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Abstract

This paper deals with the study of test sets of the knapsack problem
and simultaneous diophantine approximation. The Graver test set of the
knapsack problem can be derived from minimal integral solutions of lin-
ear diophantine equations. We present best possible inequalities that must
be satisfied by all minimal integral solutions of a linear diophantine equa-
tion and prove that for the corresponding cone the integer analogue of
Caratheodory’s theorem applies when the numbers are divisible.

We show that the elements of the minimal Hilbert basis of the dual
cone of all minimal integral solutions of a linear diophantine equation
yield best approximations of a rational vector “from above”. A recursive
algorithm for computing this Hilbert basis is discussed. We also outline an
algorithm for determining a Hilbert basis of a family of cones associated
with the knapsack problem.

Keywords: knapsack problem, simultaneous diophantine approximation,
diophantine equation, Hilbert basis, test sets.

1 Introduction

This paper deals with the study of test sets of the knapsack problem and simul-
taneous diophantine approximation. Both topics play a role in various branches
of mathematics such as number theory, geometry of numbers and integer pro-
gramming.

From the viewpoint of integer programming, minimal integral solutions of a
linear diophantine equation allow to devise an exact primal algorithm for solving
knapsack problems in non-negative integer variables,

max cTx : αTx = β, x ∈ Nn, (1.1)

where c ∈ Zn, α ∈ (N \ {0})n and β ∈ N. More precisely, the primal methods
that we consider here are augmentation algorithms, and the question we address
is to describe the set of all possible augmentation vectors. This leads us to test
sets.

∗Supported by a “Leibniz Preis” of the German Science Foundation (DFG) awarded to M.
Grötschel.

†Supported by a “Gerhard-Hess-Forschungsförderpreis” of the German Science Foundation
(DFG).
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A test set is a collection of all augmenting directions that one needs in order
to guarantee that every non-optimal feasible point of a linear integer program
can be improved by one member in the test set. There are various possible
ways of defining test sets depending on the view that one takes: the Graver test
set is naturally derived from a study of the integral vectors in cones [G75]; the
neighbors of the origin are strongly connected to the study of lattice point free
convex bodies [S86]; the so-called reduced Gröbner basis of an integer program is
obtained from generators of polynomial ideals that is a classical field of algebra,
[CT91]. We refrain within this paper from introducing all these three kinds of
test sets, but concentrate on the Graver test set, only. In order to introduce the
Graver test set for the family of knapsack problems with varying c ∈ Zn and
b ∈ N, the notion of a rational polyhedral cone and its Hilbert basis is needed.

Definition 1.1. For z1, . . . , zm ∈Zn, the set

C := pos {z1, . . . , zm} =

{
m∑
i=1

λiz
i : λ ∈ Rm

≥0

}

is called a rational polyhedral cone. It is called pointed if there exists a hyper-
plane {x ∈ Rn : aTx = 0} such that {0} = {x ∈ C : aTx ≤ 0}.
Definition 1.2. Let C ⊆ R

n be a rational polyhedral cone. A finite subset
H = {h1, . . . , ht} ⊆ C ∩Zn is a Hilbert basis of C if every z ∈ C ∩Zn has a
representation of the form

z =

t∑
i=1

λih
i,

with non-negative integral multipliers λ1, . . . , λt.

The name Hilbert basis was introduced by Giles and Pulleyblank [GP79] in
the context of totally dual integral systems. Essential is (see [G1873], [C31])

Theorem 1.1. Every rational polyhedral cone has a Hilbert basis. If it is
pointed, then there exists a unique Hilbert basis that is minimal w.r.t. inclu-
sion.

In the following by a cone we always mean a rational polyhedral cone.
Let Oj denote the j-th orthant in Rn. For A ∈ Zm×n, the set Cj := {x ∈

Oj : Ax = 0} is a pointed cone in Rn. Denoting by Hj the minimal Hilbert
basis of Cj, Graver proved the following: The set H :=

⋃
j Hj is a test set for

the family of integer programs of the form maxcTx : Ax = b, x ∈ Nn for a
fixed matrix A ∈Zm×n and varying c ∈Zn and b ∈Zm.

This result is the starting point for our discussions. Namely, in order to
devise an exact primal algorithm for solving a knapsack problem of the form
(1.1), we need to determine, for every orthant Oj in Rn, a Hilbert basis Hj of
the so-called knapsack cone Cj = {x ∈ Oj : αTx = 0}.

We present in this paper best possible inequalities that must be satisfied by
all the elements of the minimalHilbert basis of Cj and prove that forCj the inte-
ger analogue of Caratheodory’s theorem applies when the numbers {α1, . . . , αn}
are pairwise divisible. We also show that the elements of the minimal Hilbert
basis of the dual of Cj yield best approximations of a rational vector “from
above”. A recursive algorithm for computing this Hilbert basis is discussed. A
similar type of procedure applies to the cone Cj. Therefore this method can
also be used to find a test set of the knapsack problem.

2



2 The knapsack cone

Up to a permutation of the coordinates, a knapsack cone Cj can be identified
with the set Kn,m of all non-negative solutions of a linear diophantine equation,
i.e.,

Kn,m =

⎧⎨
⎩(x, y)T ∈ Rn

≥0×Rm
≥0 :

n∑
i=1

aixi =

m∑
j=1

bjyj

⎫⎬
⎭ ,

where we always assume that a = (a1, . . . , an)
T ∈ Nn, b = (b1, . . . , bm)T ∈ Nm,

n ≥ m ≥ 1 and a1 ≤ a2 ≤ · · · ≤ an, b1 ≤ b2 ≤ · · · ≤ bm. It is easy to see that

Kn,m = pos
{
bje

i + aie
n+j : 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
, (2.1)

where ei ∈ Rn+m denotes the i-th unit vector. The minimal Hilbert basis of
Kn,m is denoted by Hn,m.

One of the major results of this paper is to show that every element in
Hn,m satisfies n + m special inequalities that generalize the two inequalities∑n

i=1 xi ≤ bm and
∑m

j=1 yj ≤ an proved by Lambert ([L87]) and independently
by Diaconis, Graham & Sturmfels [DGS94].

Theorem 2.1. Every (x, y)T ∈ Hn,m satisfies the inequalities

[jl] :

n∑
i=1

xi +

l−1∑
j=1

⌊
bl − bj
an

⌋
yj ≤ bl +

m∑
j=l+1

⌈
bj − bl
a1

⌉
yj , l = 1, . . . , m,

[ik] :

m∑
j=1

yj +

k−1∑
i=1

⌊
ak − ai
bm

⌋
xi ≤ ak +

n∑
i=k+1

⌈
ai − ak

b1

⌉
xi, k = 1, . . . , n.

From an algorithmic point of view Theorem 2.1 allows to assert that an
integral point in Kn,m does not belong to a minimal Hilbert basis of this cone.
This problem is in general NP-complete, see Sebö [S90].

Theorem 2.2 (The Decomposition Problem). For the pointed cone Kn,m,
and a vector (x, y)T ∈ Kn,m ∩Zn+m it is co-NP-complete to decide whether
(x, y)T is contained in Hn,m.

Theorem 2.2 asserts the difficulty of testing for non-membership in Hn,m.
On the other hand, every integral vector in this cone can be decomposed by
vectors of the basis. In fact we can write every integral vector in any pointed
cone of dimension n as the non-negative integer combination of at most 2n− 2
vectors from the basis. This was shown by Sebö [S90] and gives currently the
best bound in general; it improves the bound given by Cook, Fonlupt & Schrijver
[CFS86] by 1, yet is still quite far from what many researchers conjecture to be
true, namely: every integral vector in a pointed cone is the non-negative integer
combination of at most n vectors of the Hilbert basis. We now prove that this
integer Version of Caratheodory’s Theorem holds for the knapsack cone when
the numbers are divisible.

Theorem 2.3. Let positive integers a1, . . . , an and b1, . . . , bm be given such
that there exist pi, qj ∈ N with

ai = pi · ai−1, i = 2, . . . , n, b1 = q1 · an, bj = qj · bj−1, j = 2, . . . , m.
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Every integral point in Kn,m can be written as the non-negative integer combi-
nation of at most n+m− 1 = dim(Kn,m) elements of Hn,m.

Let us point out that, although Theorem 2.1 gives the best inequalities
known so far to assert that an integral point in Kn,m does not belong to the
minimal Hilbert basis, we believe that a much stronger and more general state-
ment is true: every element in the minimal Hilbert basis of Kn,m is a convex
combination of 0 and the generators bje

i + aie
n+j of Kn,m. More formally, let

Pn,m = conv
{
0, bje

i + aie
n+j : 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
.

One might conjecture that

Conjecture 2.1. Hn,m ⊂ Pn,m.1

For m = 1 Theorem 2.1 implies the inclusion Hn,1 ⊂ Pn,1. This can easily
be read off from the representation

Pn,1 =

{
(x, y)T ∈ Rn×R : aTx = b1y; x, y ≥ 0,

n∑
i=1

xi ≤ b1

}
.

One way of verifying the correctness of the conjecture could be to find all
facets defining inequalities of Pn,m and to check that these inequalities are sat-
isfied by the elements of Hn,m. A subset of the facets defining inequalities is
given by

Proposition 2.1. For l = 1, . . . , m let

Jl =

⎧⎨
⎩(x, y) ∈ Rn×Rm :

n∑
i=1

xi +

l−1∑
j=1

bl − bj
an

yj ≤ bl +

m∑
j=l+1

bj − bl
a1

yj

⎫⎬
⎭

and for k = 1, . . . , n let

Ik =

⎧⎨
⎩(x, y) ∈ Rn×Rm :

m∑
j=1

yj +

k−1∑
i=1

ak − ai
bm

xi ≤ ak +

n∑
i=k+1

ai − ak
b1

xi

⎫⎬
⎭ .

Pn,m ⊂ Jl, Pn,m ⊂ Ik. Moreover, the inequalities defining the halfspaces Jl and
Ik define facets of Pn,m, 1 ≤ l ≤ m, 1 ≤ k ≤ n.

Remark 2.4. Since Pn,2 = {(x, y)T ∈ Rn×R2 : aTx = bT y; x, y ≥ 0, (x, y)T ∈
Ik, 1 ≤ k ≤ n}, Theorem 2.1 shows that the conjecture is “almost true” when
m = 2.

3 Best approximations “from above”

In this section we deal with a cone that on the first view seems to be not related
to the knapsack cone investigated before.

1This conjecture was independentlymade by Hosten and Sturmfels, private communication
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Let e1, . . . , en denote the n unit vectors in Rn+1 having a 1 in coordi-
nate 1, . . . , n, respectively. For p ∈ Zn+1 such that gcd(p1, . . . , pn+1) = 1,
p1, . . . , pk > 0, pk+1, . . . , pn < 0 and pn+1 > 0, let

C(p) = pos {e1, . . . , en, p}. (3.1)

It turns out that the dual cone C(p)∗ of C(p) is “essentially” the knapsack
cone. This result builds the bridge towards the previous section. By definition,
C(p)∗ can be written as C(p)∗ = {v ∈ Rn+1 : vT x ≥ 0, ∀ x ∈ C(p)}. Since
the generators of C(p) consist of the unit vectors e1, . . . , en plus the vector
p ∈Zn+1, we obtain

C(p)∗ =

{
v ∈ Rn

≥0×R :

k∑
i=1

vi · pi ≥
n∑

i=k+1

vi · (−pi) − vn+1pn+1

}
.

Depending on the sign of vn+1, we partition C(p)∗ into the following two cones

C(p)∗≥ =

{
v ∈ Rn+1

≥0 :

k∑
i=1

vipi + vn+1pn+1 ≥
n∑

i=k+1

vi · (−pi)

}
,

C(p)∗≤ =

{
v ∈ Rn

≥0×R≤0 :

k∑
i=1

vipi ≥
n∑

i=k+1

vi · (−pi) + (−vn+1)pn+1

}
.

Both cones, C(p)∗≥ and C(p)∗≤ may be regarded as “≥-knapsack cones”, or,
the facet of the cone C(p)∗≥ (C(p)∗≤) induced by the non-trivial inequality is a
knapsack cone of the form Kk+1,n−k (Kk,n−k+1) that we studied in Section 2.

In the remainder of this section we study the minimal Hilbert basis of C(p).
It turns out that this basis is closely related to the problem of simultaneous
diophantine approximation of rational numbers by other rational numbers with
an upper bound on the denominator. More precisely, we consider the following
approximation problem:

Simultaneous Diophantine Approximation “from above”:

Let p1, . . . , pn+1 ∈Z, pn+1 > 0, and N ∈Z, N > 0.
Find integers q1, . . . , qn+1, N ≥ qn+1 > 0 such that qi/qn+1 ≥ pi/pn+1, i =
1, . . . , n, and

∑n
i=1(

qi
qn+1

− pi

pn+1
) is as small as possible.

The vector q′ = ( q1
qn+1

, . . . , qn
qn+1

) is called a best approximation of p′ = ( p1

pn+1
,

. . . , pn

pn+1
) from above with respect to N .

It is clear that if N ≥ pn+1, then p′ = ( p1

pn+1
, . . . , pn

pn+1
) itself is its best ap-

proximation from above. It is, however, not clear how one can characterize a
best approximation of p′ from above when N < pn+1. We show that a best
approximation of p′ from above can be read off from the minimal Hilbert basis
of C(p).

Theorem 3.1. Let p1, . . . , pn+1 ∈ Z, pn+1 > 0, and N ∈ Z, N > 0. There
exists an element (q1, . . . , qn+1) of the minimal Hilbert basis of C(p) such that
q′ = ( q1

qn+1
, . . . , qn

qn+1
) is a best approximation of p′ = ( p1

pn+1
, . . . , pn

pn+1
) from

above with respect to N . Moreover, among all such best approximations of p′,
q′ is the unique one with smallest denominator qn+1.

5



Instead of restricting our attention to approximations of a rational vector p′

from above, one could ask for approximations where, for any of the components
of p′, one would specify a-priori, whether the approximation should lie below
or above the corresponding value of p′. Theorem 3.1 can be extended to this
situation.

Theorem 3.2. Let σ ∈ {−1,+1}n be the sign pattern associated with one or-
thant of Rn. Let p1, . . . , pn+1 ∈Z, pn+1 > 0, and N ∈Z, N > 0. There exists
an element (q1, . . . , qn+1) of the minimal Hilbert basis of pos {σ1e

1, . . . , σne
n, p}

such that

n∑
i=1

∣∣∣∣ qi
qn+1

− pi
pn+1

∣∣∣∣ =min

{
n∑

i=1

∣∣∣∣ xi

xn+1
− pi

pn+1

∣∣∣∣ : x1, . . . , xn+1 ∈Z,

N ≥ xn+1 > 0, σi

(
xi

xn+1
− pi

pn+1

)
≥ 0

}
.

Among all solutions of this diophantine approximation problem, ( q1
qn+1

, . . . , qn
qn+1

)

is the unique one with smallest denominator.

4 A recursive algorithm for the Hilbert basis of

C(p) and the knapsack cone

We have motivated in the previous sections why the Hilbert basis of the knapsack
cone and the cone of best approximations from above is of particular interest. In
this section we treat algorithmic questions related to these bases. We first deal
with the cone C(p) = pos {e1, . . . , en, p} ⊆ Rn+1 related to the best approxima-
tions from above. Applying a unimodular transformation we may assume that
p = (p1, . . . , pn+1) ∈ Nn+1.

We remark that it is trivial to find a Hilbert basis of C(p), because it is well
known that {e1, . . . , en, p} ∪ {z ∈ Zn+1 : z =

∑n
i=1 λie

i + λn+1p, 0 ≤ λi < 1}
actually is a Hilbert basis of C(p) (cf. [C31]). All we are left with is to enumerate
these integral points. However, in general, the size of this Hilbert basis is
exponentially larger than the size of the minimal Hilbert basis, and, of course,
we are interested in computing a “small” one.

We proceed in an inductive fashion to compute the basis of C(p): Let H2

be the minimal Hilbert basis of the 2-dimensional cone

C2 := pos {e1, (pn, pn+1)
T }.

It is clear that e1 ∈ H2. Let (w1, h1) < . . . < (wm, hm) ∈ H2 \ {e1} be the
remaining elements inH2. It follows that, for every x ∈ C(p)∩Zn+1 with xn+1 >
0, the coordinate xn+1 has a representation of the form xn+1 =

∑m
v=1 μvhv with

μ1, . . . , μm ∈ N.
Definition 4.1. For i, j ∈ {1, . . . , m− 1}, i < j, let

Ci,j :=

{
x ∈ C(p) ∩Zn+1 : ∃ μi, . . . , μj ∈ N, 0 < xn+1 =

j∑
v=i

μvhv < hj+1

}
.

We say that {g1, . . . , gt} ⊆ L are generators of a set L ⊆Zn if, for every x ∈ L,
there exist σ1, . . . , σt ∈ N such that x =

∑t
v=1 σvg

v.
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Noting that hm = pn+1, the following statement is immediate.

Lemma 4.2. The union of {e1, . . . , en, p} and a set of generators of C1,m−1

defines a Hilbert basis of C(p).

In fact, an inclusionwise ordering of all the subsets Ci,j is possible.

Lemma 4.3. For every i′ ≤ i ≤ j ≤ j′ ∈ {1, . . . , m − 1}, a minimal set of
generators of Ci,j (w.r.t. inclusion) defines a subset of any set of generators of
Ci′,j′.

On account of Lemma 4.2 it suffices to find generators of C 1,m−1 in order
to determine a Hilbert basis of C(p). A set of generators of C1,m−1 can be
computed in a recursive manner.

Algorithm 4.4. Recursion formula to find the generators of C 1,m−1.
(1) For i = 1, . . . , m− 1 determine generators of Ci,i.
(2) For i = m− 2, . . . , 1 determine generators of Ci,m−1.

The reason why this recursion makes sense is that the task of finding a set
of generators of Ci,i can be solved with a procedure to determine the Hilbert
basis of a cone similar to C(p), but in one dimension less. Secondly, if one has,
for i = m − 2, . . . , 1 as input a set of generators of Ci,i and Ci+1,m−1, then
one can devise a procedure that returns generators of Ci,m−1. This is the idea
behind the recursion.

Lemma 4.5. Let p̃ = (p1, . . . , pn−1, hipn+1) ∈ Nn and let e1, . . . , en−1 de-
note the first n − 1 unit vectors of Rn. For i ∈ {1, . . . , m − 1}, let Hi be a
Hilbert basis of the n-dimensional cone C(p̃) = pos {e1, . . . , en−1, p̃}. The set
{(x1, . . . , xn−1, zwi, zhi) : (x1, . . . , xn−1, z) ∈ Hi, 0 < zhi < hi+1} is a set of
generators of Ci,i.

Lemma 4.5 shows that a set of generators of C i,i can easily be reconstructed
from a Hilbert basis of the cone C(p̃). This is where the inductive step comes
into play. In order to solve Step (2) of Algorithm 4.4 one must be able to turn a
set of generators of Ci,i and Ci+1,m−1 into a set of generators of Ci,m−1. This
task may again be solved with a recursive algorithm that would read as follows.

Algorithm 4.6. (Recursion to find C i,m−1)

Input: An ordered set {g1, . . . , gt} of generators of Ci+1,m−1 with g1n+1 <
. . . < gtn+1; a set of generators of Ci,i.

Output: A set of generators of Ci,m−1;

For every v ∈ {1, . . . , t} determine a set of generators of the set Gv :=
{y ∈ Ci,m−1 : yn+1 < gvn+1}.

Lemma 4.7. G1 = Ci,i and Gt+1 = Ci,m−1.

Lemma 4.7 shows that when we enter the for-loop of Algorithm 4.6, a set of
generators of Ci,i is also a set of generators of G1. Then we proceed through all
values of v and determine a set of generators of Gv using a set of generators of
Gv−1. When v equals t+1, we terminate with a set of generators of Gt+1 that
corresponds to a set of generators of Ci,m−1.
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The key of Algorithm 4.6 is a subroutine for returning a set of generators of
Gv+1 whose input consists of a set of generators of Gv. It is not difficult to see
that Gv+1 is equal to the set

S = {x ∈ Ci,m−1 : ∃ λ ∈ {0, . . . , λv}, y ∈ Gv s.t.
xn+1 = λgvn+1 + yn+1 < gv+1

n+1}, (4.1)

where λv := max{λ ∈ N : λgvn+1 < gv+1
n+1} and gt+1

n+1 := hm. The generators of
Gv+1 are points of the form

(x1, . . . , xn+1) ∈ S : xi = �pixn+1

pn+1
�, i = 1, . . . , n. (4.2)

To each point x of the form (4.2) there corresponds a n-dimensional vector of
residua of components xipn+1−xn+1pi, i = 1, . . . , n. In fact, one can show that
the minimal set of generators of Gv+1 can be characterized as follows: we order
the integral points of the form (4.2) w.r.t. increasing last coordinate; the vector
of residua of a point that appears later in this sequence is incomparable with the
vectors of residua of all points that occur earlier in this sequence. Resorting to
appropriate data structures that contain information about the vector of residua
for every element in Gv one can determine a set of generators of Gv+1 without
testing every integral point in S.

For precisely this reason, Algorithm 4.4 yields a much more sophisticated
algorithm for determining the Hilbert basis of C(p) than the trivial method
discussed at the beginning of the section.

We now illustrate the essential steps of Algorithm 4.4 on an example.

Example. Let n = 2 and p = (30, 29, 17). The elements of the Hilbert basis
of C(p) = pos {e1, e2, p} that we are interested in consists of integral points of
the form (x1, x2, x3) ∈ N3 with x3 ≤ pn+1 = 17 and xi = �pix3

p3
� for i = 1, 2.

To each such point x there corresponds the 2-dimensional vector of residua
(x1p3 − x3p1, x2p3 − x3p2). Table 4 includes this information.

By (w1, h1), . . . , (wm, hm) we denote all elements in the Hilbert basis of the
2-dimensional subcone C2 := {e1, (29, 17)T}, except for e1. In our example we
have that m = 4 and (w1, h1) = (2, 1) , (w2, h2) = (7, 4), (w3, h3) = (12, 7) and
(w4, h4) = (29, 17).

Following Algorithm 4.4 we execute Step (1) to find generators of the sets
C1,1, C2,2, C3,3. Lemma 4.5 implies that a generator of C 1,1 is the element
(2, 2, 1). Accordingly, we see that a generator of C2,2 is the element (8, 7, 4) and
that the vectors (13, 12, 7) and (25, 24, 14) define generators of C3,3.

With this information we can start Step (2) of Algorithm 4.4. There we first
determine generators of C2,3 = {x ∈ C ∩Z3 : ∃ μ2, μ3 ∈ N with p3 > xn+1 =
4μ2+7μ3}. The generators of this set coincide with the union of the generators
of C2,2 and C3,3. It remains to find the generators of C1,3. To find these, we
inspect the generators of C2,3 in the following order: first g1 = (8, 7, 4), then
g2 = (13, 12, 7) and finally g3 = (23, 23, 13).

For every such element we determine the maximal natural number λv such
that λvg

v
3 < gv+1

3 . The corresponding numbers in this case are λ1 = λ2 = λ3 =
1.

For g1 = (8, 7, 4), we determine the minimal natural number μ such that
the residuum of the vector g1 + μ(2, 2, 1) exceeds the value of p3 = 17 in one
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x3 vector residuum x3 vector residuum

1 (2,2,1) (4, 5) 2 (4, 4, 2) (8, 10)
3 (6, 6, 3) (12, 15) 4 (8,7,4) (16, 3)
5 (9,9,5) (3, 8) 6 (11, 11, 6) (7, 13)
7 (13,12,7) (11, 1) 8 (15, 14, 8) (15, 6)
9 (16,16,9) (2, 11) 10 (18, 18, 10) (6, 16)
11 (20,19,11) (10, 4) 12 (22, 21, 12) (14, 9)
13 (23,23,13) (1, 14) 14 (25,24,14) (5, 2)
15 (27, 26, 15) (9, 7) 16 (29, 28, 16) (13, 12)
17 (30,29,17) (0, 0)

Table 4
All vectors that are written in bold together with the unit vectors e1, e2 define the

minimal Hilbert basis of C(p).

component. This gives μ = 1, and the corresponding vector is (9, 9, 5) that we
add to the generators of C1,3. For all the other vectors whose 3rd. coordinate
is of the form g13 +μ < g23 , the associated vectors of residua are greater than the
residuum of the point (9, 9, 5).

Next we proceed to g2. We know from the previous iteration the generators
of G2 := {y ∈ C1,3 : y3 < g23 = 7}. This was the set {(2, 2, 1), (8, 7, 4), (9, 9, 5)}.
On account of (4.1), G3 is of the form G3 = {x ∈ C1,3 : ∃ λ ∈ {0, . . . , λ2 = 1}
and y ∈ G such that x3 = λg23 + y3 < g33}. In order to find generators of G3 we
have to examine the vector of residua of the points x ∈ G3. There are precisely
two additional vectors for which the vector of residua is incomparable with every
vector of residua of the generators of G2: (16, 16, 9) and (20, 19, 11). A set of
generators of G3 is

{(2, 2, 1), (8, 7, 4), (9, 9, 5), (13, 12, 7), (16, 16, 9), (20, 19, 11)}.
Next we proceed to g3. Because λ3 = 1 we need to find the set of all points
x ∈ G4 = {x ∈ C1,3 : ∃ λ ∈ {0, 1} and y ∈ G3 such that x3 = λg33+y3 < 17} and
the vector of residua is incomparablewith every vector of residua associated with
the generators of G3. This yields the vector (25, 24, 14). On account of lemma
4.7, the sets C1,3 and G4 coincide. The generating set of C1,3 consists of the
following vectors: (2, 2, 1), (8, 7, 4), (9, 9, 5), (13, 12, 7), (16, 16, 9), (20, 19, 11),
(23, 23, 13), (25, 24, 14). These vectors plus the vectors e1, e2 and p define a
Hilbert basis of C(p) in this example.

We want to remark that when p ∈ Nn+1, then C(p)∗ partitions into the two
cones Rn+1

≥0 and a ≥-knapsack cone of the form (cf. Section 2)

C(p)∗≥ =

{
x ∈ Rn+1

≥0 :

n∑
i=1

pixi ≥ pn+1xn+1

}
.

There is a similar recursive way of computing a “small” Hilbert basis of C(p)∗≥.
Let H2 be the minimal Hilbert basis of the 2-dimensional cone C2 := {(y, z) ∈
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2
≥0 : pny ≥ pn+1z}. Then e1 ∈ H . Let (h1, w1) < . . . < (hm, wm) be all the

elements of H \ {e1} ordered in this way. For i ∈ {1, . . . , m− 1} we introduce
a parameter λi to denote the maximal natural number such that λihi < hi+1.
Then we know that for every x ∈ C(p)∗≥∩Zn+1 with xn = 0, xn can be written as

xn =
∑m

v=1 μvhv with μ1, . . . , μm ∈ N. We define, for every i ∈ {1, . . . , m− 1},
the set Ci := {x ∈ C(p)∗≥∩Zn+1 : hi+1 > xn = λhi+yn > 0, y ∈ ⋃i−1

j=1 C
j, λ ∈

{0, . . . , λi}}. Realizing that a Hilbert basis of C(p)∗≥ consists of the union of

the element hmen − wmen+1, the set {e1, . . . , en+1} and a generating set of
Cm−1, the following recursive procedure to determine the Hilbert basis of C(p)∗≥
becomes obvious.

Algorithm 4.8. For i = 1, . . . , m− 1 determine a set of generators of C i.

Finally, we remark that a similar recursion can be formulated to determine
the Hilbert basis of a knapsack cone Kn,m, see Section 2.
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305, Série I, 1987, 39–40.

[S86] H. E. Scarf, Neighborhood systems for production sets with indivisibil-
ities, Econometrica 54, 507 - 532 (1986).
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