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Abstract. In this paper we investigate whether matrices arising from linear or integer program-
ming problems can be decomposed into so-called bordered block diagonal form. More precisely,
given some matrix A, we try to assign as many rows as possible to some number β of blocks of
size κ such that no two rows assigned to different blocks intersect in a common column. Bor-
dered block diagonal form is desirable because it can guide and speed up the solution process for
linear and integer programming problems. We show that various matrices from the Miplib can
indeed be decomposed into this form by computing optimal decompositions or decompositions
with proven quality. These computations are done with a branch-and-cut algorithm based on
polyhedral investigations of the matrix decomposition problem.
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1 Introduction

We consider in this paper the following matrix decomposition problem. Given some matrix A,
some number β of blocks (sets of rows), and some capacity κ (maximum block-size); try to assign
as many rows as possible to the blocks such that (i) each row is assigned to at most one block,
(ii) each block contains at most κ rows, and (iii) no two rows in different blocks have a common
non-zero entry in a column. The set of rows that are not assigned to any block is called the
border. An equivalent statement of the problem in matrix terminology is as follows: Decompose
the matrix into bordered block diagonal form with β blocks of capacity at most κ, such that the
border is of minimal. Figure 1 shows the structure of a 55 × 55 non-symmetric matrix (left)
and an optimal decomposition into four blocks of capacity �55/4� = 14 (right). (To make the
block structure of the decomposition visible, the rows and columns were permuted.) The border
consists of one row that could not be assigned to any block.

The matrix decomposition problem fits into the context of reordering matrices to special forms.
Special forms and methods to obtain them are well studied in the literature on computational
linear algebra: They can be exploited by solution methods for linear equation systems, see, e.g.,
Duff, Erisman, and Reid [1986] or Kumar, Grama, Gupta, and Karypis [1994]. The matrices
considered there mainly arise from the discretization of partial differential equations, and, re-
cently, from interior point algorithms for linear programs, see Gupta [1996] and Rothberg and
Hendrickson [1996]. But all these matrices are symmetric and —to the best of our knowledge—
the proposed ordering algorithms only apply to symmetric (or almost symmetric) matrices.
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}
block 1 (13 rows)

}
block 2 (13 rows)

}
block 3 (14 rows)

}
block 4 (14 rows)

border (1 row)

Figure 1: Decomposing a matrix into bordered block diagonal form.

We are interested in matrices arising from (mixed) integer programs (MIPs). Such matrices are
not symmetric. Bordered block diagonal form can help to solve MIPs in several ways: First,
to speed up the linear algebra required to solve the LP-relaxation. Second, to improve the
polyhedral description of the set of feasible points of a MIP: Given a block decomposition and
taking one constraint from each block plus an according number from the border results in the
structure of a generalized assignment or multiple knapsack problem (see Gottlieb and Rao [1990]
and Ferreira, Martin, and Weismantel [1996]) whose facets are valid inequalities for the MIP
under consideration.

In this paper we develop a branch-and-cut algorithm for the matrix decomposition problem.
This gives us a tool at hand that in principle obtains an optimal bordered block diagonal form
to evaluate whether this special matrix structure has potential to help in solving MIPs.

2 Integer Programming Formulation and Related Problems

Consider an instance (A, β, κ) of the matrix decomposition problem where A ∈ Rm×n is some
real matrix, β ∈ N is the number of blocks and κ ∈ N is the block capacity. We introduce for
each row i = 1, . . . , m and block b = 1, . . . , β a binary variable xbi that has value 1 if row i is
assigned to block b and 0 otherwise. Then the matrix decomposition problem (A, β, κ) can be
stated as the following 0/1 linear program:

max
m∑
i=1

β∑
b=1

xbi

(i)

β∑
b=1

xbi ≤ 1, for i = 1, . . . , m;

(ii)
m∑
i=1

xbi ≤ κ, for b = 1, . . . , β;

(iii) xbi + xb
′
j ≤ 1, for b, b′ = 1, . . . , β, b �= b′ and

for i, j = 1, . . . , m, i �= j such that
aik �= 0 �= ajk for some k ∈ {1, . . . , n};

(iv) 0 ≤ xbi ≤ 1, for i = 1, . . . , m, b = 1, . . . , β;

(v) xbi integer, for i = 1, . . . , m, b = 1, . . . , β.

(IP)
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The feasible solutions of (IP) correspond exactly to the block decompositions of the matrix A
into β blocks of capacity κ and we will thus not distinguish them. We may assume without loss
of generality β ≤ m, because no more than m rows will be assigned, that the block capacity is
at least one (κ ≥ 1), and that we have at least two blocks (β ≥ 2).

Different matrices A can give rise to the same integer program. This can be seen by considering
the (column) intersection graph G(A) of an m × n-matrix A as introduced by Padberg [1973].
G(A)’s node set is {1, . . . , n} and there is an edge ij if columns i and j of A have a common
non-zero entry in some row. Applying this concept to the transposed matrix AT , we obtain the
row intersection graph G(AT ) of A. The edges of G(AT ) give rise to the inequalities (IP) (iii)
and we have that for fixed β and κ two matrices A and A′ have the same row intersection graph
if and only if the corresponding integer programs (IP) are equal.

The matrix decomposition problem is related to the set packing problem in two ways. First,
matrix decomposition is a generalization of set packing, because feasible solutions (stable sets)
of some set packing problem max{1lTx | Ax ≤ 1l, x ∈ {0, 1}n}, A ∈ {0, 1}m×n, correspond to
solutions of the matrix decomposition problem (AT , m, 1) of the same objective value and vice
versa. This shows that the matrix decomposition problem is NP-hard. Second, we obtain
a set packing relaxation of the matrix decomposition problem by deleting the block capacity
constraints (ii) from the formulation (IP). This means that all inequalities that are valid for this
relaxation are also valid for the matrix decomposition problem. There is also a connection to set
covering via complementing variables. For the case of two blocks, the corresponding formulation
has been used by Nicoloso and Nobili [1992] for the solution of the matrix equipartition problem.
The matrix equipartition problem is the matrix decomposition problem for β = 2 and κ = 	m/2

with the additional constraint that the two blocks of the decomposition must have equal size.

3 Polyhedral Investigations

Associated to the IP-formulation (IP) of the matrix decomposition problem is the polytope

P (A, β, κ) := conv {x ∈ Rm×β | x satisfies (IP) (i) to (v)},(1)

given by the convex hull of all block decompositions. We study in this section the structure of
P (A, β, κ) to derive classes of valid and facet defining inequalities for later use as cutting planes.

3.1 Remark

(a) P (A, β, κ) is full dimensional.

(b) The non-negativity inequalities xbi ≥ 0 are facet defining for all i = 1, . . . , m and all
b = 1, . . . , β.

(c) All facet defining inequalities aTx ≤ α that are not non-negativity constraints satisfy a ≥ 0
and α > 0.

Facet-defining inequalities have an interesting property. Consider some vector x ∈ Rm×β, some

permutation σ of the blocks {1, . . . , β}, and define the vector x̄ ∈ Rm×β by x̄bi := x
σ(b)
i , for

i = 1, . . . , m, b = 1, . . . , β. We will use in the sequel the symbol σ(x) to denote the vector x̄
that arises from x by applying the block permutation σ. Then σ(x) = x̄ is a feasible block
decomposition if and only if x is. This means that the matrix decomposition problem is dual
degenerate (has multiple optima). It also implies that aTx ≤ b is a facet of P (A, β, κ) if and
only if its block-wise permutation σ(a)Tx ≤ b is. Dual degeneracy and the large number of
permutable facets cause difficulties in our branch-and-cut algorithm and we will have to control
the number of cuts generated and to handle stalling of the objective value.
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The next two subsections list the results of our polyhedral investigations. We distinguish be-
tween inequalities aTx ≤ b that are invariant under block permutations and have the same
coefficients abi = ab

′
i for all blocks b �= b′ and rows i, and block-discernible inequalities that dis-

tinguish different blocks. Most block-discernible inequalities will be inherited from the stable
set relaxation of the matrix decomposition problem, while the block-invariant constraints are
related to an “aggregated” version of the problem. In both subsections we want to assume κ ≥ 2,
because otherwise the matrix decomposition problem is a (special) set packing problem.

3.1 Block-Discernible Inequalities

We saw in Section 2 that we obtain a set packing relaxation of the matrix decomposition prob-
lem by dropping the block capacity constraints (ii) from the integer program (IP). The column
intersection graph associated to the matrix IP(i),(iii) formed by the left-hand sides of the con-
straints (IP) (i) and (iii) has the set of possible row assignments {1, . . . , m} × {1, . . . , β} as its
node set. A (conflict) edge exists between two assignments (i, b) and (j, b′), if rows i and j
cannot be simultaneously assigned to the blocks b and b′, i. e., either if i = j and b �= b′ or if
i �= j, b �= b′, and rows i and j have a common non-zero entry in some column of A. We want to
call this graph the conflict graph associated to the matrix decomposition problem (A, β, κ) and
denote it by Gc(A, β). In formulas: Gc(A, β) = G(IP(i),(iii)). This graph allows us to interpret
the inequality classes (i) and (iii) of (IP) as clique inequalities of the set packing relaxation
corresponding to the matrix decomposition problem as also introduced by Padberg [1973].

3.2 Theorem (Clique) Let Gc(A, β) = (V, E) and Q ⊆ V . The inequality
∑

(i,b)∈Q xbi ≤ 1 is
valid for P (A, β, κ) if and only if Q is a clique in Gc(A, β). It is facet defining if and only if Q
is a maximal clique in Gc(A, β).

The separation problem for clique inequalities is a maximum-weight clique problem and thus
NP-hard, see Garey and Johnson [1979]. But the subclass of two-partition inequalities

∑
b∈B

xbi +
∑
b′ �∈B

xb
′
j ≤ 1,

defined for all sets of blocks B ⊆ {1, . . . , β} and all pairs of rows i, j, can be separated efficiently.

Along the same lines, the matrix decomposition polytope also inherits all other inequalities
of its set packing relaxation, e.g., the cycle inequalities, see again Padberg [1973], and of the
corresponding set covering problem obtained by complementing variables. Not inherited from
these related polytopes are the block capacity constraints.

3.3 Theorem (Block Capacity) The block capacity constraint

m∑
i=1

xbi ≤ κ

is facet defining for P (A, β, κ) if and only if |γ(i)| ≤ m − κ holds for every row i (where γ(i)
denotes all nodes adjacent to i in G(AT )).

3.2 Block-Invariant Inequalities

Consider for each block decomposition x the “aggregated” vector

z(x) :=

(
β∑

b=1

xb1, . . . ,

β∑
b=1

xbm

)
∈ Rm.
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z(x) only records whether the matrix rows are assigned to some block or not, but no longer to
which block. From a polyhedral point of view, the aggregated block decompositions give rise to
an “aggregated” version of the block decomposition polytope

Pz(A, β, κ) := conv {z ∈ Rm : there is x ∈ P (A, β, κ) with z = z(x)}.

The aggregated polytope is interesting because any valid inequality
∑m

i=1 aizi ≤ α for Pz(A, β, κ)

can be “expanded” into an inequality
∑m

i=1 ai
∑β

b=1 x
b
i ≤ α that is valid for P (A, β, κ). All in-

equalities in this subsection are of this type. Obviously, the expansion process yields inequalities
that are invariant under block permutation. A first example are the z-cover inequalities.

3.4 Theorem (z-Cover) Let G(AT ) = (V, E) and let W ⊆ V be a set of rows of cardinality
κ + 1. Then, the z-cover inequality ∑

i∈W

β∑
b=1

xbi ≤ κ

is valid for P (A, β, κ) if and only if (W,E(W )) is connected (where E(W ) denotes all edges with
both endpoints in W ). It is facet defining for P (A, β, κ) if and only if for each row i �∈ W the
graph (W ∪ {i}, E(W ∪ {i})) has an articulation point different from i.

The separation problem to find a tree of size κ + 1 of maximum node weight is NP-hard, see
Ehrgott [1992]. The z-cover inequalities are induced by trees and one can generalize them for
subgraphs of higher connectivity, but we skip this possibility here and just mention the related
z-clique inequalities.

3.5 Theorem (z-Clique) If Q is a clique in G(AT ), then the z-clique inequality

∑
i∈Q

β∑
b=1

xbi ≤ κ

is valid for P (A, β, κ). It is facet-defining if and only if |Q| ≥ κ+1 and for each row i �∈ Q there
exists a set of rows R(i) ⊆ Q, |R(i)| = κ, such that i is not adjacent in G(AT ) to any node in
R(i).

The z-clique separation problem is again a max-clique problem and thus NP-hard. In our
implementation we check easily detectable special cases like the following so-called big-edge
inequalities ∑

i∈supp(A·j)

β∑
b=1

xbi ≤ κ,

for all blocks b, where A·j denotes the j-th column of A and supp(A·j) its non-zero row indices.

Another way to generalize the z-cover inequalities is by looking at node induced subgraphs
that consist of several components. This idea gives rise to the class of bin-packing inequalities.
Consider a set of rows W that induces a subgraph of G(AT ) = (V, E). Suppose (W,E(W ))
consists of l connected components of sizes (in terms of nodes) a1, . . . , al. We can then associate
a bin-packing problem with (W,E(W )), β, and κ in the following way: there are l items of sizes
a1, . . . , al, and β bins of capacity κ each. The problem is to put all the items into the bins such
that no bin holds items of a total size that exceeds the capacity κ. If this is not possible, we
can derive a valid inequality for P (A, β, κ).
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3.6 Theorem Let G(AT ) = (V, E) and W ⊆ V be some subset of rows. If the bin packing
problem associated to (W,E(W )), β, and κ has no solution, the bin packing inequality

∑
i∈W

β∑
b=1

xbi ≤ |W | − 1

is valid for P (A, β, κ).

We do not know any reasonable conditions that characterize when the bin packing inequalities
are facet defining. Bin-packing separation is NP-hard, see Garey and Johnson [1979]. The last
star inequality that we present in this section is special in the sense that it is the only one with
non-0/1 coefficients. It was designed to deal with linking rows with many neighbors.

3.7 Theorem (Star) Let G(AT ) = (V, E) and consider some row i ∈ V with |γ(i)|> κ. Then
the star inequality

(|γ(i)| − κ + 1)

β∑
b=1

xbi +
∑

j∈γ(i)

β∑
b=1

xbj ≤ |γ(i)|

is valid for P (A, β, κ).

4 A Branch-And-Cut Algorithm

The polyhedral investigations of the last section form the basis for the implementation of a
branch-and-cut algorithm for the solution of the matrix decomposition problem. This section
describes two of the problem specific ingredients of this code: A non-standard anti-stalling
mechanism and our primal matrix decomposition heuristics. For the sake of brevity we can not
describe or separation algorithms, LP-management, problem reduction, and searchtree manage-
ment here, but it goes without saying that a careful implementation of each of these components
is crucial for the overall performance of the algorithm.

4.1 Tie-Breaking Inequalities

In addition to all the classical types of cutting planes that we described in Section 3 we use a
number of “tie-breaking” inequalities to cut off decompositions that are identical up to block
permutations or give rise to multiple optima for other reasons as a means to counter dual
degeneracy and stalling. These inequalities are in general not valid for P (A, β, κ), but for at
least one optimal solution. The most simple kind of these cuts are the permutation inequalities

m∑
i=1

xbi ≤
m∑
i=1

xb+1
i , b = 1, . . . , β − 1,

stating that blocks with higher indices are of larger size. Another idea that we use to eliminate
multiple optima is based on the concept of row preference. We say that row i is preferred to
row j or, in symbols, i ≺ j if

γ(i) ⊆ γ(j)

with respect to the row intersection graph G(AT ). We may in this situation not know whether
or not row i or j can be assigned to a block in some optimal solution, but we can say that
for any decomposition x with z(x)j = 1, say xbj = 1, either z(x)i = 1 or we can get a feasible

decomposition x′ = x − ebj + ebi with the same number of rows assigned. In this sense, row i is
more attractive than row j. If we break ties on row preference by indices (i.e, i ≺ j ⇐⇒ γ(i) �
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γ(j)∨ (γ(i) = γ(j)∧ i < j)), row preferences induce a partial order. We force them in our code
by adding all non-transitive row preference inequalities

β∑
b=1

xbi ≥
β∑

b=1

xbj for (i, j) with i ≺ j.

4.2 Heuristics

Our heuristics fall into three groups: “primal” methods that iteratively fix block assignments,
“dual” methods that iteratively exclude assignments, and an improvement method. All of them
respect variable fixings at the nodes of the searchtree to increase the probability of finding
different solutions. Applied at the root node where (at least initially) no variables are fixed, our
methods can be seen as LP-based or pure combinatorial heuristics for the matrix decomposition
problem. The heuristics are called after each individual LP.

The primal methods consist of a greedy algorithm and a bin-packing heuristic, both are LP-
based. The greedy algorithm orders the xbi variables according to increasing x-value. The rows
are assigned greedily to the blocks in this order. The bin-packing heuristic starts by determining
a set of nodes W that will be assigned to the blocks and used to set up a corresponding bin-
packing problem. In order to find a better decomposition than the currently best known with,
say, z� rows assigned, W should be of cardinality at least z�+1 and therefore we take the z�+1
rows with the largest z(x)-values to be the members of W . The corresponding bin-packing
problem is set up and solved with a dynamic program with a time bound.

The dual methods also respect variable fixings, but are not LP-based. The idea behind them is
not to assign rows to blocks, but to iteratively eliminate assignments of “bad” rows. Suppose
that a decision was made to assign certain rows (assigned rows) to certain blocks, to exclude
other rows from assignment (unassigned rows), while for the remaining rows a decision has yet
to be made (free rows). Removing the unassigned nodes from the row intersection graph G(AT )
leaves us with a number of connected components. Both variants of the dual method will break
up the components that are larger than the block capacity κ by unassigning free rows until no
more such components exist. At this point, a simple first-fit decreasing heuristic is called to
solve the corresponding bin-packing problem. The two variants differ in the choice of the next
bad row to remove. Variant I chooses the free row with the largest degree with respect to G(AT ),
variant II the least preferable free row.

Our improvement heuristic is a variation of a local search technique presented by Fiduccia and
Mattheyses [1982]. Given some block decomposition, it performs a sequence of local exchange
steps each of the following type. Some assigned row is chosen to be made unassigned opening
up possibilities to assign its unassigned neighbors. These assignments are checked and feasible
assignments are executed.

5 Computational Results

In this section we report on computational experiences with our branch-and-cut algorithm and
examine whether matrices arising from mixed integer programs can be decomposed into (bor-
dered) block diagonal form. Our aim is to find answers to two complexes of questions. First,
we would like to evaluate our branch-and-cut approach: What are the limits in terms of the
size of the matrices that we can solve with our algorithm? What is the quality of the cuts,
do they provide a reasonable solution guarantee? Second, we want to discuss our concept of
decomposition into bordered block diagonal form. Do the test instances have this structure or
are most integer programming matrices not decomposable in this way?
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The algorithm is implemented in C and consists of about 36,000 lines of code. The test runs
were performed on a Sun Ultra Sparc 1 Model 170E and we used a time limit of 1, 800 CPU
seconds. The LPs were solved with the CPLEX 4.0 dual simplex algorithm using steepest edge
pricing, see CPLEX [1995].

Our test set1 consists of matrices of mixed integer programs taken from the Miplib2 and pre-
processed with the presolver of the general purpose MIP-solver SIP that is currently under
development at the Konrad-Zuse-Zentrum. There are two applications for decompositions of
mixed integer programming matrices. First, to speed up the linear algebra in a simplex-type
LP-solver for use within a branch-and-cut algorithm for general MIPs. Second, a decomposition
of the constraint matrix of a MIP can be useful to tighten its LP-relaxations within such an
algorithm. The structure of the decomposed matrix is that of a multiple knapsack or general
assignment problem, and inequalities known for the associated polytopes (see Gottlieb and Rao
[1990], Ferreira, Martin, and Weismantel [1996]) are valid for the MIP under consideration. The

first interesting case in this context are two blocks and we set β := 2. We used κ :=
(#rows)·1.05

2
rounded up as the block capacity, which allows a deviation of 10% of the actual block sizes in
the decomposition.

Table 1 reports the results of our computational experiments for all instances with up to 400 rows.
The format is as follows: Column 1 provides the name of the problem, Columns 2 to 4 contain
the number of rows, columns and non-zeros of the matrix to be decomposed. The next 5 columns
give the number of cuts found by the algorithm: Initial cuts (Init), i.e., block assignment and
capacity, big-edge, star, and tie-breaking cuts, z-cover (Cov), two-partition (2part), the sum of
the number of bin-packing, cycle, clique, and z-clique cuts (BCC), and the cuts separated from
the pool (pool). Column Nod gives the number of branch-and-bound nodes, Iter the number of
LPs. The next four columns give solution values reported in terms of the number of rows in the
border, because it is easier to see whether the matrix could be decomposed into block diagonal
form: Lb gives the global lower bound, Ub the value of the best solution found by heuristic He
(G, D1, D2 and B stand for the greedy, dual (variant I and II), and bin-packing heuristic, I for
a succeeding call to the improvement heuristic, ∗ for an integral LP solution) after No many
nodes (1 means it was found in the root node, 0 means that preprocessing solved the problem).
The remaining columns show timings: column Tot gives the total running time in CPU seconds,
Cm the percentage of the total time spent in LP-management, LP the same for the time spent
in the LP-solver, Sep for separation, and Heu for heuristics.

The results are as follows. The problems up to 90 rows are easy. The range of 90–200 rows
is most interesting: The problems here are already difficult, but because of the combinatorial
structure and not because of sheer size. The problems with more than 200 rows are large-scale.
The algorithm solves very few LPs within the given time limit and we can decompose only a
couple of easy large instances, but it is worth noticing that a significant number of these exists:
The difficulty of matrix decomposition problems depends as much on the structure of the matrix
as on the number of rows, columns, or non-zeros.

Let us first investigate our branch-and-cut approach. We observe that we solve only few problems
at the root node (only 12 out of 51), and that the number of cuts is very large. The reason for
this is basically the symmetry of the problem, as can be seen from the pool separation column
(Pool) that counts, in particular, all violated tie-breaking cuts. Since β = 2 leads to large block
capacities, it is difficult to separate inequalities that have a combinatorially restrictive support
of this size, see column BCC. The quality of the cuts is in our opinion reasonable, see columns
Nod and Iter. It is true, however, that the lower bound improves fast at first while stalling
occurs in later stages of the computation although still large numbers of cuts are found and the
problem is finished by branch-and-bound.

1Available at URL ftp://ftp.zib.de/pub/mp-testdata/madlib/index.html
2Available at URL http://www.caam.rice.edu:80/�bixby/miplib/miplib.html
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How decomposable are the MIP-matrices? We see that not all, but many of the larger problems
can be brought into bordered block diagonal form (the small ones can not). Of course, there are
also exceptions like the air-problems which were expected to be not decomposable. Anyway,
there seems to be potential for the multiple-knapsack approach and further research in this
direction, especially because there are only very few classes of cutting planes known for general
MIPs.

Summary and Conclusions

We have shown in this paper that it is possible to decompose typical mixed integer programming
matrices up to 200 and more rows to proven optimality using a cutting plane approach based on
polyhedral investigations of the matrix decomposition problem. It turned out that many MIPs
can be brought into bordered block diagonal form with two blocks. We think that these results
show a significant potential for methods that can exploit this structure to solve general MIPs.
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