
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7, D-14195 Berlin

Marc C. Steinbach H. Georg Bock

Georgii V. Kostin Richard W. Longman

Mathematical Optimization in Robotics: Towards

Automated High Speed Motion Planning

Preprint SC 97–03 (January 1997)

Mathematical Optimization in Robotics: Towards

Automated High Speed Motion Planning

Marc C. Steinbach, H. Georg Bock, Heidelberg,
Georgii V. Kostin, Moscow,

Richard W. Longman, New York

January 12, 1997

Summary. Industrial robots have greatly enhanced the performance of automated

manufacturing processes during the last decades. International competition, however,

creates an increasing demand to further improve both the accuracy of off-line pro-

gramming and the resulting cycle times on production lines. To meet these objectives,

validated dynamic robot models are required. We describe in detail the development

of a generic dynamic model, specialize it to an actual industrial robot KUKA IR 761,

and discuss the problem of dynamic calibration. Efficient and robust trajectory opti-

mization algorithms are then presented which, when integrated into a CAD system,

are suitable for routine application in an industrial environment. Our computational

results for the KUKA IR 761 robot performing a real life transport maneuver show that

considerable gains in productivity can be achieved by minimizing the cycle time.

AMS Subject Classification: 49M37, 65K10, 70B15, 70E15, 70Q05, 73C50,
90C30, 90C90.

Key words: Robot dynamics; Modeling; Calibration; Trajectory optimization;
Collision avoidance; Large scale constrained optimization; Sparse SQP.

1 Introduction

Robot manipulators play an important role in modern industrial manufacturing
processes; nowadays they are particularly common on automated production
lines in the automobile industry. Typical jobs performed by robots range from
welding, gluing, or spray-painting to transport and assembly tasks. However,
perpetually increasing quality standards and international competition as well as
economic reasons impose high demands on precision and reliability, and specif-
ically on the speed of industrial robots, thus calling for sophisticated motion
planning techniques.

Today the classical on-site teaching is still common practice. Relying on
the knowledge and the intuition of experienced personnel, this method is useful

1

to implement accurate, collision-free trajectories in a comparatively easy way.
More advanced CAD based motion planning systems offer the advantage of de-
signing robot maneuvers off line, thus cutting down production losses during
the implementation phase. However, while this works well in relatively slow
assembly tasks, the resulting trajectories are less accurate in high speed gluing
or transport maneuvers. The reason is that commercial CAD systems use kine-
matic models which include only the robot geometry and worst case restrictions
on velocities and accelerations of individual joints and of the tool center point
(TCP). Such models are inadequate for controlling the complex nonlinear dy-
namics of very fast maneuvers. This leads to tracking errors and hence requires
time consuming manual corrections when implementing a new manufacturing
process; furthermore, predicted cycle times are often exceeded.

To enable reliable off-line programming of fast maneuvers, validated dynamic
robot models are needed which include centrifugal, gravitational and Coriolis
forces, and possibly joint elasticities, friction, motor dynamics, etc.

As soon as reliable dynamic models are available, mathematical optimiza-
tion algorithms can be applied to minimize the cycle time of certain maneuvers.
Scientific investigations on robot trajectory optimization began already in the
late sixties; among the earliest is the work of Kahn [26] and Kahn and Roth [27].
During the last decade the topic has received great interest in the academic com-
munity, and various approaches have been proposed based on different problem
formulations and different types of robot models. Since a rigorous treatment of
realistic problems turns out to be very hard, especially if geometric constraints
are specified for collision avoidance, many approaches treat greatly simplified
problems or apply heuristic optimization strategies. For a comprehensive survey
of the literature (until 1990) the reader is referred to [12].

One of the most important types of trajectory optimization problems is
known as the prescribed path problem. The TCP is required to move along a
given (parameterized) curve in cartesian space, with prescribed gripper orien-
tation in each point. It is assumed that these data define the joint positions
uniquely, so that only the velocity profile along the path remains to be optimized.
This reduces the problem to a one-dimensional optimal control problem which is
very well understood; furthermore, very general constraints on actuator torques,
joint speeds, etc. can easily be treated. A highly efficient solution algorithm tai-
lored to the minimum time case was first proposed by Bobrow, Dubowsky and
Gibson [5, 6], and further developed by Pfeiffer and Johanni [40]; in addition
Johanni proposes Dynamic Programming to handle other performance criteria,
and subjects the path itself to an outer optimization to find optimal trajecto-
ries [25]. The prescribed path problem is an appropriate formulation for many
machining tasks such as, e.g., grinding or applying varnish.

The second major type of trajectory optimization problems is known as
the point-to-point (PTP) problem: only the initial and final points, say A,B,
are given, but the shape of the trajectory is subject to optimization. This
problem formulation is appropriate for transport maneuvers and for unloaded
robot motion to start a new task at B after finishing a task at A. Our notion of
the PTP problem, however, is more general. We allow restrictions that fix some

2

degrees of freedom along the trajectory but that do not necessarily determine
all joint angles uniquely. A typical example is a gluing maneuver where the
adhesive emanating from a spray gun is deposited along a prescribed curve,
but the TCP path and orientation may vary in certain ranges. Although the
prescribed path problem is in principle included in our generalized class of PTP
problems, we distinguish this case because of its very special properties.

A precise mathematical statement of the PTP problem is given in the form
of a rather general trajectory optimization problem (TOP). The aim is to deter-
mine a state function x = (x1, x2) and a control function u on time interval [0, T]
such that a performance criterion φ is minimized subject to path constraints g,
multipoint boundary conditions ri, and differential-algebraic equations (DAE)
describing the robot dynamics:

φ(T, x(T)) = min

ẋ1(t)− f1(t, x(t), u(t)) = 0

f2(t, x(t), u(t)) = 0

g(t, x(t), u(t)) ∈ [gmin(t), gmax(t)]

r1(t1, x(t1)) + · · ·+ rk(tk, x(tk)) = 0

(1)

Algebraic equations f2 may result from the problem under consideration (if the
TCP path is prescribed, for instance) or from a descriptor form model of the
robot’s multibody dynamics. If necessary, higher index DAE are reduced to
index 1 and treated numerically by invariant projection [49]; in this case the
invariants are also contained in f2. Our performance criterion will always be
the maneuver time T in the following, but more general objectives do not pose
any conceptual or algorithmic difficulties.

Previous work by the authors and co-workers aimed at developing physical
insight in the dynamic interactions of a robot and finding out how much can be
gained in PTP optimization; investigations along these lines study optimal basic
maneuvers for basic robot types with two or three axes [50, 28, 29, 30, 54, 55, 18].
The physical potential for optimization is given on all robots with revolute joints;
these cause nonlinear dynamic interactions that can be exploited to have all mo-
tors support the one with the hardest task. This simple principle of cooperation
yields considerable savings, often produced by surprisingly esthetic movements.
Although the behavior of such solutions can be physically explained, however,
it is impossible to find near-optimal trajectories through intuition and experi-
ence. Instead, one has to solve the trajectory optimization problem, and hence
sophisticated mathematical algorithms are required.

The direct boundary value problem (BVP) approach due to Bock has proven
very successful for this purpose; its first implementation in the multiple shooting
code MUSCOD [41, 10] was used in most of the investigations mentioned in
the previous paragraph. Recent algorithmic developments [52, 48] based on
the direct BVP approach allow an efficient and robust treatment of large scale
problems with many inequality constraints (cf. section 4); this is crucial for
solving real life optimization problems in an industrial environment.

3

Figure 1: The 6-joint industrial robot KUKA IR 761/125/150.0

The paper is organized as follows. In section 2, dynamic robot modeling is
discussed thoroughly, including a detailed presentation of multibody dynamics
for a general kinematic chain and of the specific components for a model of the
robot KUKA IR 761/125/150.0 shown in Fig. 1. Section 3 provides introductory
information and some references on the issue of model calibration. The direct
boundary value problem approach is presented in section 4 as the basic means to
discretize constrained trajectory optimization problems, and recent algorithmic
developments that allow an efficient treatment by SQP methods are described.
In section 5, we give numerical optimization results and perform a sensitivity
analysis for the KUKA IR 761 robot executing a real life transport maneuver.
Finally, we offer comments on the practicability of the approach in section 6.

2 Dynamic modeling

The dynamic robot model is certainly the most important constituent of an
advanced off-line motion planning system. A good model has to satisfy two
conflicting objectives. It must include enough detail to represent the real be-
havior of the robot with sufficient accuracy, and it should permit an efficient,
stable evaluation not only of the model equations but also of their derivatives
that are needed in optimization. However, the necessary degree of detail may
depend on the actual application and on the required accuracy. Therefore we
suggest a modular, hierarchical model structure which can be adapted to specific
requirements by switching individual components on or off.

In the following we develop such a generic robot model. For each component
we discuss important aspects concerning model accuracy and the optimization
context, and present the specific form for the robot KUKA IR 761/125/150.0.
In most cases the practical model is assessed in the framework of more general
physical considerations to justify simplifications.

4

2.1 General modeling assumptions

In this paper we consider industrial robots with electric drives. The robot links
are assumed to be rigid bodies connected by revolute or prismatic joints with a
single degree of freedom each, forming a multibody system with the topological
structure of a kinematic chain. A tool or load may be mounted on the last link.
The robot is actuated by servo motors through cycloidal or harmonic drives
with large gear ratios (∼ 100).

2.2 Multibody kinematics

The multibody model plays the role of a skeleton in every robot model; it
comprises the global mechanical coupling of the whole system, and requires by
far the largest effort in the numerical evaluation of robot dynamics. We begin
with the kinematic part of the multibody model.

2.2.1 Kinematic chain

We consider the fixed robot base as link 0; the remaining links are numbered 1
through N from base to tip where link k is connected to link k − 1 via joint k.
On each link we choose a reference point Ok with inertial coordinates rk ∈ R

3

and a frame based at Ok with inertial coordinates Rk ∈ SO(3). The fixed base
frame (R0, r0) = (I, 0) will be our global reference frame. Relative orientation
and position (Bk, lk) of frame k with respect to frame k − 1 are given by

Rk = Rk−1Bk, rk = Rk−1lk + rk−1.

A combined representation of the rotational and translational components for
link frames and joint transformations is achieved by 4×4 homogeneous matrices

Ak :=

(
Rk rk
0 1

)
, Tk :=

(
Bk lk
0 1

)
.

The relative orientation of adjacent links is now written Ak = Ak−1Tk, which
by recursion yields the simple matrix product representation Ak = T1 · · ·Tk.

On a moving robot, the joint transformations Tk(θk) and therefore the frames
Ak(θ1, . . . , θk) depend on the joint variables θk and hence on time.

2.2.2 Denavit-Hartenberg representation

The Denavit-Hartenberg representation [15] is commonly used in industry to re-
late a transformation matrix Tk to its scalar joint variable and three more scalar
parameters describing the joint geometry. It requires the following convention
for placement of the link frames:

• The X axes of all frames are aligned in the same direction.

• Revolute joints rotate about their Z axes.

• Prismatic joints travel along their Z axes.

5

joint θ [deg] α [deg] a [m] d [m]

1 0 90 −0.99 0.25
2 −90 0 0 1.15
3 0 −90 0 0
4 0 90 −1.15 0
5 0 90 0 0
6 0 0 0 0

Table 1: Nominal Denavit-Hartenberg parameters of KUKA IR 761

With these conventions we can describe the general joint transformation as
composition of four elementary transformations:

• Rotate an angle θk about the Zk−1 axis.

• Translate a distance dk along the Zk−1 axis.

• Translate a distance ak along the Xk−1 axis.

• Rotate an angle αk about the Xk axis.

The resulting homogeneous transformation matrix is

Tk = Rot(Z, θk)Trans(Z, dk)Trans(X, ak)Rot(X,αk)

=

⎛
⎜⎜⎝

cos θk − sin θk cosαk sin θk sinαk ak cos θk
sin θk cos θk cosαk − cos θk sinαk ak sin θk
0 sinαk cosαk dk
0 0 0 1

⎞
⎟⎟⎠ .

Except for special robot arm constructions, the joint variable is θk in revolute
joints and dk in prismatic joints; the three remaining parameters are constant.
Without loss of generality, we will only address robots with all revolute joints
in the following, such as the KUKA IR 761. Its Denavit-Hartenberg parameters
(with all joints in home position) are given in Table 1.

2.3 Multibody dynamics

In multibody kinematics, the representation of joint transformations by homo-
geneous Denavit-Hartenberg matrices is not only mathematically elegant but
also computationally efficient. In multibody dynamics the situation is more
difficult: we need first and second time derivatives to represent velocities and
accelerations, but matrix derivatives and multiplications, though mathemati-
cally elegant, are computationally inefficient. It is common practice in rigid
body mechanics, however, to use vectors for both linear and angular velocities
and accelerations; this turns out to be a convenient and efficient formulation for
our purpose. In the following we give a brief description of the precise mathe-
matical relation between orientation matrix derivatives and angular velocities.

6

The linear velocity vectors are simply derivatives of the positions, but the
angular velocity vectors are not derivatives of any meaningful physical quan-
tity. Abstractly, the set of orientation matrices SO(3) ⊂ R

3×3 is a compact
3-dimensional C∞-submanifold which has no global 3-parameter representation
without singularities.

Consider a point p fixed on a moving body. Its inertial position and velocity
are p0(t) = r(t) + R(t)p and ṗ0(t) = ṙ(t) + Ṙ(t)p, respectively. The rotation
part can be written

Ṙp = ω0 × (Rp) = (Rω)× (Rp) = R(ω × p),

where ω and ω0 are the angular velocities in the body frame and inertial frame,
respectively. On the other hand, we have ω × p = ω̃p where

ω̃ :=

⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ = −ω̃∗ ∈ A(3)

is an antisymmetric matrix; the corresponding inertial angular velocity matrix is
ω̃0 = Rω̃R∗. (Asterisk superscripts denote transposition throughout the paper.)

The above relations define a sequence of canonical linear isomorphisms be-
tween R

3 and the tangent space of SO(3) at R (the matrix velocity space),

TRSO(3) = RA(3) ∼= A(3) ∼= R
3

∪ ∪ ∪ ∪
Ṙ = Rω̃ ↔ ω̃ ↔ ω

2.3.1 Spatial notation

The isomorphismA(3) ∼= R
3 is now used to combine linear and angular velocities

and accelerations to 6-dimensional spatial vectors. We follow the exposition of
Jain [24] where more details can be found. All the quantities used below are
inertial quantities unless otherwise noted. Let ω and v be the angular and linear
velocity of a rigid body with respect to a point O (not necessarily on the body),
and N and F be the moment and force about and at O. The spatial velocity V ,
spatial acceleration α, and spatial force f are defined as

V (O) :=

(
ω
v

)
, α(O) := V̇ (O), f(O) :=

(
N
F

)
.

The central spatial object is the rigid body transformation operator for two
points Oi and Oj = Oi + l(i, j),

φ(i, j) ≡ φ(l(i, j)) :=

(
I l̃(i, j)
0 I

)
∈ R

6×6 .

Depending on the spatial offset l(i, j) only, φ∗(i, j) relates the spatial velocities
and accelerations at Oi and Oj according to

V (j) = φ∗(i, j)V (i) =

(
ω(i)

v(i) + ω(i)× l(i, j)

)
, α(j) = φ∗(i, j)α(i), (2)

7

while φ(i, j) describes the dual relation of spatial forces,

f(i) = φ(i, j)f(j) =

(
N(j) + l(i, j)× F (j)

F (j)

)
. (3)

Finally we need the spatial inertia of a rigid body at the point O which is given
(in terms of the spatial inertia at the center of mass C) by the symmetric matrix

M(O) := φ(p)M(C)φ∗(p) =
(
J(O) mp̃
mp̃∗ mI

)
, M(C) :=

(
J(C) 0
0 mI

)
.

Here J(O) = J(C) +mp̃∗p̃ is the body’s moment of inertia about O, m is its
mass, and p = l(OC) is the vector from O to C.

2.3.2 Recursive Newton-Euler dynamics

Let us now return to the chain-structured robot. We have to connect the base
and N robot links through N joints. Let βk and Tk denote the scalar joint
velocities and joint torques associated with joint positions θk. The (position-
dependent) geometry of each joint is represented by a 1 × 6 joint matrix H(k)
that describes both the relation between joint torque and spatial force across
the joint, and between joint velocity and relative spatial velocity ΔV (k) across
the joint,

Tk = H(k)f(k), (4)

ΔV (k) = H∗(k)βk. (5)

(Abstractly speaking, H∗(k) is a spatial tangent vector to the one-dimensional
manifold of joint motion.) From base to tip, equations (2) and (5) yield outward
transition equations for the link velocities and accelerations,

V (k) = φ∗(k − 1, k)V (k − 1) +H∗(k)βk,

α(k) = φ∗(k − 1, k)α(k − 1) +H∗(k)β̇k + a(k),

a(k) = φ̇∗(k − 1, k)V (k − 1) + Ḣ∗(k)βk,

(6)

where a(k) is the Coriolis and centrifugal spatial acceleration of Ok. Conversely,
adding (3) to the equations of motion for a single rigid body (see [24]), one gets
inward transition equations for the spatial forces,

f(k) = φ(k, k + 1)f(k + 1) +M(k)α(k) + b(k),

b(k) = Ṁ(k)V (k)− φ̇(p(k))M(k)V (k) + φ(p(k))γ(k),
(7)

where γ(k) is the gravitational spatial force at the center of mass of body k and
b(k) is the sum of gyroscopic and gravitational spatial forces at Ok. Assuming
a fixed robot base and contact-free motion, we have V (0) = 0, α(0) = 0 and
f(N +1) = 0, and (6,7) together with (4) give a complete recursive formulation
of the Newton-Euler dynamics for the multibody chain.

8

In the sequel we are only interested in the relation of joint torques Tk and
accelerations β̇k, so we concentrate on the essential part of the Newton-Euler
recursion which is given here in algorithmic form.

for k = 1(1)N

α(0) = 0 α(k) = φ∗(k − 1, k)α(k − 1) +H∗(k)β̇k + a(k)

for k = N(−1)1

f(N + 1) = 0 f(k) = φ(k, k + 1)f(k + 1) +M(k)α(k) + b(k)

Tk = H(k)f(k)

(8)

For the model extensions discussed below we need two other forms of these
equations. A global reformulation is obtained if we combine the joint quantities
to vectors θ, β, β̇, T ∈ R

N and V, α, f, a, b ∈ R
6N (called “stacked notation”

in [24]). Including the definitions of V, a, b, this yields

V = E∗
φV +H∗β, α = E∗

φα+H∗β̇ + a,

a = Ė∗
φV + Ḣ∗β, f = Eφf +Mα+ b,

b = ṀV − Ėφ(p)MV + Eφ(p)γ, T = Hf,

where H := diag{H(k)}, M := diag{M(k)}, and Eφ(p) := diag{φ(p(k))}. The
recursive structure of (8) is now contained in the global transformation operator

Eφ :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 φ(1, 2)
0 φ(2, 3)

. . .
. . .

0 φ(N − 1, N)
0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Using the matrix φ := (I − Eφ)−1, we arrive at the global spatial representation
of robot dynamics,

α = φ∗(H∗β̇ + a),

f = φ(Mα + b),

T = Hf.

(9)

Upon substitution of α into the f equation,

f = φMφ∗H∗β̇ + φMφ∗a+ φb,

the joint forces T are finally obtained as

T = Mβ̇ +Q (10)

with

M = HφMφ∗H∗ = M∗, Q = Hφ(Mφ∗a+ b).

This is a condensed representation of the robot dynamics in R
N , the state space

representation. It gives a direct description of the well-known linear relation
of joint torques T and joint accelerations β̇, where the positive definite inertia
matrix M and generalized forces Q depend on the robot’s dynamic state (θ, β).

9

2.3.3 Inverse dynamics

The problem of inverse dynamics is the calculation of joint torques Tk for given
joint accelerations β̇k (and given positions and velocities θk, βk). This can be
achieved either by the recursion (8) or through the state space equation (10).

In numerical computations we actually use the recursive formulation since it
is more efficient. For the same reason we represent all physical quantities in link
coordinates (denoted by an index subscript) rather than inertial coordinates
(denoted by an index argument). This simplifies the calculation of ak, bk, Hk

and makes Mk constant; only the transformation operator φ(k−1, k) is replaced
by a slightly more complicated form involving the relative link orientation,

φk :=

(
Bk l̃kBk

0 Bk

)
=

(
I l̃k
0 I

)(
Bk

Bk

)
.

The recursive Newton-Euler equations (8) and consequently (9) and (10) remain
formally unchanged upon substituting these quantities.

For a thourough investigation of recursive dynamics algorithms and a de-
tailed discussion of efficiency considerations we refer the reader to [24] and to
the book by Featherstone [17].

2.3.4 Forward dynamics

The problem of forward dynamics is the calculation of joint accelerations β̇k

for given joint torques Tk (and given positions and velocities θk, βk). This task
occurs in the integration of the robot’s equations of motion and thus in every
nonlinear iteration during optimization. It is more involved than inverse dynam-
ics, requiring the solution of (10) or any equivalent system of linear equations.
We choose a reordering of equations (8) that contains explicitly all the spatial
quantities involved in robot dynamics:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 H1

M1 0 −I φ2

0 0 H2

. . . −I
. . .

MN−1 0 φN

0 0 HN

MN −I

H∗
1 −I

φ∗
2 H∗

2 −I
. . .

φ∗
N H∗

N −I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β̇1

α1

β̇2

...

αN−1

β̇N

αN

f1
f2
...

fN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T1

−b1
T2

...

−bN−1

TN

−bN
−a1
−a2
...

−aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

This form reflects the full recursive structure as well as the symmetric indefinite
(KKT) structure caused by the dual behavior of accelerations and forces. Fur-
thermore, it does not imply how the system is solved, and it leaves open whether

10

d link 1 link 2 link 3 link 4 link 5 link 6

rotor 1

rotor 2

rotor 3 rotor 4

rotor 5 rotor 6

load

�
�
�
�
�
��
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�

�
�b b b b b

Figure 2: Tree topology of KUKA IR 761 with rotors

the robot is modeled in ODE form β̇ = f(θ, β;T) or in index 1 descriptor form
with algebraic variables fk and additional differential variables Vk. Below we
use the ODE form, but for certain applications (such as cooperating robots with
kinematic loops, for instance) a DAE model may be preferable.

According to [17] the most efficient algorithm to solve (11) for up to eight
bodies is the composite rigid body method [60] with complexity O(N3); for more
than eight bodies the O(N) articulated body method (cf. [57, 2, 16]) is faster.
However, the articulated body method turns out to be a special case of our
recursive multistage KKT algorithm [52] which solves similarly structured KKT
systems in the trajectory optimization context, cf. section 4.2. For this purpose
the solver MSKKT is at hand anyway, so we apply it to (11) even though our
robot has only six links.

2.4 Rotor inertia

Commercial industrial robots often have cycloidal or harmonic drives with typ-
ical gear ratios between 50 and 200. Hence, the motors may perform several
thousand rotations per minute which makes rotor inertia a significant factor
in robot dynamics. In the following we consider the rotors as additional rigid
bodies joined with the links on which they are located. Slowly rotating parts of
the gear train (lying behind the drives) are treated as if fixed on their respective
links.

2.4.1 Extended multibody system

By jk we denote the index of the link on which motor k is located. In case of
the robot KUKA IR 761 all motors are placed on one of the first three links,

j1 = j2 = 1, j3 = 2, j4 = j5 = j6 = 3.

The resulting tree-structured system is depicted in Fig. 2.

11

In the extended multibody system the rotor and rotor shaft of motor k are
counted as body and joint N + k, respectively. By θ = (θ0, θ1) ∈ R

2N we
denote now the augmented variable vector consisting of joint variables θ0 ∈ R

N

(previously θ) and new rotor variables θ1 ∈ R
N . The remaining state space

vectors β, β̇, T ∈ R
2N , global spatial vectors V, α, f, a, b ∈ R

12N and block-
diagonal matrices M ∈ R

12N×12N , H ∈ R
2N×12N are partitioned accordingly.

Finally we redefine matrices

Eφ :=

(E0
φ E1

φ

0 0

)
, φ := (I − Eφ)−1 =

(
φ0 φ0E1

φ

I

)
,

where the link-to-link transformation operator E0
φ (previously Eφ) contains the

chain structure, and the rotor-to-link operator E1
φ represents the coupling of

rotors to their respective parent links. In case of the KUKA IR 761, the latter
operator is

E1
φ =

⎛
⎜⎜⎜⎜⎜⎜⎝

φ(1, 7) φ(1, 8) 0 0 0 0
0 φ(2, 9) 0 0 0

0 φ(3, 10) φ(3, 11) φ(3, 12)
0 0 0

0 0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

With these quantities, the global spatial formulation (9) and the condensed state
space formulation (10) of the dynamic equations remain valid for the augmented
system.

For the further analysis we split the state space equation (10) into link and
rotor components,(

T 0

T 1

)
=

(M0 M1∗

M1 Jr

)(
β̇0

β̇1

)
+

(
Q0

Q1

)
, (12)

where Jr = H1M1H1∗ ∈ R
6×6 is the diagonal matrix of rotor inertias, and

M0, Q0 are rather lengthy expressions. However, since the rotors are symmetric
with respect to their axes, the combined inertia M+ of links and rotors and the
gravitational force γ+ at their combined center of mass p+ are independent of
the rotor motion. This leads to simplifications in M0 and Q0, yielding

M0 = H0φ0M+φ0∗H0∗, Q0 = Q+ +H0φ0E1
φ(M

1H1∗)̇β1,

M1 = H1M1E1∗
φ φ0∗H0∗, Q1 = H1(M1E1∗

φ φ0∗a0 +M1a1 + b1),

with

M+ = M0 + E1
φM

1E1∗
φ ,

Q+ = H0φ0(M+φ0∗a0 + b+),

b+ = Ṁ+V 0 − Ėφ(p+)M+V 0 + Eφ(p+)γ+.

12

Equation (12) for the extended multibody system does not include the cou-
pling of rotors and joints through the gear trains; thus it provides a common
framework for different types of connection. In the following we consider the
idealized case of a rigid coupling; elastic joints are discussed in section 2.5 below.

2.4.2 Inelastic joints

When elasticity in the gear trains can be neglected, the coupling between joint
and rotor coordinates θ0, θ1 and between joint and rotor torques T 0, T 1 is given
by

θ1 = N ∗θ0, T 0 = N (μ− T 1) (13)

where μ is the vector of electromagnetic torques and N is the gear ratio matrix.
The matrix N is often non-diagonal since the robot’s hand axes usually interact
through a gear box in the wrist. In case of the robot KUKA IR 761 the gear ratio
matrix has the form

N =

⎛
⎜⎜⎜⎜⎜⎜⎝

n1

n2

n3

n4 n4
5 n4

6

n5 n5
6

n6

⎞
⎟⎟⎟⎟⎟⎟⎠

. (14)

Using (13), all the torques T 0, T 1 and rotor variables θ1 can be eliminated
from (12), yielding

Nμ = [M0 + (NM1 +M1∗N ∗) +NJrN ∗]β̇0 + (Q0 +NQ1).

Thus, we have again a state space equation in the joint variables alone, but with
modified inertia matrix and force vector, and with joint torques replaced by the
(scaled) electromagnetic rotor torques.

2.4.3 Approximation

In the typical case of large gear ratios nk � 1 and comparatively small rotor
inertias ‖M1‖
 ‖M0‖, we can neglect the off-diagonal inertia matrix M1 and
gyroscopic and Coriolis forces of the relative rotor motion. Thus, we obtain the
simplified robot model

Nμ = (M0 +NJrN ∗)β̇0 +Q+ (15)

which is similar to (10) but includes the rotor inertia NJrN ∗ as seen by the
motors, and the spatial inertia of the rotors as parts of their respective host
links. The equivalent modification of (9) is

α0 = φ0∗(H0∗β̇0 + a0),

f0 = φ0(M+α0 + b+),

Nμ = H0f0 +NJrN ∗β̇0.

13

The extra term NJrN ∗ does not pose any difficulties in the recursive cal-
culation of inverse dynamics. In forward dynamics the situation is again more
involved. Diagonal entries nk in N create a nonzero mass matrix entry n2

kJrk
immediately preceding Mk on the diagonal in (11), but off-diagonal entries in N
create nonzero entries outside the diagonal blocks, thus destroying the recursive
structure. One can always eliminate the extra coupling by dummy variables,
and, fortunately, only three scalar variables are needed for typical industrial
robots having a gear ratio matrix like (14). This restores the structure, so we
can still apply a recursive algorithm in forward dynamics.

2.5 Joint elasticity

Since harmonic and cycloidal drives exhibit vibration, compliant behavior in the
gear trains should also be considered in the overall dynamic model of the robot.

2.5.1 Elasticity model

The coupled equations of motion for a robot with flexible joints are given as

M0β̇0 +M1∗β̇1 = −NTc(Δθ)−Q0,

M1β̇0 + Jrβ̇
1 = μ+ Tc(Δθ) −Q1,

(16)

where the vector of drive stiffness torques Tc depends on the torsion angles
Δθ := N ∗θ0 − θ1. Using the approximate model of rotor inertia, (16) simplifies
to

M0β̇0 = −NTc(Δθ) −Q+,

Jrβ̇
1 = μ+ Tc(Δθ).

(17)

These equations or (16) have to be complemented by an elasticity model Tc(Δθ).
Linear models for flexible robot joints are very well studied in the literature (for
references see [14], e.g.), but real harmonic and cycloidal drives exhibit nonlinear
compliant behavior caused by complex deformations of the gear teeth. Some
authors approximate experimental measurements of the stiffness curve by a
cubic function

Tc,k(Δθk) = K1kΔθk +K2kΔθ3k

with constant coefficients Kik [58, 21]. Alternatively, as in [13], approximations
by piece-wise linear funtions are typically given in the technical specifications
provided by drive manufacturers. We wish to use the technical data, but prefer
smooth functions to avoid unnecessary monitoring of discontinuities. Therefore
we fit a simple analytical function to the two or three linear segments (or to the
measured data if available). As an example, consider segment i of a piece-wise
linear model T 0

c approximating the compliance function Tc,k of drive k,

T 0
c,i(Δθ) = ki(Δθ − αi) + Ti, T1 = 0, α1 = 0, i = 1, 2, 3. (18)

14

0

0.02

0.04

0.06

0.08

0 2 4 6 8 10

T
o
rs
io
n
a
n
g
le

[d
eg
]

Drive input torque [Nm]

T2 T3

k1

k2

k3

α2

α3

Figure 3: Torsion stiffness of the harmonic drive HDUR-50

Here the slopes ki and segment-delimiting torques Ti are experimental data,
and the angles αi are obtained as

α2 = T2/k2, α3 = α2 + (T3 − T2)/k2.

Our smooth model function used in this example is given by

T 1
c (Δθ) = c1Δθ + sign(Δθ)c2[(1 + c3|Δθ|p)1/p − 1], (19)

where p > 1 and

c1 = k1, c2 = k3α3 − T3, c3 = [(k3 − k1)/c2]
p.

For Δθ
 α2 or Δθ � α3 the smooth function T 1
c approaches the piece-wise

linear model asymptotically with |T 1
c | ≥ |T 0

c |. The difference |T 1
c −T 0

c | decreases
(for all angles) if p is increased. Fig. 3 shows the piece-wise linear approximation
(solid line) and our smooth fit with p = 3 (dotted line) for one of the harmonic
drives on the KUKA IR 761. Obviously the two compliance models are in good
accordance.

2.5.2 Discussion

Optimal trajectories for robots with flexible joints have been numerically inves-
tigated in [37, 38] based on model (17). The results show that the minimum
time control problem has usually multiple local solutions, which are generally
slower than the corresponding optimal maneuver in the rigid joints case. Two
major classes of local solutions can be distinguished. One class is characterized

15

by frequently switching control torques, especially if the control discretization
is comparatively fine. This behavior tends to damp oscillations. Maneuvers in
the second class are usually a bit slower; they have only a few control impulses
that tend to excite oscillations.

Neither behavior is acceptable in practice, and in addition, typical first mode
frequencies of 5–15Hz make the trajectories very sensitive to unavoidable model
inaccuracies. Besides, the different time scales involved in oscillatory distur-
bances versus global joint motion introduce artificial stiffness into the dynamic
equations, thus increasing the effort for numerical integration considerably.

For these reasons we do not include flexibility in the robot model that is
used in the optimization runs below. Instead, we use the flexible model to check
feasibility of the optimal trajectories obtained from the rigid model. Alterna-
tively, one might impose more restrictive smoothness conditions on the control
torques to reduce the high frequency content of optimal solutions for the flexible
model, or one might penalize fast torque changes by adding appropriate terms
to the minimum time objective, thus creating a similar smoothing effect. How-
ever, it is not yet clear how joint flexibility should be treated in robot trajectory
optimization, and additional investigations are being conducted.

2.6 Motor dynamics

Industrial robots are typically powered by electric actuators. In comparison to
hydraulic or pneumatic actuators, electric motors are compact, easy to control,
and do not require additional complex equipment. The adequate dynamic model
for an electric actuator is a linear first order system, see, e.g., [31, 32].

2.6.1 Model of servo motor

The voltage balance and the relation between electromagnetic torque μ and
current I in the armature circuit of a servo motor are given by

U = Lİ +RI +Φβ, (20)

μ = νI, (21)

where L and R are the inductance and resistance of the armature winding, Φ is
its magnetic flux, U the voltage, β the rotor speed, and ν is a constant factor.
For the robot motors these equations have to be combined with (15) for a rigid
drive model or with (16) or (17) for an elastic model. In both cases the voltage U
replaces the torque μ as control input.

If the electromagnetic response time τe = L/R of the servo motor is suffi-
ciently small we can model the limit case L = 0 in (20). The order of the drive
model is then reduced and the expression for the electromagnetic torque has the
form

μ = νI = ν(U − Φβ)/R. (22)

If the voltage limit is large enough, then it does not restrict the permissible
rotor torques and velocities (see next section), and equation (22) enables us

16

ββ0βmax

−β0

μ

μ0

−μ0

μ1
max

μ2
max

�

�

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z

Figure 4: Torque and speed limits for an electric drive

to consider μ as the control input again. In what follows we will assume that
Lk = 0 for all motors of the robot KUKA IR 761.

Note that the results in [34] indicate that motor dynamics should be con-
sidered as part of the robot’s feedback controller anyway. Thus we need not
include it in the optimization problem, cf. section 6.

2.6.2 Torque and speed constraints

The rotor torque and velocity of an electric drive are limited by physical and
technical characteristics of the motor and the reduction gear. Some of the limits
ensure a certain lifetime of the drive under normal operation, others prevent the
motor and gear from destruction. Exceeding the latter ones can cause breaking
of gear teeth or shafts, for instance, or burnout of the armature winding. In [39]
the drive constraints are considered in detail, including the bias of certain limits
due to friction. Here we give an overview of the relevant limits, but friction is
treated separately in section 2.7 below.

The admissible angular velocities and rotor torques for a drive with servo
motor are shown in Fig. 4. Both the motor and the attached gear have a speed
limit |β| ≤ βmax; their minimum corresponds to the dotted vertical lines. For
the rotor torque there are actually three constraints. The smallest of them
restricts a certain “average” torque during a working cycle,

[
1

T

∫ T

0

|μ(t)|p|β(t)| dt
/

βav

]1/p
≤ μ0

max,

17

where p ≈ 3 is an empirical parameter depending on the gear construction, and

βav :=
1

T

∫ T

0

|β(t)| dt

is the average rotor speed. This limit is needed to ensure the specified lifetime
of the gear. For the same reason the absolute torque in acceleration and deceler-
ation phases has a limit μ1

max, the repeated peak torque limit, which in addition
restricts the current in the armature winding to prevent it from burning out.
The admissible area |μ| ≤ μ1

max lies between the dotted horizontal lines in Fig. 4.
Finally, the solid horizontal lines represent limits μ2

max that prevent breaking of
the gear. The breaking limit μ2

max, the momentary peak torque limit, is typically
two to three times as large as μ1

max; it may only be reached for a very short time,
as in emergency stops (or collisions), and only a few times during the gear’s life.

The sloping lines correspond to box constraints on the motor voltage, which
according to (22) result in mixed speed and torque restrictions. In case of the
KUKA IR 761 all drives are designed such that the voltage constraints do not
intersect the area enclosed by the dotted lines, so we use the limits |β| ≤ βmax

and |μ| ≤ μ1
max in the optimization below.

2.7 Friction

Cycloidal and harmonic drives with high gear ratios cause significant reductions
of the effective joint torques due to friction. Experimental measurements indi-
cate that friction in these drives has three components: velocity-independent
friction, velocity-dependent friction, and friction from resonant vibration. If we
neglect the influence on the gear transmission from resonant friction [13], the
total drive friction torque Tf according to the model in [1] is given by

Tf(β, T) =

{
sign(β)κ(β) if β �= 0,

sign(T)min(κ0, |T |) if β = 0,
(23)

where β is the rotor velocity, T is the rotor torque, κ(β) models the velocity
dependence of friction, and κ0 = κ(0).

The complicated nature of friction introduces state-dependent discontinuities
in the dynamic equations, requiring proper numerical treatment by switching
functions. Furthermore, dry friction may cause rank deficiencies in the opti-
mization problem. Numerical investigations of optimal robot trajectories under
the influence of friction have been performed in [61, 20], where a Coulomb fric-
tion model is used, that is, κ(β) ≡ κ0 in (23). More generally, the velocity
dependence of friction may be approximated by a cubic function [56]

κ(β) = κ0 + κ1|β|+ κ3|β|3.
However, the creation of a comprehensive model seems rather complicated. Fric-
tion coefficients are very difficult to measure. In addition, they depend on the
temperature, lubrication and wear-out of gears and hence change with time.

18

link 1

A
A
A
A

A
A
A
A

�
�
�
�

�
�
�
�

i id

d
�

�
�

��

�
�

�
��

HHHHHHHHHHHHHHH

HHHHHHHHHHHHHHH
��

����

��

�
�
�
��

�
�
�
��

HHH
�
�
�
�
�

�
�
�
�
�

link 2

piston

l0
l1 + d(θ2)

θ2

l0l1

Figure 5: Geometry of pneumatic weight compensation system on KUKA IR 761

Therefore we cannot advocate the use of presently available physical friction
models in trajectory optimization. Instead, we employ an empirical model that
is typically used in practice. Each drive is assumed to have a certain efficiency,
so that a reduction of the nominal joint torque by a constant percentage yields
the effective torque

Tk,eff = (1− ck)Tk.

The loss coefficients ck in this equation can be regarded as safety margins for
the motor torques so that the feedback controller can compensate for friction. A
more precise model might take into account that friction actually increases the
effective torque during deceleration phases. Anyway, the sensitivity analysis in
section 5.4.3 shows that the optimal maneuver time in our application example
is only mildly affected by a reduction of torque limits.

2.8 Pneumatic weight compensation

Special robot constructions or certain tools may require dynamic modeling of
additional components that are not covered by the “generic” set described in
previous sections.

In case of the robot KUKA IR 761/125/150.0 which is designed to handle
heavy loads up to 125kg, a passive pneumatic weight compensation system
on axis 2 (the shoulder axis) supports the upper arm motor when the arm is
inclined. This system is placed on the first link; it consists of two lever arms
with a piston (see Fig. 5) from which the pressure is transmitted by oil to a gas
bubble in a pressure container. Its additional torque Tp depends only on the
joint angle θ2; the functional dependence

Tp(θ2) = T0
1

1− q[L(θ2)− (λ− 1)]

sin θ2
L(θ2)

,

19

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

-80 -60 -40 -20 0 20 40 60 80

E
xt

ra
 to

rq
ue

 [N
m

]

Joint angle [deg]

Figure 6: Pneumatic extra torque on the second axis of KUKA IR 761

is plotted in Fig. 6. Here the first factor T0 is a constant torque, the second
factor measures the change of pressure due to deviations from zero position,
and the third factor is purely geometric with L(θ2) =

√
λ2 − 2λ cos θ2 + 1. The

remaining parameters are constant,

T0 = Sp0(l0 + l1), q = Sl0/V0, λ = (l0 + l1)/l0,

where S, p0, V0 denote the effective area of the piston, the adjustable minimal
gas pressure, and the maximal gas volume, respectively.

3 Model calibration

Accurate off-line programming and trajectory optimization methods for robots
require, of course, quantitatively correct dynamic robot models. Model calibra-
tion is the task of adapting a model so that simulation runs reproduce the real
system behavior with sufficient accuracy. This process involves decisions about
the structure of the model, i.e., how certain subsystems should be modeled, and,
given a specific model structure, the estimation of unknown (or inaccurate) pa-
rameters from measurements. In our case the structural decisions are concerned
with subsystem models for the multibody dynamics, elasticity, friction, etc. Pa-
rameters to be estimated include kinematic parameters such as link lengths and
joint locations, and dynamic parameters such as link masses, inertia tensors,
elastic compliances, friction coefficients, etc.

Calibration is not our main subject in this paper; it is an important research
field of its own, so we will not go into too much detail here. However, we will give
some general information on the type of parameter estimation problems that

20

arise in dynamic robot calibration, and indicate how the dynamic measurements
may be performed. For a collection of recent contributions to robot calibration
from both science and industry the reader is referred to [3].

3.1 Parameter estimation

For the parameter estimation we compare measurements yij of a given robot
maneuver with the values yi(x(tj), p) obtained from model-based simulation.
Here tj are the sample times and yi are suitable functions of the joint variables
such as inertial coordinates of reference points on the robot, for instance. The
measurement errors εij = yi(x(tj), p)− yij are assumed to be independent and
normally distributed with median zero and standard deviation σij . Now the pa-
rameter estimation leads to the problem of minimizing the Maximum Likelihood
cost function

‖μ(x(t1), . . . , x(tk), p)‖22 :=
∑
i,j

σ−2
ij [yi(x(tj), p)− yij]

2

subject to

ẋ1(t)− f1(x(t), p) = 0

f2(x(t), p) = 0

r(x(t1), . . . , x(tk), p) = 0 or ≥ 0.

To simplify notation we do not distinguish between measurement times and
times at which boundary conditions are evaluated. The latter include typically
(parameter-dependent) initial conditions, parameter restrictions, and terminal
conditions. If some measurements before and after the maneuver are performed
with much higher accuracy than the measurements obtained during robot mo-
tion, then the results of these measurements at rest should also be formulated
as boundary conditions rather than least-squares conditions.

Suitable algorithms are available for the numerical solution of the notoriously
ill-conditioned parameter estimation problems [7, 8, 43, 45]. The algorithms are
implemented as multiple shooting and collocation codes PARFIT and COLFIT;
an additional multiple shooting variant MULTEX takes advantage of the special
sparse structure of the Jacobian in the important case of multiple experiments.

3.2 Dynamic measurements

Obtaining dynamic data of high speed robot maneuvers is difficult and costly.
In addition to speeds and angles of the motor axes (which are available through
internal sensors on the robot) one needs highly accurate measurements of spatial
link positions and orientations in very short sample intervals. An initial cali-
bration is needed for each individual robot when it is assembled. Furtermore,
(periodic) recalibrations are required due to material ageing or after repairs.
To prevent production losses, these recalibrations should be performed on the
shop floor, and in the ideal case even during the running production process.

21

Therefore the measuring system must not directly interfere with the robot, and
it should be mobile, robust, easy to use, and inexpensive.

Theodolite triangulation methods are successfully used in kinematic robot
calibration systems (see Schröer [44]), and have already been applied in practice
by KUKA. While theodolite triangulation is extremely accurate, it is also very
expensive and too slow for dynamic measurements.

A promising new approach was developed by Hilsebecher and Schletz [23, 42]
who combine a system of at least two CCD cameras with advanced techniques
for image sequence processing to determine the motion of special large area
reference patterns on the robot; these motion data are then used as input for
the parameter estimation. Experiments using a KUKA IR 161/15 show that the
approach works in practice; it can be expected that it will meet all the criteria
listed above after further development.

To further cut down calibration costs, optimal experimental design tech-
niques as developed by Hilf [22], e.g., should be used to specify test trajectories
that give the necessary dynamic data with minimal measuring effort.

4 Trajectory optimization

For real life trajectory optimization problems one needs robust numerical algo-
rithms that can efficiently handle large numbers of variables and restrictions.
In this section we describe a general approach for the discretization of trajec-
tory optimization problems and present two new SQP methods that handle the
resulting sparse structure particularly well.

4.1 Direct BVP discretization

The direct boundary value problem approach to optimal control problem (1)
combines a piece-wise parameterization of the control function on a certain
grid with a piece-wise state representation via collocation or multiple shooting
on a second grid. To avoid technical ballast we assume that these grids are
identical, and restrict ourselves to an autonomous ODE control problem rather
than the DAE control problem of section 1. On the other hand, we emphasize
the presence of inequality restrictions in the trajectory optimization problem
(TOP) because of their practical significance. Simple state and control bounds
are treated separately from general, usually nonlinear path constraints g:

φ(x(T)) = min (24)

ẋ(t)− f(x(t), u(t)) = 0 (25)

g(x(t), u(t)) ∈ [gmin(t), gmax(t)] (26)

x(t) ∈ [xmin(t), xmax(t)] (27)

u(t) ∈ [umin(t), umax(t)] (28)

r1(x(t1)) + · · ·+ rk(x(tk)) = 0 (29)

22

For the discretization of (24–29) we choose a grid Γ: 0 = τ1 < · · · < τm = T
with m ≥ k nodes as a refinement of the grid 0 = t1 < · · · < tk = T on which
boundary and interior point conditions are specified. We denote subintervals by
Ij = (τj , τj+1) and the grid inclusion by σ : ti = τσ(i).

Next, control functions are specified piece-wise via free control parameters uj

and fixed base functions vj with local support, u(t) = vj(t, uj) on Ij . That is,
u is restricted to some finite-dimensional space of admissible controls indepen-
dently on each subinterval. Control jumps are permitted at the nodes τj .

A state discretization by collocation uses polynomials pj of degree κj as
local representations of the trajectory x on Ij . The polynomial pj(t, xj , zj) is
uniquely parameterized by the local initial value xj ≡ pj(τj , xj , zj) and by its
time derivatives zij ≡ ṗj(τ

i
j , xj , zj) at collocation points τ ij = τj + ρij(τj+1 − τj),

where 0 ≤ ρ1j < · · · < ρ
κj

j ≤ 1. Each polynomial pj is required to satisfy the
differential equation at all collocation points, specified by collocation conditions

cij(xj , zj , uj) := zij − f(pj(τ
i
j , xj , zj), vj(τ

i
j , uj)) = 0, i = 1(1)κj, (30)

while global continuity of the piece-wise trajectory representation is ensured
through connection conditions

hj(xj , zj, xj+1) := pj(τj+1, xj , zj)− xj+1 = 0, j = 1(1)m− 1. (31)

In the case of multiple shooting there are no collocation variables and condi-
tions; the connection conditions appear in the same form as above, but zj is
replaced by uj in (31), and pj(t, xj , uj) is a numerical solution of the local ini-
tial value problem xj ≡ pj(τj , xj , uj), ṗj(t, xj , uj) = f(t, pj(t, xj , uj), vj(t, uj))
on Ij , obtained by some suitable integration procedure.

To formulate the discrete control problem we define vectors yj := (xj , zj, uj),
y := (y1, . . . , ym), and the objective function F1(y) := φ(xm). Equality and
inequality constraints are collected as cj := (c1j , . . . , c

κj

j) and

F2(y) :=

⎛
⎜⎝

{cj(yj)}mj=1

{hj(yj , xj+1)}m−1
j=1

r1(x1) + · · ·+ rm(xm)

⎞
⎟⎠ , F3(y) :=

({gj(yj)}mj=1

)
,

where path constraints gj(yj) := g(xj , vj(τj , uj)) are specified at the nodes only,
and rj vanishes unless j = σ(i) for some i ≤ k. The discrete control problem
is now obtained as a large scale nonlinear optimization problem (NLP) in the
general form

F1(y) = min
y

subject to

⎧⎪⎨
⎪⎩

F2(y) = 0

F3(y) ∈ [rl, ru]

y ∈ [bl, bu]

⎫⎪⎬
⎪⎭ . (32)

Here lower and upper ranges rl, ru and bounds bl, bu represent the limits given
by path constraints (26–28); in case of unrestricted components the values ±∞
are formally used.

23

4.2 Structure-exploiting SQP methods

To solve NLP (32) numerically we apply an SQP iteration, yk+1 = yk +αkΔyk,
αk ∈ (0, 1], where each search direction Δyk is obtained as solution of a linear-
quadratic subproblem (QP):

1

2
Δy∗HkΔy + Jk

1Δy = min
Δy

subject to

⎧⎪⎨
⎪⎩

Jk
2Δy + F k

2 = 0

Jk
3Δy + F k

3 ∈ [rl, ru]

Δy + yk ∈ [bl, bu]

⎫⎪⎬
⎪⎭ . (33)

Here F k
i := Fi(y

k) and Jk
i := F ′

i (y
k) are current function and Jacobian values,

respectively, and Hk approximates the Hessian of the Lagrangian.
From the definitions of F1, F2, F3 it is apparent that the QP has a specific

structure which we call m-stage block-sparse [52]: The (exact) Hessian Hk and
Jacobians Jk

2 , J
k
3 are block-diagonal, except for superdiagonal blocks −I and a

full row of blocks in Jk
2 . These off-diagonal blocks are produced by the linearly

coupled connection conditions and boundary conditions hj and rj , respectively;
the remaining component functions φ, cj , gj are all completely separated.

More specifically, one obtains block partitionings Hk = diag(Hk
1 , . . . , H

k
m),

Jk
3 = diag(Qk

1 , . . . , Q
k
m), and

Jk
2 =

⎛
⎜⎜⎜⎜⎜⎝

Gk
1 P

Gk
2 P

. . .
. . .

Gk
m−1 P

Rk
1 Rk

m

⎞
⎟⎟⎟⎟⎟⎠ .

As in yj = (xj , zj , uj), the individual blocks are further subdivided as

Hk
j =

⎛
⎝Hxx

j Hxz
j Hxu

j

Hzx
j Hzz

j Hzu
j

Hux
j Huz

j Huu
j

⎞
⎠ = (Hk

j)
∗, Qk

j =
(
Qx

j 0 Qu
j

)
,

and

Gk
j =

(
Cx

j Cz
j Cu

j

Gx
j Gz

j Gu
j

)
, P =

(
0 0 0
−I 0 0

)
, Rk

j =
(
Rx

j 0 0
)
.

All Cj blocks and all derivatives with respect to zj are absent in the multiple
shooting case, whereas Gx

j = I and Gu
j = 0 in collocation.

Due to the bound and range constraints one cannot solve QP (33) directly.
Instead, either an active set strategy (ASS) or an interior point method (IPM)
perform a minor iteration treating the inequalities. Both alternatives lead to a
sequence of linear, symmetric indefinite equation systems of the form(

Hkl (Jkl
2)∗

Jkl
2

)(
Δykl

−Δλkl

)
=

(
Jkl
1 + (Jkl

2)∗λkl

F kl
2

)
,

24

each of which represents the Karush-Kuhn-Tucker (KKT) optimality conditions
for a purely equality-constrained QP. Moreover, the structure of Hk, Jk

2 is
preserved in the modified matrices Hkl, Jkl

2 for both approaches, yielding m-
stage block-sparse KKT systems. (Details are given in [52].)

As we have seen, the QP (and KKT system) structure results from second-
order decoupling of all component functions of F1, F2, F3. While this decoupling
property is natural for boundary conditions of trajectory optimization problems
and for connection conditions in multiple shooting, it is an extra requirement
in collocation. Here the connection conditions are often combined with collo-
cation conditions in certain Hermite-Lobatto schemes, cf. [19, 4, 59]. Although
such a formulation reduces the number of NLP variables, the resulting non-
linear coupling across stages destroys the m-stage block-sparse QP structure
and, even worse, deteriorates the SQP convergence as compared to our separate
formulation (30, 31), cf. [48, Sec. 2.1.3].

Once given, the multistage structure can be exploited on several levels.
First of all, it obviously permits independent computation (even in parallel)
and memory-efficient storage of function values, gradients, and Hessian blocks.
Next, one can efficiently approximate the Hessian by high-rank block updates.
We use rank-2 BFGS type updates for each individual block, yielding a global
rank-2m update. This leads to local one-step superlinear convergence of the
SQP method, with an asymptotic convergence rate that depends only mildly on
the grid size. Finally, specially tailored algorithms can make use of the block
structure in linear algebra calculations for QP and KKT systems solution.

In the following section we will describe an extremely efficient algorithm that
was specifically developed for solving multistage optimization problems: the
recursive multistage SQP method. This approach combines all the techniques
of structure exploitation mentioned above. Its performance is demonstrated in
the numerical computations below. We also outline the partially reduced SQP
method which provides another efficient approach to structure exploitation that
is suitable for trajectory optimization.

4.2.1 Recursive multistage SQP method

The recursive multistage SQP approach developed in [51, 52] is based on a
general decoupling strategy for the numerical treatment of difficult nonlinear
problems. Our principal goal in setting up the discrete problem is a reduction
of nonlinear coupling rather than finding a compact formulation with as few
variables as possible. Although the resulting discrete problem will usually be
much larger, it also receives a clearer structure that can be exploited in the
linearized system. Furthermore, the decoupling enlarges the domain of conver-
gence for the nonlinear iteration, thus making it more robost—and even more
efficient except for easy problems.

On the TOP level the nonlinear decoupling is achieved through the direct
BVP approach as described above. A “compact” discretization might combine
the direct control parameterization with single shooting instead, or apply the
previously mentioned Hermite-Lobatto collocation scheme.

25

On the NLP level we introduce slacks s = (sl, su, tl, tu) to reformulate bound
and range inequalities y ∈ [bl, bu], F3(y) ∈ [rl, ru] as equality constraints and
simple nonnegativity constraints

F̂3(y)− s = 0, s ≥ 0,

where

F̂3(y) =

⎛
⎜⎜⎝

F3(y)− rl
ru − F3(y)
y − bl
bu − y

⎞
⎟⎟⎠ .

Although this is a standard transformation in linear programming, the refor-
mulation has important consequences in our nonlinear context. The symmetric,
independent treatment of lower and upper bounds and ranges achieves a nonlin-
ear decoupling in accordance with our general strategy. Furthermore, it makes
the SQP method an infeasible point method: yk need not satisfy the bound and
range restrictions before the final iteration. Hence a suitable initial estimate y0

is found more easily and, in particular, one can expect fast convergence from a
coarse grid solution even if it violates some inequality restrictions after a grid
refinement. The efficiency of the SQP method is further increased by the use of
an interior point QP solver. In contrast to active set strategies, the interior point
approach enables an adaptive accuracy control for the increments (Δyk,Δsk),
which saves considerable effort in early SQP iterations.

On the QP level we also introduce slack variables explicitly. Dropping the
iteration index k, this yields

Ĵ3Δy + F̂3 − s = 0, s ≥ 0

instead of the bound and range restrictions. (Since s appears linearly in the NLP,
we do not linearize with respect to the slacks, and the increment is obtained as
Δsk = s− sk from the QP solution s.) The decoupling via slack variables has
the same positive effects as on the NLP level. In particular, efficient QP solution
by a robust primal-dual infeasible interior point method is greatly enhanced by
a natural warm start strategy in the SQP context: the initial estimate for the
SQP increment is simply Δy0 = 0, and QP slacks and dual variables are started
with the respective NLP variables of the previous SQP iteration. Together with
a precise accuracy control via duality theory this leads to rapid convergence of
the interior point method as demonstrated below.

On the KKT level, finally, we employ a highly efficient linear indefinite solver
which is specifically tailored to the multistage block-sparse structure. Based on
the theory of Dynamic Programming, this algorithm generates a symmetric
factorization of the KKT matrix using a fixed block elimination scheme. In a
backward recursion, the factorization alternates local hierarchical projections
with minimizations over the remaining local degrees of freedom in each stage.
This yields a true projected Hessian method in the absence of coupled multipoint

26

boundary conditions. Including additional backward and forward recursions for
the right hand side, the solver achieves optimal complexity O(m) on the m-
stage KKT system. Besides its efficiency the algorithm offers two important
advantages compared to general sparse solvers. First, there is no need for an
(expensive) structure analysis, and the fill-in is exactly known a priori. Second,
in case of a rank deficiency in the KKT system, the defect is exactly located
and permits a control-theoretical interpretation on all higher levels. This allows
to detect modeling errors, for instance. The multistage KKT algorithm can
be used within both active set and interior point QP solvers, and due to its
linear complexity it is particularly suited for very fine discretizations. Finally
we would like to recall from section 2.3.4 that our code MSKKT is also used to
solve the 6-stage KKT system (11) occurring in the forward dynamics problem
for the robot KUKA IR 761, i.e., in each evaluation of the right hand side of the
robot ODE.

The whole method is implemented in the multistage trajectory optimization
package MSTOP consisting of four structure-specific modules and two generic
ones. The core module MSKKT supplies the multistage KKT solver and a set
of utility operations for the multistage structure. MSIPM and MSSQP on the
next two levels implement the nested nonlinear iterations based on generic inte-
rior point and SQP modules GENIPM and GENSQP, respectively, and MSTOP
finally handles the direct BVP discretization including function and gradient
evaluation. The two top levels have recently been implemented, and first com-
putational results with the complete package are reported in section 5 below for
the press connection maneuver. Details of the KKT and IPM algorithms and
benchmark tests for MSKKT are described in [52], and computational results
for MSIPM can be found in [53].

4.2.2 Partially reduced SQP method

The partially reduced SQP approach developed by Schulz [48] is designed for
an efficient treatment of problems where dependent and independent NLP vari-
ables can be distinguished, y = (yd, yi) ∈ R

nd+ni . That is, a certain subset
c(yd, yi) of the equality constraints F2 has a full rank partial derivative ∂c/∂yd
so that yd is implicitly or explicitly given as a nonlinear function of yi. (In
NLP (32), e.g., this is true for the collocation variables and conditions.) The
basic idea is to view the problem as depending on independent variables yi only,
but instead of computing yd in each SQP step by a full nonlinear iteration,
only one Newton step is performed. The approach may reduce the problem size
substantially; only a reduced Hessian and gradient of dimension ni are needed
in the QP subproblems. This makes the partially reduced SQP method fast
and storage-efficient; it is particularly well-suited for very large control prob-
lems with a comparatively small number of control (and other independent)
variables, such as typical PDE control problems for instance. In contrast to
the older fully reduced approach which reduces the problem with respect to all
NLP constraints (including active inequalities!), the partially reduced approach
permits a convenient and robust treatment of inequalities.

27

press 1
(bottom)

press 1
(top)

press 2
(bottom)

press 2
(top)

inward move

reference path

(1)

(2)
(3)

(4)

(5)

outward move

r

rr

r r

r

r

r

r

r

r

rr

r r

rr

r

r

r

r

r

r

r

rr

r r

bbbb b
b b b

b b b b b
b

b b b b b
b

b
b b b b b b b b bbbb

bbb b b
b b

b b
b
b
b b b b b b b b b b b

b b
b b

b b b bbbb

�
�

�

�

�

�

�

Figure 7: Front view of the press connection workcell (not to scale)

A partially reduced SQP method based on a collocation discretization is
available in the trajectory optimization code OCPRSQP [48]. This implementa-
tion selects initial states x1 and all control variables uj as independent variables;
the remaining states and all collocation variables are implicitly eliminated via
connection and collocation conditions. The elimination leads to dense QP sub-
problems which are treated by the active set solver E04NAF from the commercial
NAG Fortran library. Alternatively, state variables and continuity conditions
could be left in the problem to preserve the m-stage block-sparse structure, and
MSIPM could be used as QP solver.

The code OCPRSQP has been applied successfully to various robot optimiza-
tion problems including trajectory optimization for satellite mounted robots
[48, 46, 47, 35, 38]; results for the press connection are reported in [11].

5 Computational results

5.1 A real life transport maneuver

In the following we will consider a typical time-critical transport maneuver as an
application example. At Mercedes-Benz, car body parts such as doors are made
on production lines consisting of ten to a dozen hydraulic presses. Raw metal
sheets are fed into the line and pressed at every station until they receive their
final shape. The transport of partially processed sheets between the presses is
accomplished by robots. Since the distance between presses is approximately
7 meters, each robot is equipped with an arm extension on which a pneumatic
gripper is mounted. We refer to the transport maneuver as press connection; its
cycle time depends on the type of object being transported and varies around

28

press 1 (front)

press 1 (rear)

press 2 (front)

press 2 (rear)

robot
base

inward move

reference path

outward move

r

rr

r r

r

r

rr

r r

r rr

r

r

r r

rr

r

r

r r

rr

bbbb b
b bbbbbbb b b
b b b b b b b

b
b
b

b b b b
b
b
b
b b

b b b b b bbbb��

�
� �

��

Figure 8: Top view of the press connection workcell (not to scale)

6–7 seconds including the unloaded return trip. During several years great effort
has been spent on gradually increasing the throughput of these production lines,
but further improvements of productivity are still desired. Therefore Mercedes-
Benz has a great interest in mathematical optimization methods as a means to
reduce the cycle time of the press connection to a minimum.

5.2 Model of the transport maneuver

In this industry project we use the commercial Computer-Aided Production
Engineering (CAPE) system ROBCAD which provides direct user access to the
internal database through its Application Programming Interface. A ROBCAD
model of the press connection is supplied by KUKA. This model includes the
geometry and kinematics of a workcell containing two presses and the robot.
Figures 7 and 8 show a vertical and a horizontal cross section of the workcell,
where the distance between presses is scaled down in both cases. The ROBCAD
model also includes a reference path consisting of five segments (see Fig. 7):
(1) raising the load in the left press, (2) leaving the press, (3) transport to
the right press, (4) entering the press, (5) lowering the load. (Note that the
third segment is actually divided into two subsections.) The reference path
is roughly specified by a small number of locations (marked by stars), each
defining a position and orientation for the gripper or, more precisely, for the
TCP frame. These locations are “interpolated” by a programmable trajectory
generator according to the settings of certain motion parameters which influence
the resulting shape and velocity profile of the tool center point’s trajectory. One
possibility is a simple linear connection of the reference locations as shown in
the figures.

29

joint θmin [deg] θmax [deg] βmax [deg/s] Tmax [Nm]

1 −160 160 95 12860
2 −55 75 95 12860
3 −105 55 95 9507
4 −305 305 150 3683
5 −120 120 126 4376
6 −350 350 214 1547

Table 2: Limits on joint angles, speeds and torques for KUKA IR 761

Actually the maneuver is not unique: there are two possible ways of moving
the load from the left press to the right press (see Fig. 8). In the first case,
joint 6 turns in the negative direction and the load passes under the arm of the
robot and close to its base. The reference trajectory is of this type which we
call an inward move. In the second case, joint 6 turns in the positive direction
and the load travels far from the robot base. We call this an outward move.
Optimal solutions of both types must be computed to find the fastest maneuver
by direct comparison.

So far we consider in our optimization only the roughly horizontal press-to-
press motion consisting of segments 2–4; its duration in the ROBCAD simulation
is 2.06 seconds. On the vertical segments 1 and 5, which take about 0.55 seconds
each, collisions are very likely since the load leaves or approaches its mounting
inside one of the presses. Collision avoidance in these zones requires either
straight, almost vertical TCP movement as on the reference path, or precise
geometric data plus information on locally required safety margins; therefore
we defer optimization of the complete maneuver until later.

Collision avoidance on segments 2–4 is achieved as follows. We specify a
feasible region for the tool center point, and restrict the gripper orientation
inside the presses by tight joint angle limits on the hand axes. Furthermore,
when the load passes the robot during the outward move, a tighter joint angle
limit on one hand axis prevents a part of the arm extension from hitting the
robot arm. As shown by the fine dotted lines in Fig. 8, the horizontal TCP limits
leave a curved area reaching from press to press around the robot (so that a
safety distance of at least 10 cm between load and robot base is maintained),
while the vertical limits shown in Fig. 7 leave narrow tunnels inside the presses
and an upwardly open feasible region outside.

In addition to these task-specific geometric restrictions, the standard box
constraints given in Table 2 have to be imposed on joint angles, velocities, and
torques. The robot model is the one presented in section 2; it includes the
multibody dynamics of the six links and the gripper with load, rotor inertias
as seen by the motors, the pneumatic weight compensation on the second axis,
and friction loss coefficients supplied by KUKA.

30

grid solution optimal iterations CPU time [s] motion
size accuracy time SQP IPM total IPM type

20 10−3 1.767 10 81 62.1 5.09 inward
32 10−3 1.770 10 90 100.6 8.69 inward
40 10−3 1.767 13 121 165.9 14.47 inward

20 10−4 1.7656 17 140 106.2 8.57 inward
32 10−4 1.7639 21 196 214.7 19.17 inward
40 10−4 1.7634 24 227 307.7 27.74 inward

20 10−3 1.768 11 102 68.9 6.37 outward
32 10−3 1.769 12 115 120.3 11.09 outward
40 10−3 1.768 14 155 179.4 18.70 outward

20 10−4 1.7650 20 197 125.8 11.81 outward
32 10−4 1.7630 31 299 311.6 28.77 outward
40 10−4 1.7636 28 296 357.9 35.93 outward

Table 3: Optimization results for the press connection

5.3 Optimizing the transport maneuver

Numerical optimization runs are performed according to the recursive multistage
SQP approach using the multistage trajectory optimization package MSTOP.
For the press connection maneuver we parameterize the control by piecewise
constant functions on a uniform grid which is also used for the multiple shooting
discretization. One step of the classical order four Runge-Kutta method is
performed on each interval. Our control variables are the joint torques; the state
variables are joint angles, joint velocities, and the unknown maneuver time T
as a parameter. Both the inward move and the outward move are optimized
with termination accuracies ranging from 10−3 to 10−6 and on different grids
consisting of 20, 32, and 40 intervals. The discretization yields optimization
problems with up to 853 variables, 624 equality constraints and 1598 inequality
constraints, leaving up to 229 degrees of freedom. A (discrete) initial trajectory
for the SQP iteration is generated by linear interpolation of initial and final
positions in joint space, with a constant rate of acceleration during the first half
of the maneuver and constant deceleration afterwards, resulting in a triangular
velocity profile. The maneuver time is determined such that the torque limits
are satisfied, but joint speed limits and geometric constraints may be violated.
Numerical computations are performed on an Iris Indigo workstation with a
100MHz R4000/R4010 processor reaching about 10MFlops; more recent models
are typically between two and five times as fast.

The optimization results for accuracies of three and four digits are listed in
Table 3. Here the SQP iteration count is actually the number of QP subproblems
solved: since the termination criterion needs a search direction to decide whether
the current iterate is acceptable or not, at least one QP solution is always
required, and no step is performed in the final SQP “iteration”.

31

-250
-200
-150
-100
-50

0
50

100
150
200
250

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Jo
in

t v
el

oc
ity

 [d
eg

/s
ec

]

Time [sec]

Joint 1
Joint 2
Joint 3
Joint 4
Joint 5
Joint 6

Figure 9: Optimal velocity profiles for outward move

Obviously, the inward move and outward move can be performed with com-
parable speed, both taking slightly less than 1.77 seconds. Hence the engineer
may choose according to other criteria, such as sensitivity with respect to dis-
turbances, safety considerations, or stress on the robot joints. Compared to the
reference solution one gains 0.29 seconds in both cases, or 14% on the (opti-
mized) horizontal part of the maneuver and 9% in the complete maneuver.

We observe that for all different grids and accuracies the values of the opti-
mal transport time are very close together: they differ by at most 0.01 seconds.
This remains true if we include the higher accuracy results; optimal values for
the inward move range between 1.760 and 1.770 seconds, while values for the
outward move range only between 1.762 and 1.769 seconds. These data indicate
that near-optimal solutions can already be obtained on relatively coarse grids
with low accuracy. In view of the practical application, we consider a discretiza-
tion on about 20 intervals and an accuracy of two or three digits as appropriate
for CAD based motion planning of maneuvers like the press connection, espe-
cially so since the computation time for a collision-free minimum time trajectory
is rather low with only 1 to 1.5 minutes. If necessary, the final off-line optimiza-
tion before down-loading the trajectory may still be performed on a finer grid
and with higher accuracy, taking significantly less than 10 minutes for all cases
considered above.

Table 3 also shows the good convergence behavior of our method on this
problem class. All instances are solved after a relatively small number of SQP
iterations: 10 to 14 iterations for three digits, and 17 to 31 iterations for four
digits. Furthermore, the average number of interior iterations per SQP iteration
is almost constant as a consequence of the warm start strategy. For finer grids
and higher accuracies we observe a slight increase, but the average number varies
between 8.1 and 11.1 only.

Examination of relative computation times reveals that the time spent on
QP solution by the interior point method is never more than 10% of the total

32

time. The remaining time less at most 0.3% is in all cases consumed by func-
tion and gradient generation for setting up the QP and during the line search,
i.e., in evaluating and differentiating the robot’s forward dynamics equations.
The constant percentage of the two times results from the fact that SQP step
reductions are very rare, so the line search needs only one function evaluation
to accept the (full) step. The small percentage for the interior point method
demonstrates the efficiency of the multistage SQP approach: about 90% of com-
putation time is actually spent to set up the problem, and only 10% is needed
for its solution. We expect that this high ratio can be reduced considerably if
the differentiation of forward dynamics is implemented more efficiently, but this
will only cut down the total effort.

In the following we take a closer look at the optimal solutions on 32 intervals
with an accuracy of 10−4. Vertical and horizontal projections of the trajectories
for both the inward move and the outward move are included in Figs. 7 and 8;
Fig. 9 shows the time histories of optimal joint velocities for the outward move.
We observe that the tunnel constraints inside the presses are active in both
cases, the lower TCP limit between presses is reached during the outward move,
and the rear TCP limit near the robot base is touched during the inward move.
The front TCP limit does not restrict the motion in any case.

To conclude this section, we note that the shape of optimal trajectories varies
significantly among different optimization runs, even for the same maneuver type
and even if optimal times agree. Althought all solutions exhibit a “swinging”
motion (which is a universal characteristic feature of optimal PTP trajectories),
their shape is almost undetermined between the presses, especially in the vertical
direction. Moreover, we note that for both maneuver types and without any
regularity the lower TCP limit is active in some cases and inactive in others.
Thus, the geometric constraints merely keep the TCP inside the feasible region,
but they do not reduce its freedom of motion very much. This suggests that
other restrictions may have a more significant influence in the optimization, and
indeed we see in Fig. 9 that the joint speed limits of Table 2 are active during
large portions of the maneuver. Every limit is reached at least once and remains
active on a nondegenerate interval, except for joint four. Similar observations
apply to the inward move.

5.4 Sensitivity analysis

In the previous section we suspected that different types of constraints do not
have the same influence on possible reductions of the maneuver time. To clarify
this, we perform a sensitivity analysis with respect to some of the restrictions,
namely the joint speed limit on the first axis, the geometric constraints, and the
maximal joint torques.

5.4.1 Joint speed limits

Velocity restrictions are apparently active during large portions of the maneuver.
In particular, the base joint 1 which has to travel by far the greatest distance in

33

1.5

1.6

1.7

1.8

1.9

2

90 95 100 105 110 115 120 125
T

im
e

[s
ec

]

Scaling of speed limit [%]

Inward move
Outward move

Figure 10: Optimal maneuver time vs. speed limit on first joint

the outward move, is at its speed limit for about 70% of the maneuver time. In
this period it rotates by 125 degrees (or 87%) of the total 144 degrees. These
observations suggest that the first joint speed might actually be the limiting
factor in the optimization.

Figure 10 shows the optimal maneuver times for the inward move and the
outward move if the first speed limit is varied between 90% and 125% of its
nominal value. These data confirm our assumption. For both maneuver types,
the final time drops considerably if the first speed limit is increased. However,
in case of the inward move no improvement can be achieved if joint 1 is allowed
to rotate at more than 110% of its nominal speed. At this point the velocity
bound on joint 6 becomes the limiting factor in the optimization.

5.4.2 Geometric constraints

For the geometric restrictions we compare only two cases: the constrained ma-
neuver described above, and the completely unconstrained maneuver. The un-
constrained optimal times are 1.7591 seconds (vs. 1.7639) for the inward move,
and 1.7559 seconds (vs. 1.7630) for the outward move. In other words, colli-
sion avoidance increases the optimal maneuver times by only 0.3% and 0.4%!
This dramatically demonstrates the ambivalent role of geometric constraints:
although they are essential in practice and difficult to handle in the optimiza-
tion, their influence on the final time can be completely negligible—as in the
case of this press connection maneuver.

5.4.3 Maximal motor torques

Finally we investigate the influence of joint torque limits on the maneuver time.
All the limits are multiplied by a common factor in the range from 0.9 to 1.25;
the resulting maneuver times are shown in Fig. 11. We see that the influence
is not negligible but far smaller than the influence of the first joint speed limit.
Even if the maximal torques are all increased to 125% of their nominal values,

34

1.5

1.6

1.7

1.8

1.9

2

90 95 100 105 110 115 120 125
T

im
e

[s
ec

]

Scaling of torque limits [%]

Inward move
Outward move

Figure 11: Optimal maneuver time vs. maximal torques

the optimal maneuver times drop only to 1.7132 seconds (or 97.1%) for the
inward move, and to 1.7143 seconds (or 97.2%) for the outward move. Hence,
reducing the torque limits does not much degrade performance. This justifies
the introduction of safety margins to compensate for friction and possibly other
disturbances that cannot be included in the model with sufficient accuracy.

6 Practical considerations

In view of a practical implementation of optimal trajectories in current robot
hardware, we note that the results above are idealized in several ways, even if
a detailed, calibrated robot model is used. Some of the issues that must be
addressed are:

1) The need for feedback: It is necessary that there be feedback control
operating that can correct for off nominal situations, for example to account for
inaccuracies in the dynamic robot model. Ideally, the feedback would be optimal
with respect to any disturbed state, at least in a linearized sense as developed
in [9, 33]. Practically, one must make use of the feedback controllers in the robot
hardware, since anything else would require substantial hardware modifications,
and severely limit the applications of the approach. Of course, it is important to
use reduced torque limits in the optimization, as we did by introducing friction
loss coefficients. Then there is a margin for use of the feedback controller to
make corrective action without exceeding the torque limits.

2) Vibrations: As already discussed in section 2.5, vibrations from joint
flexibility can not yet be handled satisfactorily, and further research is being
conducted on various possible approaches.

3) Wearout and lifetime: Time optimal control is aggressive, asking at least
some actuators to work as hard as they can. Some of the restrictions discussed
in section 2.6.2 protect the motors and gears against premature wearout, but
in certain situations it may be important to include additional constraints, or
choose a different cost function, to ensure a desired lifetime of other components.

35

4) Getting the feedback controller to produce the optimal torque input: The
time optimal control problem as stated above develops an optimal torque his-
tory u(t), but the hardware only allows to give position commands θc(t) to the
feedback controllers for each joint. In [34] this issue is addressed in detail; here
we give a brief summary of the results. If we simply give the optimal trajectory
as the command, then a typical controller will always be behind in executing
the trajectory, and hence, take longer to complete the maneuver. The problem
is that the control law of the feedback controller uses its own logic to decide how
much torque to apply, and in such controllers that are essentially proportional
control with rate feedback, one does not get a large torque unless there is a large
error. In addition, the rate feedback can retard sudden large changes in output.
Hence, we must be smarter, and find a way to make the feedback controller
generate the torque history we want. This requires that we back calculate the
command that one would have to give the controller in order that it produce the
desired torque output. It is natural in this context to include the motor dynam-
ics in the model of the feedback controller, since the motor’s back emf acts as a
feedback loop. Now, back calculation involves the inversion of a certain transfer
function G(s) associated with the controller, and the numbers n and m of the
poles and zeros of G(s) and the smoothness level of the torque history u(t) de-
termine whether this is possible or not. Assuming that we require a continuous
command, θc ∈ C0, the main result of [34] tells us that we must have u ∈ Cn−m.
If we ask only for a piece-wise continuous command with possible jumps at the
grid points, θc ∈ C−1, we must have u ∈ Cn−m−1. These conditions can always
be satisfied by choosing an appropriate class of admissible control functions for
the trajectory optimization. For instance, in the typical cases n−m−1 ∈ {0, 1}
one may use continuous functions with piece-wise constant slopes, or piece-wise
quadratic functions with matching values and slopes at the grid points. If the
time constants of all servo motors are negligible, then the necessary smoothness
level is reduced by one and we may even be able to back calculate the command
from the piece-wise constant parameterization of the optimal torque that was
chosen above.

7 Conclusions

We have discussed the issue of dynamic robot modeling in the optimization
context, and presented the specific components of a modular, generic model for
the commercial robot KUKA IR 761. Using the nominal technical robot data,
the model is sufficiently accurate and detailed to conduct realistic studies of
off-line motion planning and trajectory optimization. For actual application in
the production process, of course, a dynamic calibration will be required, and
additional modeling work may become necessary.

We have further described recent numerical algorithms for the robust and
efficient treatment of large optimization problems with many inequality con-
straints. Computational results for the new multistage trajectory optimization
package MSTOP document that it performs excellently in point-to-point robot

36

trajectory optimization. Fast optimization codes are thus available; it remains
to make them accessible in the engineer’s working environment and simplify
their application by integrating the numerical software in a CAD system. To be
specific, CAD based tools for the formulation of geometric constraints have to
be developed, so that subroutines for the evaluation of task-specific restrictions
and their derivatives can be generated automatically.

Finally, we have demonstrated in our example problem that collision-free
high speed trajectories can be computed automatically. Although the time
savings of nine percent may not appear very large, they represent a significant
improvement by industrial standards. One must keep in mind that the press
connection is a time critical maneuver that runs already very efficiently, so even
a five percent reduction in time and hence cost would be considered a substantial
gain in the production process.

8 Acknowledgements

This work was supported by the federal ministery of education, science, research
and technology (BMBF) under grant 03-BO7HEI-6/3.0M750. G. V. Kostin
was also supported by the Alexander von Humboldt Foundation. The authors
would further like to thank their industry partners KUKA GmbH, Augsburg,
and Tecnomatix GmbH, Dietzenbach, for providing technical robot and problem
data and the CAPE system ROBCAD, respectively, and for numerous valuable
discussions.

References

[1] L. D. Akulenko, S. K. Kaushinis, and G. V. Kostin. Influence of the dry
friction upon controlled motion of electromechanical systems. Comp. and
Syst. Sci. Int., (1), 1994.

[2] W. W. Armstrong. Recursive solution to the equations of motion of an
n link manipulator. In Proc. 5th World Congr. Theory of Machines and
Mechanisms, volume 2, pages 1343–1346, Montreal, July 1979.

[3] R. Bernhardt and S. L. Albright, editors. Robot Calibration. Chapman &
Hall, 1993.

[4] J. T. Betts and W. P. Huffman. Path constrained trajectory optimiza-
tion using sparse sequential quadratic programming. AIAA J. Guidance,
16(1):59–68, 1993.

[5] J. E. Bobrow. Optimal Control of Robotic Manipulators. Ph. D. disserta-
tion, University of California, Los Angeles, 1982.

[6] J. E. Bobrow, S. Dubowsky, and J. S. Gibson. Time-optimal control of
robotic manipulators along specified paths. Int. J. Robotics Research,
4(3):3–17, 1985.

37

[7] H. G. Bock. Recent advances in parameteridentification techniques for
O.D.E. In P. Deuflhard and E. Hairer, editors, Numerical Treatment of In-
verse Problems in Differential and Integral Equations, volume 2 of Progress
in Scientific Computing. Birkhäuser Verlag, Basel, Switzerland, 1983.

[8] H. G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in
Systemen nichtlinearer Differentialgleichungen. Ph. D. dissertation, Bonner
Mathematische Schriften 183, University of Bonn, 1987.

[9] H. G. Bock and P. Krämer-Eis. A multiple shooting method for numerical
computation of open and closed loop controls in nonlinear systems. In Proc.
9th IFAC World Congress, Budapest, Hungary, 1984. Pergamon Press.

[10] H. G. Bock and K. J. Plitt. A multiple shooting algorithm for direct so-
lution of constrained optimal control problems. In Proc. 9th IFAC World
Congress, pages 242–247, Budapest, Hungary, 1984. Pergamon Press.

[11] H. G. Bock, J. P. Schlöder, M. C. Steinbach, H. Wörn, V. H. Schulz, and
R. W. Longman. Schnelle Roboter am Fließband: Mathematische Bahnop-
timierung in der Praxis. In K.-H. Hoffmann, W. Jäger, T. Lohmann, and
H. Schunck, editors, Mathematik – Schlüsseltechnologie für die Zukunft,
pages 539–550. Springer Verlag, Dec. 1996.

[12] N. N. Bolotnik and F. L. Chernousko. Optimization of manipulation robot
control. Sov. J. Comp. and Syst. Sci., 28(5):127–169, 1991.

[13] P. Chedmail and J.-P. Martineau. Characterization of the friction param-
eters of harmonic drive actuators. In C. L. Kirk and D. J. Inman, editors,
Dynamics and Control of Structures in Space III, pages 567–581. Compu-
tational Mechanics Publications, Southampton, Boston, 1996.

[14] F. L. Chernousko, N. N. Bolotnik, and V. G. Gradetsky. Manipulation
Robots: Dynamics, Control, and Optimization. CRC Press, Inc., Boca
Raton, 1993.

[15] J. Denavit and R. S. Hartenberg. A kinematic notation for lower pair
mechanisms based on matrices. Trans. ASME J. Appl. Mech., 22:215–221,
1955.

[16] R. Featherstone. The calculation of robot dynamics using articulated-body
inertias. Int. J. Robotics Research, 2(1):13–30, 1983.

[17] R. Featherstone. Robot dynamics algorithms. Kluwer Academic Publishers,
Boston, Dordrecht, Lancaster, 1987.

[18] G. Giese. Optimierung von Punkt-zu-Punkt-Bahnen für verschiedene In-
dustrierobotertypen. Diploma thesis, University of Heidelberg, Mar. 1996.

[19] C. R. Hargraves and S. W. Paris. Direct trajectory optimization using
nonlinear programming and collocation. AIAA J. Guidance, 10(4):338–
342, 1987.

38

[20] B. Hartel, M. C. Steinbach, H. G. Bock, and R. W. Longman. The influence
of friction on time optimal robot trajectories. Submitted for publication,
Nov. 1996.

[21] T. Hidaka, T. Ishida, Y. Zhang, M. Sasahara, and Y. Tanioka. Vibration
of a strain-wave gearing in an industrial robot. In Proc. 1990 Int. Power
Transm. and Gearing Conf.—New Techn. Power Transm., pages 789–794,
New York, 1990. ASME.

[22] K.-D. Hilf. Optimale Versuchsplanung zur dynamischen Roboterkalibrie-
rung. Number 590 in Fortschr.-Ber. VDI Reihe 8: Meß-, Steuerungs- und
Regelungstechnik. VDI Verlag, Düsseldorf, 1996. Ph. D. Dissertation.

[23] J. Hilsebecher. Vermessung von räumlichen Trajektorien zur kinematischen
Kalibration von Robotern. Diploma thesis, University of Heidelberg, 1995.

[24] A. Jain. Unified formulation of dynamics for serial rigid multibody systems.
AIAA J. Guidance, 14(3):531–542, 1991.

[25] R. Johanni. Optimale Bahnplanung bei Industrierobotern. Ph. D. disserta-
tion, TU München, 1988.

[26] M. E. Kahn. The Near-Minimum-Time Control of Open-Loop Articulated
Kinematic Chains. Ph. D. dissertation, Stanford University, 1970.

[27] M. E. Kahn and B. Roth. The near-minimum-time control of open-loop
articulated kinematic chains. ASME J. Dyn. Syst., Meas., and Contr.,
93:164–172, Sept. 1971.

[28] J. Konzelmann. Numerische Berechnung zeitoptimaler Steuerungen von In-
dustrierobotern mit direkt optimierenden RWP-Methoden. Diploma thesis,
University of Bonn, 1988.

[29] J. Konzelmann, H. G. Bock, and R. W. Longman. Time optimal trajectories
of elbow robots by direct methods. In Proc. 1989 AIAA Guid., Nav., and
Contr. Conf., pages 883–894, Boston, MA.

[30] J. Konzelmann, H. G. Bock, and R. W. Longman. Time optimal trajectories
of polar robot manipulators by direct methods. Modeling and Simulation,
20(5):1933–1939, 1989.

[31] G. V. Kostin. Dynamics of controlled rotations of loaded elastic link in a
manipulational system with an electrical drive. Sov. J. Comp. and Syst.
Sci., (3), 1990.

[32] G. V. Kostin. Modeling the control motions of an electromechanical ma-
nipulation robot with elastic links. Sov. J. Comp. and Syst. Sci., (5), 1992.

39

[33] P. Krämer-Eis. Ein Mehrzielverfahren zur numerischen Berechnung opti-
maler Feedback-Steuerungen bei beschränkten nichtlinearen Steuerungspro-
blemen. Ph. D. dissertation, Bonner Mathematische Schriften 183, Univer-
sity of Bonn, 1985.

[34] R. W. Longman, J. Li, M. C. Steinbach, and H. G. Bock. Issues in the
implementation of time-optimal robot path planning. In Proc. AIAA Nonl.
Dyn. Syst. Symp., Reno, NV, Jan. 6–9 1997. To appear.

[35] R. W. Longman, V. H. Schulz, and H. G. Bock. Path planning for satellite
mounted robots. In C. L. Kirk and D. J. Inman, editors, Dynamics and
Control of Structures in Space III, pages 17–32. Computational Mechanics
Publications, Southampton, Boston, 1996.

[36] O. Mahrenholtz, K. Marti, and R. Mennicken, editors. Applied Stochastics
and Optimization, volume 76, suppl. 3 of ZAMM. Akademie Verlag, 1996.

[37] M. Mössner-Beigel. Optimale Steuerung für Industrieroboter unter Berück-
sichtigung der getriebebedingten Elastizität. Diploma thesis, University of
Heidelberg, 1995.

[38] M. Mössner-Beigel, M. C. Steinbach, H. G. Bock, and R. W. Longman.
Time optimal path planning in polar robots with joint flexibility. Submitted
for publication, Nov. 1996.

[39] F. Pfeiffer, F. L. Chernousko, N. N. Bolotnik, G. V. Kostin, and T. Ross-
mann. Tube-crawling robot: Modelling and optimization. IEEE Trans.
Robotics and Autom. To appear.

[40] F. Pfeiffer and R. Johanni. A concept for manipulator trajectory planning.
IEEE J. Robotics and Autom., 3(2):115–123, 1987.

[41] K.-J. Plitt. Ein superlinear konvergentes Mehrzielverfahren zur direkten
Berechnung beschränkter optimaler Steuerungen. Diploma thesis, Univer-
sity of Bonn, 1981.

[42] B. Schletz. Hochgenaue bildverarbeitende Meßverfahren in der dynami-
schen Roboterkalibrierung. Diploma thesis, University of Heidelberg, 1995.

[43] J. P. Schlöder. Numerische Methoden zur Behandlung hochdimensionaler
Aufgaben der Parameteridentifizierung. Ph. D. dissertation, Bonner Ma-
thematische Schriften 187, University of Bonn, 1988.

[44] K. Schröer. Identifikation von Kalibrationsparametern kinematischer Ket-
ten. Hanser, München, 1993. Ph. D. Dissertation.

[45] V. H. Schulz. Ein effizientes Kollokationsverfahren zur numerischen Be-
handlung von Mehrpunktrandwertaufgaben in der Parameteridentifizie-
rung und Optimalen Steuerung. Diploma thesis, University of Augsburg,
1990.

40

[46] V. H. Schulz. A direct PRSQP method for path planning of satellite
mounted robots. In Mahrenholtz et al. [36], pages 17–20.

[47] V. H. Schulz. Optimal paths for satellite mounted robots. In Mahrenholtz
et al. [36], pages 291–294.

[48] V. H. Schulz. Reduced SQP Methods for Large-Scale Optimal Control Prob-
lems in DAE with Application to Path Planning Problems for Satellite
Mounted Robots. Ph. D. dissertation, University of Heidelberg, 1996.

[49] V. H. Schulz, H. G. Bock, and M. C. Steinbach. Exploiting invariants in
the numerical solution of multipoint boundary value problems for DAE.
SIAM J. Sci. Comp. To appear. Also IWR Preprint 93-69, Dec. 1993.

[50] M. C. Steinbach. Numerische Berechnung optimaler Steuerungen für Indu-
strieroboter. Diploma thesis, University of Bonn, 1987.

[51] M. C. Steinbach. A structured interior point SQP method for nonlinear
optimal control problems. In R. Bulirsch and D. Kraft, editors, Compu-
tational Optimal Control, volume 115 of Int. Series Numer. Math., pages
213–222. Birkhäuser Verlag, Basel, 1994.

[52] M. C. Steinbach. Fast Recursive SQP Methods for Large-Scale Optimal
Control Problems. Ph. D. dissertation, University of Heidelberg, 1995.

[53] M. C. Steinbach. Structured interior point SQP methods in optimal control.
In Mahrenholtz et al. [36], pages 59–62.

[54] M. C. Steinbach, H. G. Bock, and R. W. Longman. Time optimal control
of SCARA robots. In Proc. 1990 AIAA Guid., Nav., and Contr. Conf.,
pages 707–716, Portland, OR.

[55] M. C. Steinbach, H. G. Bock, and R. W. Longman. Time-optimal extension
and retraction of robots: Numerical analysis of the switching structure. J.
Optim. Theory and Appl., 84(3):589–616, 1995.

[56] T. D. Tuttle and W. Seering. Modeling a harmonic drive gear transmission.
In Proc. IEEE Int. Conf. Robotics and Autom., 1993.

[57] A. F. Vereshagin. Computer simulation of the dynamics of complicated
mechanisms of robot manipulators. Eng. Cyber., 6:65–70, 1974.

[58] D. P. Volkov and Y. N. Zubkov. Vibrations in drive with a harmonic gear
transmission. Russ. Eng. J., 58(5):11–15, 1978.

[59] O. von Stryk. Numerische Lösung optimaler Steuerungsprobleme: Diskre-
tisierung, Parameteroptimierung und Berechnung der adjungierten Varia-
blen. Ph. D. dissertation, TU München, 1994.

41

[60] M. W. Walker and D. E. Orin. Efficient dynamic computer simulation of
robotic mechanisms. ASME J. Dyn. Syst., Meas., and Contr., 104:205–211,
1982.

[61] B. Wolf. Numerische Bahnoptimierung von Robotern unter Berücksichti-
gung der Gelenkreibung. Diploma thesis, University of Heidelberg, 1995.

Authors’ addresses: M. C. Steinbach and H. G. Bock, Interdisciplinary Cen-
ter for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer
Feld 368, 69120 Heidelberg, Germany—G. V. Kostin, Institute for Problems in
Mechanics, Russian Academy of Sciences, prospekt Vernadskogo 101, Moscow
117526, Russia; presently guest researcher at IWR—R. W. Longman, Depart-
ment of Mechanical Engineering, Columbia University, New York, New York
10027, USA. The first author is presently moving to the Konrad-Zuse-Zentrum
für Informationstechnik Berlin (ZIB), Takustraße 7, 14195 Berlin, Germany.

42

