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1 Abstract

A numerical method for the treatment of moving discontinuities in the model equa-
tions of chemical engineering systems is presented. The derived model describing the
effects of condensation and evaporation in a regenerative air to air heat exchanger
yields an illustrative example for these so called moving boundary problems. The
presented adaptive moving grid method is based on the algorithm Pdex for parabo-
lic partial differential equations. It is shown that the method is suited for problems
where the arising discontinuities cause low rates of convergence if the equations are
solved with a static grid.
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2 Introduction

The handling of spatial discontinuities in models of chemical engineering systems
is straightforward if their location is fixed. An example is a fixed bed reactor with
different thermodynamic or structural properties of the solid bed like inert and
catalytic regions where the governing equations vary from one part of the reactor
to another. The problem of spatial discontinuities becomes more difficult to handle
if the point where the model equations have to be switched moves along with the
simulation time. These problems are called moving boundary problems and arise in
many areas of chemical engineering. Well known examples are gas-solid reactions
in a pellet [4] and the homogeneous or heterogeneous chemical reaction with zero
order reaction rate for one of the reactants [1].

For zero order reactions the spatial domain is separated into a region with educt
concentration greater than zero where the reaction rate is constant and an adja-
cent region with educt concentration equal zero, where the rate is zero. During
dynamic simulation, the boundary between the two regions moves with time along
the space coordinate and represents a moving boundary which is characterised by a
discontinuitiy in the gouverning model equations.

Another illustrative example of a moving boundary problem presented in this paper
is a regenerative air to air heat exchanger widely used in air conditioning systems
[22, 37, 38, 39, 40]. A warm air stream heats up a cold metal matrix during the
first period, in the second period a cold air stream flows through the warm matrix
while absorbing heat from the solid storage material. In order to obtain a pseudo-
continous operation either a multi-bed design with periodic feed switches or a rotary
type of heat exchanger is used [23, 26, 41]. If the air stream is moist, water vapor
will condense if the temperature of the matrix is below the dew point temperature of
the air. In this period the matrix is wetted with a thin film of liquid water. During
the next period the water may evaporate into the dry air stream. On the matrix
dry and wet parts may exist next to each other. Depending on whether the matrix
is wet water can evaporate into the air passing the surface such that the dry and
the wet parts of the matrix must be described by a different set of model equations.
The boundaries separating these regions are moving during the process and must be
recognized during the simulation. This example has been selected to illustrate the
problems which arise and to show how they can be handled. The method presented
can be applied to solve other spatially 1D moving boundary problems as well.

Moving grid methods have been proposed recently to solve 1D problems where steep
wave fronts arise [5, 31, 33, 42]. The grid points move during one time step along with
the propagating front. One aim is to make a static grid adaption unnecessary and
to reduce the dynamics of the system on the other hand such that the change of the
state variables are minimized which results in larger time steps during the simulation.
For an overview about moving grid methods we refer to Furzeland et al. [17]. In
this paper it will be shown that problems with moving boundaries and moving

2



discontinuities can be solved very efficiently using such a moving grid method. The
algorithm presented is a modification of the one developed by Nowak [27]. Using the
example of a regenerative air to air heat exchanger with non-hygroskopic material
a new method to follow points with discontinuities will be developed and tested.

3 Modelling of heat and mass transfer by conden-

sation and evaporation

Heat transfer with condensation of water vapor out of noncondensable gases such
as air onto a solid surface has been treated in a large number of theoretical and
experimental publications. A major topic in many papers is the description of fog
formation followed by condensation in a thermal boundary layer next to a cold
surface [15, 25, 34]. If condensation occurs, the rate of heat and mass transfer
usually changes over a wide range. Therefore, the aim is to describe the effect of
condensation in the boundary layer to determine the different heat and mass transfer
in general [6, 7, 8, 9, 10, 21, 24].

A common way to describe the heat and mass transfer from a noncondensable gas
on a solid surface is a 2D-formulation with the radial coordinate r perpendicular
to the axial flow direction z. For small concentrations of water vapor Fick’s law of
Diffusion can be applied:

ṅW = −D · ∂cW
∂r

(1)

Herein cW denotes the molar concentration of water in the boundary layer. For
higher concentrations the so called Stefan-Flow [6] is appropriate which takes into
account that the noncondensable gas does neither adsorb nor desorb at the wall (c
denotes the total molar concentration of the gas):

ṅW = −D · c

c− cW
· ∂cW
∂r

(2)

The boundary condition at the wall is

cW = cM (3)

where cM is the equilibrium concentration of the condensate film which only depends
on its temperature. Analytical solutions of Eqn. (1) or (2) have been adapted for
special cases. In a 1D-description the linear driving force estimation can be used:

ṅW = β · (cW − cM ) (4)

A review of the literature indicated that the methods described above are mostly
used to describe the condensation out of a noncondensable gas onto a solid surface.
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For conditions where evaporation from a wet solid surface occurs, Eqn. (1), (2) or
(4) can be still applied. One difference is the direction of the driving gradient and
therefore the direction of the vapor flux. Whereas condensation can occur no matter
whether the solid surface is wet or dry, evaporation requires a driving gradient form
the surface to the gas stream and a liquid water film on the surface. Therefore, it
is very important to know the boundaries between wet and dry parts, especially if
they change during transient operation in regenerative heat exchangers [39].

This problem was first recognized by Hausen [20] who splitted the cold period into a
wet and a dry part. Whereas Hausen’s work emphasized cold temperature applica-
tions, the investigations of van Leersum [37] and Vauth [40] describe condensation
and evaporation in air to air regenerators using the linear driving force estimation
in Eqn. (4) which will be used in this paper, too. Certain effects like condensation
and fog formation in the boundary layer are not taken into account.

Fig. 1 shows one flow channel of a regenerative heat exchanger. The condition
for condensation at a specific point z in the flow channel is that the actual vapor
pressure of water in the air stream is higher than the saturation vapor pressure over
the liquid water film, i.e. pW (t, z) > psatW . Evaporation of liquid water from the solid
surface can occur only if the matrix is wet. At a specific point z water evaporates
from a wet surface into the moist air if the saturation vapor pressure is higher than
the vapor pressure of water pW (t, z) in the air, i.e. psatW > pW (t, z).

Instead of the partial vapor pressure of water pW the water content in the air XA

will be used where XA is defined as the fraction of mass of water vapor in the air
mW to the mass of dry air mA:

XA =
mW

mA
(5)

and

XA =
MW

MA
· pW
p− pW

= 0.622 · pW
p− pW

. (6)

The regenerator surface consists of a macroporous layer which is thick enough to
accumulate all of the condensed water vapor. Hence, no liquid movement will be
considered and the water content YM of the matrix is definded by the mass of the
liquid water mW

M divided by the mass of the dry solid matrix mS:

YM =
mW

M

mS
(7)

The flow channel of a regenerative heat exchanger in Fig. 1 can be described by the
heterogeneous model shown in Fig. 2. One phase consists of the flowing air, the
second phase of the solid surface including the macroporous surface layer with the
liquid water film (if present). The two phases are coupled through combined heat
and mass transfer. The heat flux will be treated in detail in App. A.4. The driving
force for the flux of water vapor from the moist air to the wetted matrix surface is
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Figure 1: Condensation and evaporation in the flow channel of a regenerative heat
exchanger

the difference between the the water content XA of the air stream and the water
content XM of the air which is in equilibrium with the liquid water film:

dṁW = β · dAs · (XA −XM ) (8)

Since the water film is very thin it can be assumed that it will have the same
temperature as the solid matrix [40], such that

XM = Xsat
M (ϑM ) = 0.622 · psatW (ϑM )

p− psatW (ϑM)
. (9)

The saturation vapor pressure psatW has to be calculated as a function of the matrix
temperature and the following correlation will be used [2]:

psatW =
c1
TM

+ c2 + c3 · TM + c4 · T 2
M + c5 · T 4

M + c6 · T 4
M + c7 · log (TM) (10)

with
TM = ϑM + 273.15

Condensation occurs if the water content of the moist air XA is higher than the
saturation value XM (ϑM). Liquid water evaporates from the matrix if XA is lower
than XM (ϑM) and the matrix is wet, i.e. YM > 0.

4 Balance equations and boundary conditions

The following system of equations has been derived in App. A for the control volume
of Fig. 2. It describes the heat and mass transfer in the flow channel of a regenerative
heat exchanger:

ε · �A · ∂XA

∂t
= −ε · �A · vA · ∂XA

∂z
+ ε ·Deff · ∂

2XA

∂z2

−δ · aV · β · (XA −XM ) (11)
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1 − ε

ε

0 Lz z + dz
z

ṁA ṁA

dQ̇
dṁW

Figure 2: Heterogeneous model for condensation and evaporation in the flow channel
of a regenerative heat exchanger

0 = XM − 0.622 · psatW (ϑM)

p− psatW (ϑM)
(12)

(1 − ε) · �S · ∂YM
∂t

= δ · aV · β · (XA −XM ) (13)

ε · �A · cp · ∂ϑA

∂t
= −ε · �A · vA · cp · ∂ϑA

∂z

+ε ·Deff · cp,W · ∂XA

∂z
· ∂ϑA

∂z

+ε · λeff · ∂
2ϑA

∂z2
− aV · α · (ϑA − ϑM) (14)

(1− ε) · �S · cM · ∂ϑM

∂t
= (1 − ε) · λS · ∂

2ϑM

∂z2
+ aV · α · (ϑA − ϑM)

+δ · aV · β · (XA −XM )

·(r0 + cp,W · ϑA − cW · ϑM) (15)

∂p

∂z
= −32 · ν · �A · vA

d2h
(16)

The equations described in App. A do not apply for all cases arising in regenerative
heat exchangers. The distinction is whether only condensation or both condensation
and evaporation can occur (see Sect. 3). This distinction can be described in the
system above using the step-function δ where

δ = 1 if YM > 0, (17)

δ = 1 if YM = 0 and XA ≥ XM , (18)

δ = 0 if YM = 0 and XA < XM . (19)

The appropriate boundary conditions for the energy balance of the matrix are:

∂ϑM

∂z

∣∣∣∣∣
z=0

= 0 (20)

∂ϑM

∂z

∣∣∣∣∣
z=L

= 0 (21)
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For the mass balance of the gas we find

Deff · ∂XA

∂z

∣∣∣∣∣
z=0

= �A · vA · [XA(z = 0) −X∗
A] (22)

∂XA

∂z

∣∣∣∣∣
z=L

= 0. (23)

The derivation of the boundary conditions for the energy balance of the gas yields

λeff · ∂ϑA

∂z

∣∣∣∣∣
z=0

= �A · vA · (cp,A +X∗
A · cp,W ) · (ϑA(z = 0)− ϑ∗

A) (24)

∂ϑA

∂z

∣∣∣∣∣
z=L

= 0 . (25)

The boundary condition for the pressure at the inlet is

p(z = 0) = p∗. (26)

In order to solve the system of Eqns. (11) - (16) initial conditions for the dynamic
state variables are required (0 ≤ z ≤ L):

XA(t = 0, z) = X0
A (27)

YM (t = 0, z) = Y 0
M (28)

ϑA(t = 0, z) = ϑ0
A (29)

ϑM(t = 0, z) = ϑ0
M (30)

Formally, the system of model equations can be written as

B̄ · ∂�y
∂t

= −v̄ · ∂�y
∂z

+
∂

∂z
·
(
D̄ · ∂�y

∂z

)
+ �Q (31)

or

B̄ · ∂�y
∂t

= �f (�y, �yz, �yzz) (32)

which is the general form of an 1D parabolic differential equation system. The initial
and boundary conditions are

�y(t = t0) = �y0 (33)

ᾱl · �yl + β̄l · ∂�y
∂x

∣∣∣∣∣
l

= �γl (34)

ᾱr · �yr + β̄r · ∂�y
∂x

∣∣∣∣∣
r

= �γr. (35)

In this notation �y is the vector of the state variables, i.e. the unkowns of the system
with the dimension m = 6. B̄, v̄ and D̄ are matrices with the dimension (m×m)

and depend on �y, z and t. The vector �Q also depends on �y, z and t and has the
same dimension as �y. ᾱ, β̄ and γ̄ are diagonal (m×m) matrices.
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5 Solution of the model equations using a static

grid

The system in Eqn. (31) along with Eqn. (33), (34) and (35) can be solved nu-
merically using a method-of-lines (MOL) algorithm [35]. In this approach the space
coordinate z is discretized such that the partial differential equations are transformed
into a system of differential-algebraic equations (DAEs):

B̄i · d�yi
dt

= �fi(�yi, �yz|i , �yzz|i) i = 1, . . . , n (36)

A finite difference method has been used for the discretization of the spatial domain
throughout this paper. As described above the model can change at a specific
coordinate z. Therefore, at each grid point it has to be checked if the surface is wet
(YM > 0) or dry (YM = 0). For the dry parts the direction of the driving gradient
for the water vapor transfer (XA −XM ) has to be controlled.

For the solution of the DAEs one of the adaptive integration algorithms developed
e.g. by Petzold [32] or Deuflhard [12, 13, 14] can be used. Another approach for the
solution of Eqn. (31) is a fully adaptive MOL-treatment using regridding techniques
such that both the spatial discretisation error and the error arising from the time
integration [27, 28, 29] can be controlled. Nevertheless, the grid points along the
space coordinate z are considered to be static in the following sense: The locations
are fixed during one integration step. In this section this method is used as an
example for a MOL-algorithm and will be discussed shortly below.

5.1 PDEXPACK – a fully adaptive solver for parabolic dif-

ferential equations

The program package Pdexpack has been developed recently to solve parabolic
differential equations of the general form given in Eqn. (31). The program is based
on the code Pdex [27] and allows the user to specify the equations to be solved

in subroutines for the matrices B̄, v̄ and D̄ and the vector �Q [16, 29]. The imple-
mented method-of-lines discretization algorithm is suited for systems of parabolic
differential equations (D̄ �= 0̄). The dispersion term is necessary to get a satisfactory
performance of Pdex (stability and suitable error control). Since a semi-implicit
integration method is implemented in the code to handle stiff systems as well as
systems with singular B̄-matrix, the Jacobian matrix is required at each integration
step.

The numerical algorithm is fully adaptive in time and space. The number of grid
points necessary to achieve a certain accuracy for the approximated solution as well
as the distribution of the grid points and the length of the time step are automat-
ically adjusted by the program [29]. This adjustment is based upon the relative
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errors for the time and the space discretization for every state variable at every
gridpoint. These errors are estimated at each time step via extrapolation methods.
The estimated local spatial errors are the base for a local regridding to equilibrate
the error in the spatial domain. Based on the local error estimates global error
norms are determined which allow for a separate error control in space and time.

The difficulties which arise for the present problem result from the fact that the
equations to be solved may change from one spatial grid point to another and,
at one specific gridpoint, during one integration step because of the step change
function δ in Eqn. (11) - (16). This causes severe problems because the right hand
side of Eqn. (36) is discontinuous. Furthermore the Jacobian matrix and the right
hand side may not fit. Therefore, the performance of the extrapolation procedure,
the error estimation and the stability properties are perturbated and the code works
less efficient.

5.2 Simulation of evaporation from an initially wet matrix

Fig. 3 shows the results from a simulation which describes the evaporation from an
initially wet matrix. At the beginning (t = 0 s) the matrix is wet over its whole
length. The matrix temperature is kept constant during the entire simulation at
ϑM = 20◦ C. Corresponding to this temperature the saturated water content XM

at the matrix to air interface is constant at a value of approximately 15 g
kg

which is
also the initial profile for the water content XA of the air. For all times t > 0 s a
completely dry air stream with a temperature of ϑA = 40◦ C enters the system at
z = 0m. It passes over the matrix with a velocity of vA = 4 m

s
such that water is

evaporating due to a difference between XM and XA. Therefore, the water content
of the air increases along the space coordinate z whereas the matrix water content
YM decreases with the simulation time. At the point where XA reaches the value of
the saturated water content XM the transfer of water vapor stops.

As long as the matrix is wet (profiles 2© and 3© ) the water content of the air does
not change with the simulation time. As soon as the liquid water of the matrix is
used up, a front with YM = 0 starts to move from the left to the right, i.e. a moving
boundary is generated which separates the dry and the wet part of the matrix. The
velocity of this front is much smaller than the flow velocity vA of the air stream. At
the end of the simulation (t = 2.9 s) the matrix is almost completely dry.

The example shows that Pdex is able to solve the problem above. The unsteady
behaviour of the Jacobian matrix of the system near the grid point where the model
equations switch yields a low grade of convergence of the solution method, small time
steps during the integration and a high local grid point density near that point. A
method how to overcome this problems will be discussed in the next sections.
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Figure 3: Evaporation from an initially wet matrix with constant matrix temper-
ature: 1© XA,YM for t = 0 s and XM for t ≥ 0 s, 2© t = 0.16 s, 3© t = 0.3 s, 4©
t = 0.5 s, 5© t = 1.0 s, 6© t = 2.0 s, 7© t = 2.9 s.

6 Velocity of the moving boundary between wet

and dry parts

The simulation results shown in Fig. 3 indicate that the boundary between the dry
and the wet part of the matrix moves to the right with an almost constant velocity.
If this velocity is known a priori, the moving boundary of the wet matrix can be
localized such that the point where the model equations have to be switched can be
determined in advance.

Fig. 4 gives a magnified view of an evaporation front moving to the right. The
determination of the boundary moving velocity is just a special case of the general
problem to determine the velocity vM of the postion of the constant water content
YM . Out of several possibilities which all lead to the same result the case in Fig. 5
will be considered. Here dz and dt are chosen in such a way that the velocity vM of
a constant water content

Y +
M = YM (z, t) = YM(z + dz, t + dt) (37)

can be written as

vM =
dz

dt
. (38)

A Taylor series expansion for YM yields

YM(z + dz, t + dt) = YM (z, t) +
∂YM
∂t

· dt + ∂YM
∂z

· dz +O(dz2, dt2) (39)

Neglecting the terms of higher order the following expression for vM results:

vM =
dz

dt
= −

∂YM
∂t
∂YM
∂z

(40)
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Figure 6: Moving boundaries due to evaporation

With Eqn. (13) for
∂YM
∂t

the final result can be written as

vM =
aV · β · (XM −XA)

(1− ε) · �S · ∂YM
∂z

(41)

In the case of evaporation, i.e. XM > XA, the velocity vM is positive if the spatial

derivative is positive. If
∂YM
∂z

becomes negative, the direction of the front changes

and, accordingly, vM in Eqn. (41) becomes negative, too. This is shown in Fig. 6.

7 Transformation to a moving coordinate system

Eqn. (41) can be used to position specific grid points exactly at the boundaries
between the dry and the wet parts of the matrix. For the other grid points of
the entire spatial domain it has to be decided, if either the equations for a wet
(Eqn. (11) - (16) with δ = 1) or a dry matrix (δ = 0) apply. Now the model
equations do not switch any more at one certain grid point and the right hand side
is continuous and continuously differentiable. The problem using this method is that
the selected moving grid points may cross static grid points. This can be handled
with a special control strategy like the one used by Hasan et al. for the investigation
of cyclic 1D melting and freezing [19]. If a moving grid point crosses a static grid
point the two points change its features, i.e. the static grid point becomes a moving
one and vice versa.

Another approach is that all grid points are assumed to be moving such that crossing
cannot occur. Therefore, the changes of the state variables have to be described in

a moving coordinate system. In Eqn. (31) the partial derivative
∂�y

∂t
is the variation
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of �y with time at a fixed position in the spatial domain whereas the total derivative

d�y

dt
=
∂�y

∂t
+
∂�y

∂z
· dz
dt

(42)

describes the change of �y with time while moving along the space coordinate with

the velocity w =
dz

dt
[3, 31]. By replacing the partial derivative Eqn. (31) can be

rewritten as

B̄ ·
(
d�y

dt
− w · ∂�y

∂z

)
= �f (�y, �yz, �yzz) (43)

or

B̄ · d�y
dt

= �f (�y, �yz, �yzz) + B̄ · w · ∂�y
∂z

= �g (�y, �yz, �yzz) . (44)

If the velocity w is equal to zero the partial derivative
∂�y

∂t
coincides with the total

derivative and Eqn. (44) and Eqn. (31) are equal.

Written in more detail, Eqns. (11) - (16) are transformed into the following system
for moving coordinates (see [27] for more details):

ε · �A ·
(
dXA

dt
− w · ∂XA

∂z

)
= −ε · �A · vA · ∂XA

∂z
+ ε ·Deff · ∂

2XA

∂z2

−δ · aV · β · (XA −XM ) (45)

0 = XM − 0.622 · psatW (ϑM)

p− psatW (ϑM)
(46)

(1− ε) · �S ·
(
dYM
dt

− w · ∂YM
∂z

)
= δ · aV · β · (XA −XM) (47)

ε · �A · cp ·
(
dϑA

dt
− w · ∂ϑA

∂z

)
= −ε · �A · vA · cp · ∂ϑA

∂z

+ε · λeff · ∂
2ϑA

∂z2

−aV · α · (ϑA − ϑM) (48)

(1− ε) · �S · cM ·
(
dϑM

dt
− w · ∂ϑM

∂z

)
= (1− ε) · λS · ∂

2ϑM

∂z2

+aV · α · (ϑA − ϑM )

+δ · aV · β · (XA −XM )

·(r0 + cp,W · ϑA − cW · ϑM) (49)

∂p

∂z
= −32 · ν · �A · vA

d2h
(50)

For the case of a dry surface and XA < XM (δ = 0) the spatial derivative
∂YM
∂z

vanishes and Eqn. (47) can be written as

(1 − ε) · �S · dYM
dt

= 0 (51)
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It would also be possible to solve the equation YM = 0, but Eqn. (51) is easier to
implement.

8 Solution of the model equations using a moving

grid

As in Sect. 5, the transformed partial differential Eqn. (44) can be solved using a
method of lines algorithm like Pdexpack. Because of the transformation to a mo-
ving coordinate system the ordinary differential equation (13) becomes a hyperbolic
partial differential equation (47). Since Pdexpack needs the stabilizing factor of a
dispersion term [27], such a term is added arbitrarily to Eqn. (44) yielding

(1− ε) · �S · dYM
dt

= (1− ε) · �S ·w · ∂YM
∂z

+Dz · ∂
2YM
∂z2

+ aV · β · (XA −XM ) (52)

The dispersion coefficient Dz is chosen such that the respective Péclet-number

Pez =
(1 − ε) · �S · w · L

Dz
(53)

has a minimum value of Pez = 5000. This ensures sufficient numerical stabilization
while having neglegible influence on the solution.

After spatial discretization Eqn. (43) transformes into

B̄i ·
(
d�yi
dt

− wi · �yz|i
)
= �fi (�yi, �yz|i , �yzz|i) i = 1, . . . , n (54)

or

B̄i ·
(
d�yi
dt

− dzi
dt

· �yz|i
)
= �fi (�yi, �yz|i , �yzz |i) i = 1, . . . , n . (55)

Here wi, the moving velocity of each grid point, has been replaced by
dzi
dt

, because

a grid point zi moves by dzi during on time step dt.

Since the location of the gridpoints change with time they can be considered as
additional state variables. At each grid point zi a new vector of unknowns �̃yi can
be defined as

�̃y
T

i = (�yTi , zi) i = 1, . . . , n . (56)

where
ỹi,m+1 = zi . (57)

The system of equations to be solved at each grid point can be written now as

B̃i · d�̃yi
dt

= �̃f i

(
�̃yi, �̃yz

∣∣∣
i
, �̃yzz

∣∣∣
i

)
. (58)
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Whereas the matrix B̄i in the discretized system (36) depends only on �yi and zi the
matrix B̃i in Eqn. (58) is now also a function of the state variables at the adjacent
grid points zi−1 and zi+1. This is due to the discretization formula of the spatial
derivative yz|i (see [29]) which is present in all equations in a product with the time
derivative of the additional state variable ỹi,m+1 = zi.

The additional equation for zi can be obtained from the following considerations. In
App. B it is shown how the error control algorithm of Pdexpack has to be modified
if the grid points move.

8.1 Grid points at boundaries of the spatial domain

The first and the last grid point of the spatial domain, i.e. z1 and zn, are not allowed
to move. This leads to the following conditions:

dz1
dt

= 0 (59)

dzn
dt

= 0 (60)

8.2 Grid points at moving boundaries

To determine the position of the boundary between dry and wet parts of the matrix, a
distinction should be made between evaporation and condensation. The evaporation
case has been treated in Sect. 6 and resulted in an equation for the front moving
velocity vM (Eqn. (41)). If evaporation occurs (XA < XM ) the position of the front
is where YM changes from zero to positive values. If this position has been idendified
once it can be followed by the condition

dYM
dt

= 0 (61)

The velocity vM of this front has been derived as a special case in Sect. (6). It is
interesting to note that the front moving velocity of an evaporation front (Eqn. (41))
can also be obtained from Eqn. (47) with Eqn. (61):

dzk
dt

=
aV · β · (XM |k − XA|k)
(1 − ε) · �S · ∂YM

∂z

∣∣∣∣∣
k

= vM

Examples will be discussed in Sect. 9.1 and 9.2.

If the matrix is dry (YM = 0) a second kind of moving boundary exists where the
difference (XA −XM ) changes its sign. Condensation starts as soon as XA exceeds
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XM . Therefore, the front between a dry and a wet surface can be identified by the
condition

0 = XA −XM . (62)

This will be discussed in an example in Sect. 9.3 where the front moving velocity is
not given by Eqn. 41.

It should be mentioned that following steep wave fronts, which is the aim of the
moving grid algorithms e.g. proposed by Petzold [31], can be considered as a special

case of the moving boundary problem discussed above. The condition
dyj
dt

= 0 yields

the velocity of one special grid point moving with the continuous front independently
of the absolute value of yj. In contrast to moving boundary problems the model
equations do not change at this grid point.

8.3 Other grid points

For all other grid points the only requirement is that they do not cross each other.
This is fulfilled if the ratio of the two adjacent grid point distances (zi − zi−1) and
(zi+1 − zi) stays constant while the grid points are moving. This is equivalent to
the condition that the smoothness of the grid has to stay constant. For a grid with
zi−1 < zi < zi+1 this can be expressed as

zi+1 − zi
zi − zi−1

∣∣∣∣∣
t

=
zi+1 − zi
zi − zi−1

∣∣∣∣∣
t+dt

. (63)

From the derivation in App. C it follows

wi+1 − wi

wi − wi−1
=
zi+1 − zi
zi − zi−1

(64)

such that the velocity wi =
dzi
dt

can be expressed as a function of wi−1 and wi+1.

With these assumptions the remainder of the missing equations is obtained:

zi+1 − zi
zi+1 − zi−1

· dzi−1

dt
+
dzi
dt

+
zi − zi−1

zi+1 − zi−1
· dzi+1

dt
= 0 2 ≤ i ≤ k − 1 (65)

dzk
dt

= wk (66)

zi+1 − zi
zi+1 − zi−1

· dzi−1

dt
+
dzi
dt

+
zi − zi−1

zi+1 − zi−1
· dzi+1

dt
= 0 k + 1 ≤ i ≤ n− 1 (67)

Eqn. (65) and (67) can be understood as a linear interpolation of the grid point
velocities on the left and right side of grid point zk. If no moving boundary is
present the velocity wk is zero and equal the velocity of all other grid points.

16



Eqn. (65)-(67) have been derived for one grid point zk which moves with a moving
boundary. In this case, the interpolation is carried out between the velocity of the
boundary and zero which is the velocity at the ends of the spatial domain. There
is no restriction for the number of moving boundaries to be considered since the
same interpolation formulas can be used to compute the grid velocities between two
moving boundaries.

It should be mentioned that in our example of a liquid water front on the matrix an
explicit expression for wk can be obtained (Eqn. (41)). In a more general case the
velocity wk may result from the numerical solution of the model equations and the
additional condition at the grid point (compare the case of condensation on a dry
matrix treated above).

9 Examples and performance of the moving grid

method

This section shows the benefit of the moving grid algorithm compared to the method
using a static grid discussed in Sect. 5.

9.1 Evaporation with one moving boundary

Fig. 7 shows the simulation of the evaporation from an initially wet matrix. Contrary
to the example of Fig. 3 the matrix temperature ϑM changes during the simulation
such that the corresponding saturated water contentXM changes, too. Dry air enters
the regenerator from the left side at z = 0 with an inlet temperature of ϑA = 40◦ C
and is cooled by the matrix the initial temperature of which is ϑM = 20◦ C. Since
the water content XA is lower than the equilibrium value of the wet matrix XM

water evaporates into the air stream and the temperature of the matrix decreases
because of the heat of evaporation. After 0.3 s the matrix begins to dry out from
the left side and the dry part is heated up by the warm air stream. A front with
YM = 0 moves to the right and a moving boundary is generated.

Because of the switch from convective heating to (essentially) evaporative cooling
before and after the evaporation front the matrix temperature exhibits a sharp bent
at the front transition.

Fig. 8 illustrates how the velocity of the grid points is determined by the moving
boundary. The depicted velocities correspond to the profiles shown in Fig. 7. As
long as the whole matrix is wet no moving boundary exists and the grid points do
not move (profiles 1© and 2© ). As discussed in Sect. 8.1 the grid points at the inlet
and outlet of the regenerator are fixed and the velocity of the front point moves with
the velocity vM . All other grid point velocities are determined by interpolation.
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Figure 7: Evaporation from an initially wet matrix with varying matrix temperature:
1© t = 0s, 2© t = 0.3s 3© t = 0.9s, 4© t = 1.3s, 5© t = 2.1s, 6© t = 2.9s, XM (- - -),
XA (—–).

0.00 0.10 0.20
-0.10

-0.05

0.00

0.05

0.10
w

m/s

z/m

3 4 5
6

1 2

Figure 8: Velocity of the grid points with one moving boundary: 1© t = 0 s, 2©
t = 0.3s 3© t = 0.9s, 4© t = 1.3s, 5© t = 2.1s, 6© t = 2.9s.
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Moving grid Static grid

nt 21 1114
n̄z 131 192
nmin
z 23 29
nmax
z 269 961

Stability good good
CPU-time [s] 25.5 1077.1

Table 1: Comparison of the performace for one moving boundary (tol = 10−3)

Moving grid Moving grid Static grid
(Pez = ∞) (Pez = 5000)

nt 23 17 250
n̄z 62 55 126
nmin
z 23 23 25
nmax
z 169 109 501

Stability poor good poor
CPU-time [s] 13.6 9.2 126.1

Table 2: Comparison of the performace for one moving boundary (tol = 5 · 10−2)

The performance of the presented moving grid algorithm has been compared to
the conventional method using a static grid. Tab. 1 and 2 show the number of
time steps nt and the average number of grid points n̄z. Because of the regridding
techniques implemented in Pdexpack the number of grid points is varying during
the simulation bewtween nmin

z and nmax
z . The required CPU-time for the simulations

relates to a Sparc 5 workstation.

As illustrated in Tab. 1 both methods yield a stable solution for a specified error
tolerance in time and space tol = tolt = tolz = 10−3 (compare Eqn. (111) and (112)
in App. B). However, compared to the moving grid the static grid algorithm requires
much smaller time steps to correctly track the front. As discussed in Sect. 5 the
right hand side becomes discontinuous at the point where the model equations have
to be switched.

If the required tolerance is reduced to tol = 5 · 10−3 Tab. 2 indicates that a stable
solution for the moving grid method cannot be obtained without the stabilizing
factor of a (very small) dispersion term as discussed in Sect. 8. Compared to the
performance with a more restrictive tolerance in Tab. 1 the number of selected time
steps of the static grid method decreases by the factor four. Neverthless, the low
number of time steps of the moving grid method cannot be reached such that the
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Figure 9: Evaporation during cyclic operation of a regenerator: 1© t = t0, 2© t =
t0 + 0.3s, 3© t = t0 + 0.6s, 4© t = t0 + 0.9s, XM (- - -), XA (—–).

required CPU-time is one order of magnitude higher for the static grid.

9.2 Evaporation with two moving boundaries

The example discussed above is not representative for situations which occur during
the cyclic operation of an regenerative air to air heat exchanger. Instead of starting
the simulation from a completely wetted matrix shown in Fig. 7 the profiles in Fig. 9
illustrate the period where a dry air stream enters the regenerator from the left end
and the water content of the matrix YM at the beginning of the period is non-uniform
(profile 1© ). Since the driving gradient for the transfer of water vapor is directed
from the matrix to the air stream over the whole length of the matrix two moving
boundaries are generated. During the simulation the water content XA of the air
stream increases only at that part of the matrix which is still wetted.

Fig. 10 shows that the velocities of the two grid points moving with the boundaries
have opposite signs, i.e. the right moving boundary moves to the left which can also

20



0.00 0.10 0.20
-0.06

-0.03

0.00

0.03

0.06
w

m/s

z/m

1

3

4

2

Figure 10: Velocity of the grid points with two moving boundaries: 1© t = t0, 2©
t = t0 + 0.3s, 3© t = t0 + 0.6s, 4© t = t0 + 0.9s.

Moving grid Static grid

nt 10 205
n̄z 204 219
nmin
z 53 53
nmax
z 329 469

Stability good good
CPU-time [s] 20.7 224

Table 3: Comparison of the performace for two moving boundaries with tol = 10−3

be seen in Fig. 9 (profiles 2© to 4© ).

The comparison of the performance between the moving and the static grid method
is shown in Tab. 3. The gradients of the profiles in Fig. 9 are less steep than the
ones in Fig. 7 such that both methods yield stable solutions without any stabilizing
factors. Again the static grid method requires smaller time steps to achieve the
specified accuracy such that for the moving grid method the computational effort is
reduced by an order of magnitude.

9.3 Condensation on a dry matrix

The following example shows the phenomena which occour in a regenerative air to
air heat exchanger if a moist air stream withXA = 14 g

kg
and ϑM = 20◦C enters a dry

and cold matrix with ϑM = 10◦C . At the beginning of the simulation the air in the
flow channels of the heat exchanger is completely dry. When the moist air stream
enters from the left end, two different phenomena can be observed: condensation
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Figure 11: Condensation during cyclic operation of a regenerator: XA, YM - 1©
t = 0.002 s, 2© t = 0.015s 3© t = 0.03s, 4© t = 0.04s, 5© t = 0.05s. XM is almost
constant during the shown period. The matrix and the air in the regenerator were
initially completely dry.
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Figure 12: Velocity of the grid points with one moving boundary: 1© t = 0.002 s, 2©
t = 0.015s 3© t = 0.03s, 4© t = 0.04s, 5© t = 0.05s.
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Moving grid Static grid

nt 26 44
n̄z 193 145
nmin
z 69 27
nmax
z 409 145

Stability good good
CPU-time [s] 46.7 20.6

Table 4: Comparison of the performace one moving boundary during condensation
(tol = 5 · 10−3)

from the moist air stream onto the cold matrix and replacement of the dry air by
the moist air.

In the simulation shown in Fig. 11 the velocity of the air is approximately 4m
s
such

that the air has passed over the whole length of the matrix after 0.05s. During
this small period of time the temperature of the matrix and therefore the saturation
content can be considered to be constant at XM = 8 g

kg
which is represented by

the horizontal line in the left diagram of Fig. 11. This value is below the water
content of the entering moist air such that condensation occours onto the matrix
at the left end and the water content of the moist air decreases (profile 1© ). After
it drops below the saturation content of the matrix the condensation stops and the
remaining part of the matrix remains dry and of course no evaporation can occur
although the driving gradient ist from the matrix to the dry air. While the dry air
is displaced more and more the front moves towards the right end. The front of the
moving boundary is now characterized by the identityXA = XM . This is in contrast
to the examples of Sect. 9.1 and 9.2 where the moving boundaries are characterized
by YM = 0 and the velocity vM is determined by Eqn. (41). As discussed in Sect. 8
an explicit equation for a front with XA = XM cannot be obtained. However, if
the dispersion term is neglected, it can be seen from Eqn. (11) that a front with
XA = XM moves with the velocity vA of the air stream which is much higher than
the velocity for YM = 0 and shown in Fig. 12.

Tab. 4 shows the performance of the two solution methods for the example discussed
above. Compared to the method using a static grid the moving grid algorithm
requires only about half of the integration steps. Surprisingly, for the conventional
algorithm with a static grid the number of grid points is smaller as well as the
required CPU time. In the moving grid algorithm the point XA = XM has to be
determined during the simulation for t < 0.05s. Fig. 11 shows that there is a well
defined intersection between XA and XM for the profiles 1© and 2© . Because of
the asymptotic approach of XA to XM more and more grid points are required to
characterize the identity XA = XM accurately enough and the advantage of fewer
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required time steps is compensated. The conventional static grid method shows
disadvantages if the Jacobian matrix is unsteady which is the case for profile 1© and
2© with sharp intersection points. For the asymptotic approach of the profiles this
disadvantage disappears and the performance of the moving grid method is poor
due to the higher number of required grid points.

The example of condensation front movement on an originally dry surface has been
treated above in some detail to show the general applicability of the method pro-
posed. For practical purposes it would not be necassary to resolve the detailed
changes within the first 0.05s of simulation. A pseudo-steady state assumption for
the water vapor balance Eqn. 11 would be appropriate instead. The profile 5© in
Fig. (12) would be the starting profile of this period.

10 Conclusions and open problems

A numerical method for solving 1D moving boundary problems arising from dis-
continuities has been presented. Compared to the conventional technique using a
static grid the adaptive moving grid method is able to track the discontinuity in
the governing model equations. Therefore, the equations do not switch during the
simulation at any grid point such that the right hand side is continuous and larger
time steps can be selected. This is shown in the simulations illustrating the evapo-
ration in a regenerative air to air heat exchanger, even where more than one moving
boundary is present. However, during the period of condensation, the moving grid
method requires more grid points than the method using a static grid. This is due
to the asymptotic approach of the profiles to the discontinuity and can be avoided
with a pseudo steady state assumption for the gas phase. The derived method can
also be applied for other 1D problems with moving boundaries arising in modelling
of chemical engineering systems.

A still open problem is to find reliable, robust and accurate criteria for the first
idendification or disappearance of moving boundaries. A helpful tool could be the
implementation of a so called dense output method which allows a continuous repre-
sentation of the solution [18]. Furthermore, the development of efficient and reliable
methods which allow a coupling of moving boundaries with geometrical fixed ones
and the crossing of different moving boundaries is still an open question.
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A Derivation of the balance equations

The following derivations apply for the control volume shown in Fig. 2.

A.1 Mass balance of the gas phase

Since air is considered to be non-condensable the mass balance equation for dry air
is

∂mA

∂t
= −∂ṁA

∂z
· dz (68)

Using mA = ε · A · �A · dz and ṁA = ε · A · �A · vA yields

∂�A
∂t

= −∂(�A · vA)
∂z

= −�A · ∂vA
∂z

− vA · ∂�A
∂z

(69)

A.2 Mass balance of water vapor in the gas phase

The water vapor mass mW is transfered through

• convection of vapor in the gas phase (ṁC
W ),

• vapor transport between the phases (dṁW ) and

• dispersion of vapor in the gas phase (JW ).∗

This leads to the water vapor balance

∂mW

∂t
= −∂ṁ

C
W

∂z
· dz − ∂JW

∂z
· dz − dṁW . (70)

With mW = XA · mA = XA · ε · A · �A · dz, ṁC
W = XA · ṁA = XA · ε · A · �A · vA,

Fick’s law of diffusion JW = −ε ·A ·Deff · ∂XA

∂z
and insertion of Eqns. (69) and (8)

in Eqn. (70) yields

ε · �A · ∂XA

∂t
= −ε · �A · vA · ∂XA

∂z
+ ε ·Deff · ∂

2XA

∂z2
− β · aV · (XA −XM ) (71)

∗Dispersive transport mechanisms (e.g. diffusion of mass or heat conduction) are usually ne-
glected in the literature in the description of condensation and evaporation problems in rotary heat
exchangers. However, the applied method should be valid for a wider class of processes e.g. in
chemical reaction engineering, where dispersion effects can sometimes play a more significant role
than in the example shown in this paper. Furthermore, using a dispersion coefficient enables to
describe axial dispersion effects in the heat and mass balances due to radial temperature and water
vapor distribution which takes into account the deviation from ideal plug flow behavior. Finally,
the system of the gouverning equations should be parabolic for the solution algorithm used.
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where aV is the specific surface:

aV =
dAS

A · dz (72)

The density of dry air �A is determined by the ideal gas law:

�A =
MA · p
R · TA

with TA = ϑA + 273.15 (73)

A.3 Mass balance of liquid water on the matrix

The amount of water mW
M on the matrix is considered to be fixed and can change

only by mass transfer between the matrix and the air stream:

∂mW
M

∂t
= dṁW (74)

With mW
M = YM ·mS = YM · (1− ε) · �S ·A · dz and Eqn. (8) the following equation

can be obtained:

(1− ε) · �S · ∂YM
∂t

= β · aV · (XA −XM ) (75)

A.4 Energy balance of the gas phase

The internal energy U of the gas consisting of dry air and water vapor in the control
volume changes because of

• convection and dispersion of enthalpy in the gas phase (Ḣ),

• enthalpy transport with the water vapor between the phases (hW · dṁW ),

• heat flux between the phases (dQ̇) and

• heat dispersion in the gas phase (JT ), described by Fourier’s law of conduction.

It is assumed that the water vapor passes the phases boundary with the conditions
of the flowing air. Therefore, the enthalpy of the flux between the phases is equal
to the enthalpy hW of the vapor in the moist air. With these assumptions and the
application of the first law of thermodynamics on the control volume in Fig. 2 leads
to the following balance equation:

∂U

∂t
= −∂Ḣ

∂z
· dz − ∂JT

∂z
· dz − hW · dṁW − dQ̇ . (76)

U will be replaced by
U = H − p · V, (77)

26



where the pressure p can be considered as pseude-stationary. For an ideal gas the
enthalpy of the gas phase can be calculated as the sum of the enthalpies of the
species in the mixture:

H = mA · hA +mW · hW = mA · (hA +XA · hW ) = mA · h (78)

In the air stream enthalpy is transfered through convection and dispersion of water
vapor:

Ḣ = ṁA · h + JW · hW (79)

The specific enthalpy h = hA +XA ·hW is based on the mass of dry air. With these
correlations Eqn. (76) yields

ε ·A · �A · dz · ∂h
∂t

+ ε · A · h · dz · ∂�A
∂t

= −ε · A · �A · vA · ∂h
∂z

· dz

−ε · A · h · ∂(�A · vA)
∂z

· dz

−JW · ∂hW
∂z

· dz − hW · ∂JW
∂z

· dz

−∂J
T

∂z
· dz − hW · dṁW − dQ̇ . (80)

With Fick’s law of diffusion, Fourier’s law of heat conduction

JT = −ε · A · λeff · ∂ϑA

∂z
, (81)

convective heat transfer between the matrix and the gas

dQ̇ = α · dAs · (ϑA − ϑM) (82)

and inserting Eqn. (69) and (8) this simplifies to

ε · �A · ∂h
∂t

= −ε · �A · vA · ∂h
∂z

+ ε ·Deff · ∂XA

∂z
· ∂hW
∂z

+ε ·Deff · hW · ∂
2XA

∂z2
+ ε · λeff · ∂

2ϑA

∂z2

−hW · aV · β · (XA −XM )− α · aV · (ϑA − ϑM ) . (83)

The specific enthalpy h depends on the temperature ϑA and the water content XA

of the air whereas the specific enthalpy hW of the water vapor depends only of
the temperature. As a reference point for the enthalpy usually the temperature
ϑ0 = 0◦ C is chosen [36]:

h = cp,A · ϑA +XA · (r0 + cp,W · ϑA) (84)

hW = r0 + cp,W · ϑA (85)
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The specific heat capacities cp,A and cp,W are assumed to be constant. The differen-
tials are obtained after applying the product rule:

∂h

∂t
= (cp,A +XA · cp,W ) · ∂ϑA

∂t
+ (r0 + cp,W · ϑA) · ∂XA

∂t
(86)

∂h

∂z
= (cp,A +XA · cp,W ) · ∂ϑA

∂z
+ (r0 + cp,W · ϑA) · ∂XA

∂z
(87)

∂hW
∂z

= cp,W · ∂ϑA

∂z
(88)

The enthalpy changes in Eqn. (83) can be replaced by these correlations such that
the following energy balance for the gas phase can be obtained:

ε · �A · (cp,A +XA · cp,W ) · ∂ϑA

∂t
+

ε · �A · (r0 + cp,W · ϑA) · ∂XA

∂t
= −ε · �A · vA · (cp,A +XA · cp,W ) · ∂ϑA

∂z

−ε · �A · vA · (r0 + cp,W · ϑA) · ∂XA

∂z

+ε ·Deff · ∂XA

∂z
· cp,W · ∂ϑA

∂z

+ε ·Deff · (r0 + cp,W · ϑA) · ∂
2XA

∂z2

+ε · λeff · ∂
2ϑA

∂z2

−β · aV · (r0 + cp,W · ϑA) · (XA −XM )

−α · aV · (ϑA − ϑM) (89)

Inserting the mass balance of Eqn. (71) yields

ε · �A · cp · ∂ϑA

∂t
= −ε · �A · vA · cp,W · ∂ϑA

∂z
+ ε ·Deff · cp,W · ∂XA

∂z
· ∂ϑA

∂z

+ε · λeff · ∂
2ϑA

∂z2
− aV · α · (ϑA − ϑM) (90)

with
cp = cp,A +XA · cp,W . (91)

It may be surprising that that transfer of water vapor between the phases does not
affect the temperature ϑA of the air. This is due to the assumption that water vapor
passes the phase boundary with the state of the air stream. The phase changes like
evaporation or condensation take place on the matrix.

A.5 Energy balance of the matrix

The internal energy of the matrix consisting of solid material and a water film
changes because of the heat flux and the enthalpy transport with the flux of water
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vapor between the air stream and the matrix. In the solid part of the matrix, axial
conduction of heat (flux JT

M ) is considered:

∂UM

∂t
= −∂J

T
M

∂z
· dz + hW · dṁW + dQ̇ (92)

The energy of the wet matrix can be calculated as the sum of the energy of the solid
part and the energy of the liquid water:

UM = mS · uS +mW · uW = mS · (uS + YM · uW ) = mS · u (93)

With Fourier’s law of heat conduction JT
M = −(1 − ε) · A · λS · ∂ϑM

∂z
and inserting

Eqn. (82),(8) this leads to

(1−ε) ·�S · ∂u
∂t

= (1−ε) ·λS ∂
2ϑM

∂z2
+hW ·β ·aV ·(XA−XM )+α ·aV ·(ϑA−ϑM) . (94)

The specific energy u = uS+YM ·uW depends on the temperature ϑM and the water
content YM . As a reference point again the temperature ϑ0 = 0◦ C is chosen [36]
and the specific heat capacities cS and cW are assumed to be constant:

u = cS · ϑM + YM · cW · ϑM (95)

The change of the internal energy can be expressed as

∂u

∂t
= (cS + YM · cW ) · ∂ϑM

∂t
+ cW · ϑM · ∂YM

∂t
(96)

With these expressions Eqn. (94) can be written as

(1 − ε) · �S · (cS + YM · cW ) · ∂ϑM

∂t
+

(1− ε) · �S · cW · ϑM · ∂YM
∂t

= (1− ε) · λS ∂
2ϑM

∂z2

+(r0 + cp,W · ϑA) · aV · β · (XA −XM )

+α · aV · (ϑA − ϑM) . (97)

Inserting the mass balance in Eqn. (75) yields

(1− ε) · �S · cM · ∂ϑM

∂t
= (1 − ε) · λS · ∂

2ϑM

∂z2
+ aV · α · (ϑA − ϑM)

+aV · β · (XA −XM )

·(r0 + cp,W · ϑA − cW · ϑM) (98)

with
cM = cS + YM · cW (99)

The last term in Eqn. (98) discribes the temperature change of the matrix due to
condensation and evaporation. It contains the total difference between the enthalpy
of water vapor and enthalpy of liquid water on the matrix.
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A.6 Momentum balance

Instead of a dynamic momentumbalance a pseudo-stationary pressure drop equation
for laminar flow is used throughout this paper to compute the pressure along the
flow length of the regenerative heat exchanger:

∂p

∂z
= −32 · ν · �A · vA

d2h
(100)

A.7 Boundary Conditions

For the partial differential equations boundary conditions have to be specified. For
the energy balance of the matrix it is assumed that the boundaries are adiabatic:

∂ϑM

∂z

∣∣∣∣∣
z=0

= 0 (101)

∂ϑM

∂z

∣∣∣∣∣
z=L

= 0 (102)

For the mass and energy balance of the gas the boundary conditions are derived
with the assumption that axial dispersion of mass and heat is limited to the inside
of the heat exchanger and can be negelcted outside. The procedure corresponds to
the derivation of the common Danckwerts Boundary Conditions [11]. The boundary
contitions have to be switched depending on the flow direction of the air. If the air
stream enters the heat exchanger from the left end a mass balance for water vapor
at the inlet at z = 0 yields

Deff · ∂XA

∂z

∣∣∣∣∣
z=0

= �A · vA · [XA(z = 0) −X∗
A] (103)

At the outlet of the regenerator the dispersion can be negelected.

∂XA

∂z

∣∣∣∣∣
z=L

= 0 . (104)

The energy balance at the inlet of the heat exchanger yields

ṁA ·h∗ = ṁA ·h(z = 0)−hW (z = 0)·ε·A·Deff · ∂XA

∂z

∣∣∣∣∣
z=0

−ε·A·λeff · ∂ϑA

∂z

∣∣∣∣∣
z=0

(105)

With Eqn. (84),(85) and (22) this can be written as

ṁA · [cp,A · ϑ∗
A + X∗

A · (r0 + cp,W · ϑ∗
A)] =

ṁA · [cp,A · ϑA(z = 0) +XA(z = 0) · (r0 + cp,W · ϑA(z = 0))]

−ṁA · [r0 + cp,W · ϑA(z = 0)] · [XA(z = 0)−X∗
A]

−ε · A · λeff · ∂ϑA

∂z

∣∣∣∣∣
z=0

(106)
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or

ṁA · cp,A · [ϑ∗
A − ϑA(z = 0)] + ṁA · cp,W ·X∗

A · [ϑ∗
A − ϑA(z = 0)]

= −ε · A · λeff · ∂ϑA

∂z

∣∣∣∣∣
z=0

(107)

Therefore, the boundary conditions for the energy balance of the gas phase are

λeff · ∂ϑA

∂z

∣∣∣∣∣
z=0

= �A · vA · (cp,A +X∗
A · cp,W ) · (ϑA(z = 0)− ϑ∗

A) (108)

∂ϑA

∂z

∣∣∣∣∣
z=L

= 0 . (109)

The pressure at the inlet is fixed such that

p(z = 0) = p∗. (110)

B Scaling and weighting for error control

The error control implemented in Pdexpack is based on relative error criterions.
An integration step is only accepted if the relative global error norms εt and εz fulfill
the conditions

εt ≤ tolt (111)

εz ≤ tolz (112)

where tolt and tolz are user specified error tolerances. The error norms are computed
out from relative errors for every state variable at every gridpoint. Therefore, the
estimated absolute error Δyj(t, zi) of each state variable yj has to be weighted with
a suitable weighting factor[16, 30]:

εj(t, zi) =
Δyj(t, zi)

ψj(t, zi)
(113)

where �ψ(t, zi) is chosen such that

ψj(t, zi) = max
(
yj(t, zi), y

thresh
j

)
. (114)

The value ythreshj determines a lower threshhold for the accuracy and divisions by
zero can be prevented. If yj(t, zi) > ythreshj a true relative error is estimated, if
yj(t, zi) < ythreshj an absolute error is estimated.

This procedure for the error determination cannot be applied for the vector �̃y which
contains the moving grid points zi as state variables. Using the relative error from
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Eqn. (113) and (114) grid points at the left end of the spatial domain are computed
with a higher accuracy than grid points at the right end. Since the accuracy for the
moving grid points should be the same for the whole spatial domain the following
relation for the determination of the errors of the grid points has been implemented
in Pdexpack:

εj(t, zi) =
Δzi(t)

zthresh
(115)

C Determination of the grid velocity

For the grid points zi−1 < zi < zi+1 the following condition must be fulfilled:

zi+1 − zi
zi − zi−1

∣∣∣∣∣
t

=
zi+1 − zi
zi − zi−1

∣∣∣∣∣
t+dt

(116)

With
zl(t + dt) = zl(t) + wl(t) · dt l = i− 1 , i , i+ 1 (117)

this can be expressed as

zi+1(t)− zi(t)

zi(t)− zi−1(t)
=
zi+1(t) + wi+1(t) · dt− zi(t)− wi(t) · dt
zi(t) + wi(t) · dt− zi−1(t)− wi−1(t) · dt . (118)

For simplicity the dependence from t can be omitted such that

zi+1 − zi
zi − zi−1

=
(zi+1 − zi) + (wi+1 − wi) · dt
(zi − zi−1) + (wi − wi−1) · dt (119)

and
wi+1 − wi

wi − wi−1

=
zi+1 − zi
zi − zi−1

(120)

is obtained which is the same as Eqn. (64).

Notation

Letters Unit

A m2 area

aV
m2

m3 geometrical surface to volume ratio
B̄ div matrix of storage
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cp
J

kg·K gas heat capacity

cS
J

kg·K solid heat capacity

cW
J

kg·K heat capacity of liquid water

c mol
m3 concentration

Deff
kg·m2

s
dispersion coefficient

D m
s

diffusion coefficient
dh m hydraulic diameter
D̄ div matrix of dispersive transport
�f div vector of right hand side
�g div vector of modified right hand side

after transformation
H J enthalpie
h J

kg
specific enthalpy

Ḣ J
s

enthalpie flux
JT W heat flux by conduction
JW

kg
s

water vapor flux by diffusion
L m length

M kg
mol

molar weight
m - number of unknowns
m kg mass

ṁ kg
s

mass flux
nz - number of gridpoints
nz - number of timesteps
ṅ mol

m2·s mole flux per area
p Pa pressure
Pe - Peclet number
�Q div vector of source terms

Q̇ W heat
R J

mol·K gas constant
r m radial coordinate
r0

J
kg

enthalpy of evaporation

T K temperature
t s independent variable (time)
tol - tolerance
U J internal energy
u J

kg
specific internel energy

V m3 volume
v m

s
velocity

w m
s

velocity of moving grid points

XA
kgwater vapor

kgdry air
water content in dry air

XM
kgwater vapor

kgdry air
water content in equilibrium
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with matrix temperature

YM
kgliquid water

kgmatrix
water content of the matrix

�y div vector of dependent state variables

�̃y div vector of dependent state variables
in moving system

z m independent variable (space coordinate)

Greek letters Unit

α W
m2·K heat transport coefficient

ᾱ div diagonal - matrix of
boundary condition coefficients

β m
s

mass transport coefficient
β̄ div diagonal - matrix of

boundary condition coefficients
γ̄ div diagonal - matrix of

boundary condition coefficients
Δ - difference
δ - step change function
εt div error estimate in time
εz div error estimate in space
ε - void fraction
λ W

m·K thermal conductivity

ν m2

s
viscosity

�Ψ div vector of weighting factors

� kg
m3 density

ϑ ◦C temperature

Upper indices

C convection
max maximum
min minimum
sat saturation
thresh threshold
W water
0 initial conditions
∗ inlet

34



Lower indices

A dry air
i index of gridpoints
j index of state variables
k special grid point
l left boundary
M matrix
r right boundary
S solid
W water
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