— otherwise, a consideration of depot capacities becomes pointless — the resulting
vehicle schedules would on the average contain five timetabled trips. In Berlin and
Hamburg, this number is about 15 and 20.

e The only information provided by them is how many columns are generated, until
optimality can be proved. The largest number of generated columns was 4,585 for
an instance with 5 depots and 300 timetabled trips. They give neither information
about the average length of the generated vehicle schedules nor about the vehicle
demand of the optimal solutions. For our test set, we have generated, on the average,
vehicle schedules with 17.3 timetabled trips (standard deviation was 4.8). The
problem with the smallest value was 8.4 timetabled trips and the largest value was
35.2 timetabled trips.

e For the capacitated MDVSP, it is NP-hard to find a feasible solution, see Lobel
[1997b]. Ribeiro and Soumis, however, do not tell how they initialize the first RMP.

Based on the above considerations, we are unable to estimate the average length of
the vehicle schedules of their problems, which may be an indicator for the “hardness” of
their master problems. It seems to us that the combinatoric of our test set is harder than
the combinatoric of their test set. All these open questions give us rise to the suspicion
that the artificially generated problems of Ribeiro and Soumis are of a different quality
and, from a computational point of view, are far easier than our real-world problems.

6 Conclusions

Using specialized direct LP methods (and minimum-cost flow methods as our network
simplex code MCF, see Ldbel [1997a]) combined with a delayed column generation, it
is possible to solve each problem instance of the presented test set within less than 700
seconds to optimality. Compared to that method, the decomposition approach comes off
badly: Within a generous time limit of 15 times the largest LP running time, only single-
depot instances with up to 700 timetabled trips, but no multiple-depot instances could
be solved to optimality. A proof that a current RMP solution is fleet minimally was only
possible for single-depot instances with up to 1,700 timetabled trips and for multiple-
depot instances with up to 791 timetabled trips, and the gaps in the operational cost
ranges from 14 % to 138 %. From a practical point of view, such gaps are unacceptable.

The theoretical advantage of a Dantzig-Wolfe decomposition — handling significantly
less LP rows — does not lead to running time improvements. Quite the reverse, the RMPs
of problems with more than thousand timetabled trips become too hard to be solved
efficiently. From a computational point of view, the disappointing results disqualify the
decomposition method for our problem.

Our work has been related to Ribeiro and Soumis [1994] who have also reported on a
Dantzig-Wolfe decomposition for the MDVSP. We have pointed out that their artificially
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generated test set seems to be far easier than our real-world problems, which explains
why we are unable to reproduce or improve their computational results.

In our investigations, we have not considered path restrictions as maximal block
lengths or durations. Such restrictions make even single-depot problems NP-hard and
cannot be considered easily within an LP formulation given in terms of arc flows. Not so
for a decomposition approach which defines the problem in terms of path flows and can
thus handle path restrictions easily. This may be the scope of further investigations.

As a résumé of our paper, we would like to cite Ahuja, Magnanti, and Orlin [1993]:
“... the Dantzig-Wolfe decomposition method has generally not proven to be an efficient
method for solving the multicommodity flow problem”, and they are still right concerning
the multiple-depot vehicle scheduling problem.
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