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Fast Display of |lluminated Field Lines

Detlev Stalling  Malte Zockler  Hans-Christian Hege

Abstract

A new technique for interactive vector field visualization using large numbers of properly
illuminated field lines is presented. Taking into account ambient, diffuse, and specular
reflection terms as well as transparency and depth cueing, we employ a realistic shading
model which significantly increases quality and realism of the resulting images. While
many graphics workstations offer hardware support for illuminating surface primitives,
usually no means for an accurate shading of line primitives are provided. However, we
show that proper illumination of lines can be implemented by exploiting the texture map-
ping capabilities of modern graphics hardware. In this way high rendering performance
with interactive frame rates can be achieved. We apply the technique to render large
numbers of integral curves of a vector field. The impression of the resulting images can
be further improved by a number of visual enhancements, like transparency and depth-
cueing. We also describe methods for controlling the distribution of field lines in space.
These methods enable us to use illuminated field lines for interactive exploration of vector
fields.
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1 Introduction

The visual representation of vector fields is subject of ongoing research in sci-
entific visualization. A number of sophisticated methods have been proposed to
tackle this problem, ranging from particle tracing [8, 18, 12] over icon based meth-
ods [9, 14] to texture based approaches [3, 2, 4, 17, 10]. A straightforward, pow-
erful and therefore popular technique is to depict field lines also called integral
curves or stream lines. However, using this method the user is confronted with
the following problems. First, on common graphics workstations field lines either
have to be displayed using flat-shaded line segments, impairing the spatial im-
pression of the image, or they have to be represented by polygonal tubes, strongly
limiting the number of field lines that can be displayed in a scene. Second, it is
usually not quite obvious how to distribute field lines in space in order to get ex-
pressive pictures without missing important details of the field. In this paper we
present ideas that can help to overcome both problems.

It is a well-known fact that quality and realism of computer generated im-
ages depend to a high degree on the accurate modeling of light interacting with
the objects in a scene. Shading effects are perhaps the most important cues for
spatial perception. Consequently much research has been performed to develop
realistic illumination and reflection models in computer graphics. A widely used
compromise between computational complexity and resulting realism is Phong’s
reflection model [13] which assumes point light sources and approximates the
most important reflection terms by simple expressions. Traditionally this model
is applied to surface elements. Today many graphics workstations offer hardware
support for this kind of illumination.

The shading model can also be generalized to line primitives in R3. In this pa-
per we will make direct use of such a generalization. However, on current graphics
workstations there is no direct hardware support for display of Phong-shaded line
primitives. We achieve a fast and accurate illumination of line segments by ex-
ploiting texture mapping capabilities of modern graphics hardware. Applying this
new shading technique large numbers of field lines distributed throughout the data
volume can be rendered. Taking light reflection on line primitives into account in-
creases significantly spatial impression of the resulting images, and therefore is
of particular significance for scientific visualization. Image quality can be further
improved by drawing semi-transparent field lines and employing depth cueing.
This allows the user to get a better understanding of the spatial structure of a field.
Transparency and animation of field lines also make it possible to distinguish be-
tween forward and backward direction of the field vectors.

The large number of field lines that may be displayed simultaneously also
facilitates their placement. We employ statistical methods to select seed points.
Given some scalar quantity that loosely describes the degree of interest in the



vector field at some location, field lines are placed automatically such that the rel-
ative degree of interest is matched qualitatively. This is possible for user-selected
spatial subvolumes as well as two and one dimensional sub-manifolds.

In scientific visualization the goal is not to render natural scenes in a photo-
realistic way, but to generate images which provide maximal insight into numeri-
cal or experimental data. Nevertheless, shading effects are at least as important for
the spatial interpretation of artificial images as in traditional computer graphics.
Shading provides the observer with a minimum of realism in a world of cutting
planes, isosurfaces, and symbols. Unfortunately there are a number of visual-
ization techniques which aren’t based on surface primitives, and which therefore
can’t make use of the hardware shading capabilities of current graphics worksta-
tions. As an example consider the various volume rendering techniques. While
interactive frame rates can be achieved for simple emission-absorption models by
exploiting graphics hardware, in general this isn’t yet possible if some sort of gra-
dient dependent shading is included. Although rendering of line primitives is not
as complex as volume rendering, the situation is similar. Traditionally, either flat
shading has to be used or significant parts of the illumination calculation have to
be computed without support by dedicated hardware.

After discussing illumination of line primitives in more detail, we show in
section 3 how it can be implemented using texture mapping techniques. In section
4 we describe several visual enhancements, like use of color, transparency, and
depth cueing, as well as animation of field lines. In the next section some aspects
of numerical field line integration and interpolation are explained. In section 6 we
show how to distribute field lines in space in order to enhance interesting features
of a vector field. In the final sections we present results and conclusions.

2 lllumination of Linesin R?

Surfaces can be characterized locally by a distinct outward normal vector IN. This
normal vector plays an important role when describing the interaction of light with
surface elements. In the following we will shortly review the popular reflection
model of Phong. Let L denote the light direction, V' the viewing direction and R
the unit reflection vector (the vector in the L-N-plane with the same angle to the
surface normal as the incident light). Then light intensity at a particular surface
point is given by

I = Iambient + Idiffuse + Ispecular
= ko+kyL-N+k (V-R" (1)

The first term, a global one, represents the ambient light intensity due to multiple
reflections in the environment. The second term describes diffuse reflection due
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Figure 1: For line primitives there are infinitely many possible reflection vectors
R lying on a cone around 7". For the actual lighting calculation we choose the
one contained in the L-T-plane.

to Lambert’s law. Diffuse light intensity does not depend on the viewing vector,
I.e. diffuse reflecting objects look equally bright from all directions. The last
term in Eq. (1) describes specular reflections on a surface. Specular reflections or
highlights are centered around the reflection vector R. The width of the highlights
is controlled by the exponent n, also called shininess.

Let us now consider line primitives. In this case we can no longer define
unique normal and reflection vectors. Instead there are two-dimensional mani-
folds containing infinitely many possible normal and reflection vectors. Mathe-
matically lines in R?® are said to have codimension 2. Fortunately common surface
reflection models can be generalized to higher codimensions in a straightforward
way. These generalizations have been discussed in detail by Banks [1]. For lines
in R? the results are quite obvious. From all possible normal vectors we simply
have to select the one which is coplanar to the light vector L and the tangent vec-
tor T'. Taking this particular normal vector we compute the diffuse reflection term
as for surfaces using Eq. (1). Likewise, from all possible reflection vectors we
choose the one coplanar to L and T'. Again, taking this particular reflection vec-
tor we use Eq. (1) to compute the specular reflection term. The relevant vectors
for line illumination are illustrated in Fig. 1.

Instead of relying on a specially selected and explicitely calculated nor-
mal vector we would rather like to express diffuse light intensity for line seg-
ments solely in terms of L and T'. Therefore we first project the light vector
into the line’s normal and tangent spaces, yielding an orthogonal decomposition
L = Ly + Ly. As illustrated in Fig. 2, by applying Pythagoras’s theorem we
obtain

L-N = |Ly| = /1 - |Ly|? = /1 - (L-T). 2)



Figure 2: The light vector L can be decomposed into two orthogonal compo-
nents Ly and L corresponding to the projection on the line’s tangent and normal
space, respectively.

Using similar arguments we can express the inner product V - R responsible
for specular reflection solely in terms of L, V', and T, i.e. without refering to IV.
First, observe that Ry = — Ly and Ry = L. We therefore have

V-R = V-(Ly— Ly)
— V.(L-T)T - (L-N)N)
— (L-T)(V-T)— (L-N)(V-N)

J1— (L-T)%/1— (V-T)2 (3)

Here we have replaced L-T by Eqg. (2). A similar expression has been used to
rewrite V- T.

3 Renderingllluminated Lines

Despite the fact that the illumination equation looks the same for lines and sur-
faces, use of standard hardware shading techniques is impaired because for each
new view or light direction a suitable normal vector has to be computed without
utilizing graphics hardware. In the following we show how Egs. (2) and (3) can be
effectively evaluated using texture mapping capabilities of modern graphics hard-
ware, thereby avoiding explicit normal vector computation. The technique allows
us to achieve high frame rates even when large numbers of line segments have to
be rendered.



3.1 TextureMapping

We assume to have a graphics API available similar to OpenGL. In this graphics
library at each vertex a homogeneous vector of texture coordinates can be speci-
fied. Usually the first components of this vector are taken as indices into a one-,
two-, or three-dimensional texture map. A texture map may contain colors and/or
transparencies which can be used to modify in various ways the original color of
a fragment in the graphics pipeline. In addition it is possible to change texture co-
ordinates using a 4 x 4 texture transformation matrix. This texture transformation
is the key feature which makes it possible to employ texture mapping hardware
for shading calculations.

3.2 Diffuse Reflection

Looking at Eq. (2) we note that the diffuse light intensity of a line segment is a
function of L-T only. Specifying a texture vector ¢, equal to the line’s tangent
vector T at each vertex, this inner product can be computed in hardware using the
following texture transformation matrix:

L,
1| Ly
M= —

2| Ls

1

o O OO
o O OO
N O O O

The first component of the transformed homogeneous texture vector t = t,M
then evaluates to

1
ty = Q(L-T +1).

Note, that ¢; always lies in the range 0. .. 1. Therefore this value can be used as an
index into a one-dimensional texture map P(t;). The value of the texture map at
location ¢; is chosen such that it resembles the diffuse light intensity correspond-
ingto L-T = 2t; — 1, namely

P(t1) = Idittuse = ka \/m (4)

Using a texture mode which takes the color of a line fragment to be equal to its
texture color P(t;) we obtain an image which accurately shows line segments
diffusely illuminated by a single point light source. If the light direction changes
we simply have to update the texture transformation matrix. \ertices and texture
coordinates of the line segments remain constant. This means that we can make
use of OpenGL display lists to further increase rendering speed. Display lists
allow one to specify multiple vertex and texture definitions using a single graphics
library call.
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Figure 3: Two-dimensional texture map used to implement Phong’s reflection
model for line segments. Parameter values are k, = 0.1, %k, = 0.3, k, = 0.6, and
n = 40.

3.3 Specular Reflection

The specular reflection term does not only depend on L-T but also on V' -T', as
can be seen from Eq. (3). To compute this additional inner product we initialize
the second column of the texture transformation matrix with the current viewing

direction:
Ly V{ 00

1|L, V, 00
M_§L3V3oo
1 1 0 2

While the first transformed texture component remains the same, for the second
component we now get

1
t2 — §(VT+ 1).

In order to obtain the correct light intensity corresponding to L-T = 2¢; — 1 and
VT = 2t,—1 we use a two-dimensional texture map P(t;, t2). Adding a constant
ambient term k, as well as the diffuse contribution from Eq. (4) we can perform
the whole shading calculation for a single light source in texture hardware. Fig. 3
shows an example of a resulting two-dimensional texture map. One can clearly
identify the highlight appearing at different angle positions on top of a diffuse
background. If no highlight were present color would not depend on the viewing



direction V, as stated by Lambert’s law.

It is worthwhile to note that there is an important special case, which allows
one to use a one-dimensional texture even when specular reflection is present.
This is the case of a headlight, i.e. a point light source located at the same position
as the camera. In this case light vector and viewing vector are identical. Equation
(3) simplifies to

V-R=2(L-T)*-1.

Headlights are quite useful because they always guarantee an adequate illumina-
tion of the scene, irrespectively of the actual viewing direction. The user has not
to bother with a tedious setup of light conditions. However, as will be shown later,
also situations occur where other light positions are favourable.

Of course it is also possible to use the third column of the texture transforma-
tion matrix to compute an additional inner product. This would require the use
of a three-dimensional texture map. Three different inner products would allow
the illumination of lines by two point light sources located at arbitrary positions
including specular reflection. Alternatively one might discard specular reflection
and instead introduce a third purely diffuse illuminating light source.

3.4 ExcessBrightness

Banks [1] pointed out that there is a general problem when illuminating objects
with codimension > 1. The overall intensity of an image increases and becomes
more uniform, thus disturbing spatial perception. In case of lines in R? this can
be understood by the following consideration: We know that the normal vector is
not a constant one, but is given by the projection of the light vector into the line’s
normal space. Choosing such a vector means minimizing the angle between light
vector and normal. Therefore in general the angle between these two vectors is
smaller compared to the case of a fixed normal. This results in a more uniform
brightness than we are used to perceive in real world. As suggested by Banks, we
compensate the effect qualitatively by exponentiating the diffuse intensity term:

Lsiftuse = ka (L-IN)P (5)
In [1] a value of p = 4.8 was proposed. For the images in this paper we have used
a value of p = 2, which produced nicer results.
4 Visual Enhancements

There are a number of ways to enhance and modify the rendering of illuminated
field lines as discussed in section 3. With color coding it is possible to depict



an additional scalar quantity. Transparency can either be used to draw anti-aliased
line primitives, to highlight particular regions in space, or to encode the directional
sign of a field line. Animation is an even better way to indicate the orientation of
a field line. Finally depth cueing can be used to further improve the understanding
of complex spatial structures. In the following we will discuss all these topics in
more detail.

4.1 Color

Color coding is a common method in visualization. Applying color to individual
field lines would enable us to depict some scalar quantity in addition to vector
field structure. Such a quantity could be field magnitude or potential strength, or
something more unrelated scalar variable like pressure in a fluid flow. Ideally we
would like to modify the curve’s ambient and diffuse color components according
to a given color lookup table. However, in our case color is directly taken from
a texture map. Since we use the same texture map for all field lines it is not pos-
sible to set these components locally in a straight-forward way. Nevertheless, by
using an alternative texture mapping mode it is possible to modulate, i.e. multi-
ply, texture color with the object’s base color. The latter can be defined for each
vertex separately. This yields the desired effect with the restriction that also the
specular highlight gets colored instead of remaining constant. Fig. 4 suggests that
this is only a minor limitation. Despite being differently colored the highlights
can be identified clearly throughout the whole image while still improving spa-
tial perception. At the same time color accurately encodes an additional scalar
variable.

4.2 Transparency

Transparency is a powerful concept which can be utilized in a number of ways.
However, it requires geometric primitives to be rendered in a depth-sorted way.
We will first discuss some applications of transparency, before we describe how
to deal with the depth-sorting problem.

Anti-aliasing. Lines on a raster display may appear rather jagged, if a binary
scan-conversion algorithm is used. These alias effects can be suppressed effec-
tively by rendering pixels which are covered only partially by a line with an
opacity proportional to the actual amount of overlap. This causes the final pixel
color to be a mixture of the line’s color and the color of the underlying object.
Anti-aliasing of lines is directly supported in OpenGL. It improves image quality



significantly. Jags tend to appear at different locations in sucessive frames with
slightly different view directions. Since this is quite disturbing anti-aliasing is
even more important for interactive applications and animations.

Highlighting. Transparency can be used to highlight important features of a
vector field. Like with color in our application we can use an independent scalar
field to define the transparency of a field line at each vertex. In Fig. 10 a simple
model of the magnetic field around the earth is shown. While the field of the earth
itself is assumed to be a magnetic dipole, the field of the sun is approximated by
a constant term. Choosing transparency proportional to the logarithm of vector
field magnitude reveals the characteristic dipol structure and still lets you discern
the constant field in the outer region.

Directional sign. To encode unambiguously the directional sign of a vector field
imagine small particles traversing the vector field and leaving a veil of haze. For
a stationary field the particles will just follow the field lines. Assuming that the
haze disappears according to an exponential law, opacity or alpha values for equi-
distant points s,, of a field line are given by

asy) = apg™ . (6)

Here the factor ¢ controls how much of the haze disappears per unit step. A
resulting semi-transparent field line is illustrated in the following figure:

st
)
5 £

The sign of vector field direction would not become visible if field lines were
rendered symetrically in forward and backward direction. Fig. 8 ilustrates the
use of transparency to encode the directional sign of a field line. The figure also
compares flat shaded and illuminated field lines.

Depth sorting. Drawing a transparent pixel of opacity « and color C' causes the
current color in the frame buffer to be updated according to

In general if multiple transparent objects are present the final color depends on
the ordering of the individual objects. Correct results are obtained using a back

9



to front traversal. The situation is simplified if all objects are of equal color C.
In this case all traversal orders yield the same result. This has been exploited by
Max, Crawfis, and Grant [11], who applied flat shaded line bundles for vector
field visualization. However, for illuminated lines color isn’t constant. Therefore
individual lines have to be rendered in a depth-sorted way.

In general it is impossible to achieve an exact depth ordering for extended
curves in 3D, because mutual coverings may occur. Therefore we split each field
line into many small line segments, which are sorted and rendered individually.
To avoid resorting line segments each time the view direction changes we use
the following simplified algorithm: Three lists of pointers to field line segments
are created. The lists are sorted in order of increasing x-, y-, and z-coordinates,
respectively. During rendering the list that most closely resembles the viewing
direction is traversed, either from back to front or from front to back. Although
this method is not exact, it produces excellent results which can not be distin-
guished visually from the exact images. Experiments have shown, that typically
only about 1% of all pixels receive somewhat incorrect color values.

4.3 Field Line Animation

Animated particles provide a very intuitive mean of visualization, especially when
velocity fields are to be visualized. Following the idea of particles leaving a veil
of haze, animation sequences can be obtained in the following way.

Stream lines are created at different times ¢; with an initial length of 0. In each
time step, all field lines are extended by one point, while opacity of all the points
already drawn is modified by the factor ¢, c.f. Eq. (6). This gives the illusion of
moving particles producing a slowly disappearing veil of haze, like comets. A
periodic animation sequence can be created by assuring that the period 7" is long
enough so that points on a field line can disappear completely within this interval
(i.e. ¢* ~ 0). Then a field line that has been created at time ¢; can be restarted at
the same location at time ¢; + 7', since it is no longer visible then. This results in
a continuous animation loop of period 7.

4.4 Depth Cueing

Depth cueing is a well-established technique to improve the spatial perception of
complex three-dimensional scenes. It means that the color of objects is adjusted
according to their distance from the camera. The underlying idea is that bright
objects of high contrast usually appear closer than dark or washed-out ones. In our
context the method turns out to be especially useful in situations where illuminated
field lines are arranged such that they constitute surface-like structures. Since the
illumination model does not distinguish between inside and outside, sometimes
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the spatial structure of such pseudo-surfaces may not be clear on the first sight.
Depth cueing helps to identify near and far parts of the geometry and therefore
improves spatial perception. This becomes obvious by comparing the middle and
right image of Fig. 9.

5 Field Linelntegration

For numerical field line integration we use a fourth-order Runge-Kutta method
with error monitoring and adaptive step size control, as described in [17]. Use of
an adaptive method allows us to control the error of the solution. Such methods
are also necessary to detect singularities. At these points field line integration
has to be terminated. Singularities, i.e. sinks and sources, commonly occur for
example in electrostatic fields. Examples are shown in Figs. 9 and 7.

A common problem with adaptive integrators is that the step sizes usually are
so large that the resulting curve cannot be approximated by straight line segments
anymore. Instead additional samples have to be computed between the solution
vectors. Additional samples are obtained by evaluating an interpolation poly-
nomial whose degree should conform to the order of the integrator. For a fourth-
order integrator cubic Hermite interpolation is an appropriate choice [7]. It retains
the exact values of the tangent vectors at the endpoints of an interval in addition
to the location of the endpoints itself. The tangent vectors itself are interpolated
by a quadratic polynomial. To quickly evaluate the interpolation polynomials at
equidistant steps we are using forward differences.

The step size of an adaptive integrator is closely related to the curvature of the
solution curve. In areas of high curvature small steps are taken, while in areas of
little curvature large steps are taken. Therefore it makes sense to subdivide each
interval using an equal number of intermediate samples. The number of interme-
diate samples determines how closely the original geometry is approximated. We
obtained good results with 3-5 intermediate samples.

Instead of precomputing intermediate samples during field line integration it
Is also possible to defer evaluation of the interpolation polynomials until render-
ing. OpenGL provides means for sampling a polynomial curve at equi-distant
locations. Instead of specifying vertices or texture coordinates directly, so-called
evaluators can be used to compute these quantities from a polynomial. For this the
curve has to be specified in terms of linearly independent Bernstein polynomials.
For a cubic curve the Bernstein polynomials are (1 — u)?, 3(1 — u)?u, 3(1 — u)u?,
and u3. The advantage of letting OpenGL interpolate the intermediate samples is
that the number of subdivisions can be easily changed without any recomputation.
For example it would be possible to adjust the resolution to the current view (level
of detail). However, in general faster rendering times are obtained by computing
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the intermediate samples in a preprocessing step and then drawing the field lines
directly as straight line segments. Only for a large number of subdivisions (> 25)
OpenGL’s evaluator interface becomes preferable.

In some situations it is also desirable to render the field lines with equidistant
samples. For example if an independent scalar field is used to obtain color or
opacity values for each vertex, the required resolution doesn’t depend on field line
curvature alone, but also on the characteristics of the scalar field. If nothing is
known about this field, using equidistant samples seems to be the best choice.

6 Seed Point Selection

The proper choice of seed points for field line integration is a common problem
in vector field visualization. On the other hand the fast texture based rendering
technique described above allows us to generate images with thousands of lines
at interactive rates. This means that the positioning of an individual field line be-
comes less important. This allows us to apply statistical methods for distributing
seed points in the data volume.

It should be mentioned that actually the distribution of the field lines itself
should be controlled rather then the distribution of seed points. If the directional
field has a non-vanishing divergence, field line density will not remain constant.
Instead field lines will run together in some areas, resulting in an increased local
density, or they will expand in other areas, resulting in a decreased local density.
These variations are less dominant if the total length of a line is limited and if
the field lines are integrated an equal distance in forward and backward direction.
Using this approach, we obtained reasonable results with just controlling seed
point density instead of field line density. More elaborated strategies compute
an optimized distribution by taking into account some kind of repulsion between
different lines, as described for the 2D case in [16]. However, this is a rather
expensive computational process.

6.1 Thelnterest Function

Often it is intuitive to have a field line distribution proportional to some scalar
quantity p. Such a field p may be interpreted as the degree of interest the user
wants to put in a region. For example a constant p would result in a homogenous
distribution of seed points, while a value of p proportional to vector magnitude
would emphasize regions of large field strength.

In general it is not a trivial task to find a good interest function p. For ex-
ample, in electrostatic data sets field strength often varies over several orders of
magnitude. Instead of choosing p exactly proportional to field strength we would
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rather like to have a more homogenous distribution which resembles vector field
magnitude only qualitatively. Such an effect can be obtained using a histogram
equalization approach. This technique is well known from the image processing
literature [6], but in our case may also be used to modify the degree of interest p
in a suitable way. Let us define a sum histogram in the following way:

_number of cells with p; < p

S(p) total number of cells

(8)

Based on the sum histogram we can assign each cell a new equalized degree of
interest p; by

pi = S(pi)- ©)

Of course other probability distributions can be useful to emphasize special
features of the field. We have implemented a symbolic interface which allows us
to specify p; as a function of any given set of scalar fields. Within this interface
functions like logarithm or square root as well as threshold operators can be used
to specify the degree of interest p.

6.2 Seed Volumes

To actually generate seed points with a given density p, we subdivide a box-shaped
seed volume into n uniform cells. For each cell we compute a value p; describing
the local degree of interest for that cell. The accumulated degree of interest is
defined by

j=1

We assume all cells being arranged in a sequence based on some arbitrary num-
bering. We choose cells randomly with a probability proportional to p;. This is
done by taking a random number » uniformly distributed in the range 0. . .w,.
The first value w; > r determines which cell is taken.

Pi

0 i1 o o
Within a selected cell we place a new seed point at a random position. Because the

values w; are monotonely increasing, the cell lookup procedure has a complexity
of O(log(n)) and therefore can be performed quite fast.
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To get an overview of the global field structure, it is a good idea to choose
an initial seed volume that fully encloses the data set. The user then may further
constrain the seed volume. For this we use so-called dragger provided by the
Open Inventor graphics toolkit. Draggers are interactive components that may be
translated and rescaled directly in a three-dimensional scene. They provide a very
flexible and intuitive interface. An example of an Inventor-style selection box is
shown in Fig. 5.

6.3 Seed Surfaces

Instead of using seed volumes, field lines may also be started on two-dimensional
manifolds. For example to visualize the structure of an electrostatic field seed
points may be distributed on an iso-potential surface. Since an electrostatic field
Is always oriented perpendicular to an iso-potential surface, this method is of par-
ticular interest. It may reveal important features of the field.

We assume a surface .S to be given by a set of triangles. To distribute n, seed
points homogenously on .S, we first determine how many point have to be placed
in a particular triangle T; of the surface. The larger a triangle, the more seed points
it should contain, i.e.

_ Area(T;)
= Area(S) e

We always generate at least |n;| points in each triangle 7;. To deal with non-
integer numbers n; an additional point is generated with a probability given by the
fractional part n,—|n; |. Again seed point density may also be chosen proportional
to some interest function p(x) defined on the manifold. In this case equation (11)
has to be replaced by

(11)

n = fTZp(CL‘)dA n
" Jsp(x)dA T

Inside a triangle all points are distributed uniformly. This is a reasonable ap-
proximation also for non-constant density function p(x), if the triangles are small
enough. For iso-surfaces obtained by a marching-cubes algorithm this is usu-
ally the case; there the number of triangles typically is even much larger than the
number of seed points. To obtain a uniform point distribution within a triangle,
we choose two uniform numbers « and v in the range [0..1]. If uw + v > 1 then
u:=1—wandv:=1— v are used instead. The final position of a point inside a
triangle isgivenby P = A + u(B — A) + v(C — A), where A, B, C are the
vertices of the triangle. If the final distribution is not sufficiently homogeneous,
the points can be moved on the surface using a point-repulsion approach, as de-
scribed in e.g. [15]. An example of field lines placed uniformly on iso-potential

(12)
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surfaces is shown in Fig. 6. The image reveals the structure of the electrostatic
field of a water molecule.

Instead of placing seed points on complex geometries like iso-surfaces we
have also implemented a small surface probe, wich can be moved and rotated
interactively within the scene. Again we utilized Open Inventor components. An
example of a surface probe together with a box-style dragger is shown in Fig. 5.

6.4 Seed Lines

Another way for seed point selection is to start field lines on one dimensional
manifolds, i.e. lines. Instead of using simple geometric primitives like straight line
segments or circles such manifolds may be defined conveniently by intersecting
some other three-dimensional geometry with a cutting plane. Again iso-surfaces
are suitable candidates for such an operation. We use draggers defined in Open
Inventor to implement a cutting plane which can be translated and rotated easily
in a three-dimensional scene. Open Inventor also provides a so-called triangle
callback action which allows us to actually compute the intersection.

An example of a set of field lines started along a one-dimensional manifold
defined by an intersection operation is depicted in Fig. 9. This way of placing
seed points is especially suited to emphasize possible symmetries in a field. The
image also shows the effect of depth cueing as discussed in section 4.4,

7 Implementation and Results

The algorithms presented in this paper have been implemented in C++ by sub-
classing the Open Inventor toolkit. Using Inventor makes it easy to display il-
luminated field lines in combination with other geometries. The rendering code
itself is built on top of the OpenGL graphics library. It is embedded into an object-
oriented visualization system developed at ZIB. The object-oriented design allows
us to process 3D vector fields defined in various ways using the same interface.
Examples are analytically defined fields (Fig. 10), fields defined on curvilinear
grids (Fig. 4) or fields on regular grids as in the molecular datasets.

We have applied our methods to visualize vector fields from various disci-
plines like computational fluid dynamics, quantum chemistry, and astro physics.
In most cases the default values for seed point distribution provide a good first
impression of the vector field. The fast rendering speed offers the possibility to
interactively rotate and zoom the geometry. This is an important feature for un-
derstanding the complex vector field structures.

Fig. 4 shows the air flow around a wing, obtained from a CFD simulation.
The vector field is defined on a curvilinear grid. Color is used to encode veloc-
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ity magnitude. Blue depicts regions of high velocity, while yellow and red show
slowly flowing parts of the field. The scene contains 14,200 line primitives and
can be rendered at a frame rate of 25 frames per second. All performance mea-
surements have been done on an SGI Indigo? with Maximum Impact Graphics
and 250 MHz R4400 CPU. Performance gains of about 10-20% can be achieved
by using OpenGL display lists. In a display list multiple graphics commands are
compiled into a single function call. Due to the depth-sorting approach in our
case 6 independent display lists have to be generated. Therefore the start-up time
needed to generate the lists as well as the memory overhead usually outweighs the
performance gain.

In Fig. 10 a simple model of the magnetic field around the earth is shown. This
field is given analytically. Transparency modulation is used to enhance the dipole
structure of the earth field, as described in Sec. 4.2 (27,000 lines, 15 fps).

Fig. 7 shows the electrostatic field of a benzene molecule. The field is com-
puted using the NAO-PC method (Natural Atomic Orbitals - Point Charge). This
guantum-classical method aproximates atomic orbitals by a set of discrete frac-
tional point charges. The location of some of these point charges can be clearly
identified in the images (19,100 lines, 18 fps).

An example of a velocity field from a CFD application is shown in Fig. 5.
The data represents a fluid flow over a backward facing step. The turbulent region
behind the step is characterized by a very complex field structure. A 3D dragger
is used to highlight this part of the field. In addition some field lines are seeded
on a probe-surface (25,000 lines, 15 fps).

8 Conclusion

The visual representation of 3D vector fields is one of the current challenges in sci-
entific visualization. Of particular interest are methods that provide an overview
of the global field structure and that also depict fine details.

In this paper we have presented a fast method for visualizing 3D vector fields
based on the display of field lines, i.e. integral curves of the field. The method
gives a good impression of the field structure and enables us to resolve visually
rather fine details, like small vortices. A texture mapping technique is used to
accurately illuminate the field lines. Light reflection on field lines improves spatial
perception and thereby facilitates the understanding of the inner structure of a
field.

We have shown how high quality field line images can be generated at inter-
active speed using hardware supported texture mapping. This offers new oppor-
tunities for interactive visualization. Using a simple Monte-Carlo method lines
are placed automatically such that the relative degree of interest, defined by some
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scalar field, is matched qualitatively.

Some interesting topics of further research are improvement of the seed point
selection strategies such that characteristic features of the field are detected and
enhanced automatically or the application of the shading technique to time depen-
dent vector fields. In the latter case particle paths or streak lines should be used in
favour of field lines.
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wing5.85mm. eps stepSeedProbe. 85mm. eps

Figure 4: The image shows the flow around a wing. Figure 5: Velocity field from a CFD simulation.

Color is used to encode the velocity magnitude. Open Inventor draggers are used to define a seed
volume (turbulent region) and a surface probe (up-

per part).

waterCombined. 85mm. eps
benzene.85mm. eps

Figure 6: Electrostatic field of a water molecule. Figure 7: Electrostatic field of a benzene molecule.
Seed points are distributed uniformly on two iso- The field line seeds were distributed proportionally
potential surfaces. A directional light shining from to field strength.

the upper right is used for illumination. If light and

view direction were coincident, it would be hard to

identify lines facing to the camera.




waterTexTrans.eps

Figure 8: In the left image fully opaque, flat shaded field lines are drawn. In the
middle and right images transparency is used to encode the directional sign of the
field lines. Finally the right image shows the effect of proper illumination.

cutter.eps

Figure 9: A cutting plane is used to interactively define a cut through an iso-
potential surface (left image). Seed points are placed on the resulting line. In the
left and middle image depth cueing is used to improve depth perception.

magdipolRot2.85mm. eps

magdipolRotl.85mm. eps

Figure 10: Simple model of the magnetic field around the earth. In the right
image transparency is used to emphasize the dipole structure of the earth’s field,
suppressing the constant contribution from the sun.




