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Abstract

We consider a single server system consisting of n queues with different types of customers
and k permanent customers. The permanent customers and those at the head of the queues
are served in processor-sharing by the service facility (head-of-the-line processor-sharing). By
means of Loynes’ monotonicity method a stationary work load process is constructed and using
sample path analysis general stability conditions are derived. They allow to decide which queues
are stable and moreover to compute the fraction of processor capacity devoted to the permanent
customers. In case of a stable system the constructed stationary state process is the only one
and for any initial state the system converges pathwise to the steady state.
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1 Introduction

In this note we consider a single server system consisting of n queues and k permanent customers.
At the system there arrives a stream of n types of customers. We assume that the input is given
by a stationary ergodic marked point process Φ = {[T�, I�, S�]}∞

�=−∞ on the real line with the
mark space IK = {1, . . . , n} × IR+ and . . . < T0 ≤ 0 < T1 < . . . , where T� are the arrival
instants of the customers, I� ∈ {1, . . . , n} indicates the type, i.e. the queue where the customer
goes to, and S� denotes the service time of the customer arriving at T�. Note, that there are no
independence assumptions. The input at queue i, i.e. the stream of type i-customers including
their required service times, is given by the stationary ergodic marked point process

Φi =
∑
�

δ[T�,S�]1I{I� = i} = {[Ti,�, Si,�]}∞
�=−∞, (1.1)

where . . . < Ti,0 ≤ 0 < Ti,1 < . . . and 1I{·} denotes the indicator function.
The permanent customers and those at the head of the n queues are served in processor-sharing
(PS) by the service facility. This means if there are b(∈ {0, . . . , n}) types of customers present
in the system (i.e. b queues are not empty) then the permanent customers and each of the b
customers at the head of the queues get a fraction of 1/(b + k) of the processor capacity, cf.
Fig. 1. Note, that the fraction of the processor capacity devoted to the permanent customers
changes randomly.
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Figure 1: Many-queue processor-sharing system with k permanent customers
and n queues of different customer types. �� corresponds to a customer.

The aim of the paper is to construct a stationary work load process by means of Loynes’ mono-
tonicity method and to derive general stability conditions for the separate queues and for the
whole system. The stability conditions allow to decide which queues are stable and moreover
to compute the fraction of processor capacity devoted to the permanent customers. Further it
will be shown that for the stable system the constructed stationary state process is the only one
and that under any initial state the system converges pathwise to the steady state. Concerning
the extensive literature for processor-sharing systems we refer to the survey papers [Y3]–[Y5].
In [BB] the above model is analysed for Poisson arrival streams in detail: for independent iden-
tically distributed service times of the different types of customers a pseudo conservation law
for the mean work load is given. In case of exponentially distributed service times a pseudo
conservation law and a heuristic approximation for the mean sojourn times is derived. Further
a numerical iterative algorithm for computing the steady state distribution is presented and
implemented for n=2, 3. For the two-queue model the generating function of the stationary dis-
tribution satisfies a functional equation being a Riemann-Hilbert problem which is reduced to
a Dirichlet problem for a circle. Numerical and simulation results are presented demonstrating
the approximations and algorithms.

2 Construction of the stationary work load process by Loynes’

monotonicity method

Let

V̂i(t) – be the work load at queue i immediately before t, i.e.
V̂i(t−) = V̂i(t);

V̂ (t) := (V̂1(t), . . . , V̂n(t)) – work load vector immediately before t;

V̂� = (V̂�,1, . . . , V̂�,n) := V̂ (T�) – work load immediately before the arrival of the �-th
customer.
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The dynamics of the work load process can be described by means of a measurable function
as follows. Let f(v, a) = (f(1)(v, a), . . . , f (n)(v, a)) be the work load vector at time t+ a if the
system starts at t with the work load vector v ∈ IRn

+ and if during the interval [t, t+ a] there is
no customer arrival.
In view of the processor-sharing discipline the service rate for queue i is 1/(b+k) if there is work
load in queue i and b queues are non-empty. Since during the time interval [t, t+ a] queues may
become empty, the service rate changes dynamically. Hence it is convenient to define f(v, a)
recursively up to the first time instant where the service rate changes: For v ∈ IRn

+ and a ∈ IR+

f(v, a) is given by

f(v, a) =

⎧⎪⎪⎨
⎪⎪⎩

(
v − a

b(v)+k1
)
+

for 0 ≤ a ≤ m(v)(b(v) + k),

f((v −m(v)1)+, a−m(v)(b(v)+ k)) for 0 < m(v)(b(v)+ k) < a,

0 for 0 = m(v) < a,

(2.1)

where 1 = (1, . . . , 1), b(v) = #{i : vi > 0}, m(v) = 1I{b(v) > 0}min{vi : vi > 0, i = 1, . . . , n}
and x+ = (max(x1, 0), . . . ,max(xn, 0)). We also have

f(v, a) = f(f(v, s), a− s), 0 ≤ s ≤ a, v ∈ IRn
+. (2.2)

Without loss of generality let v1 ≥ v2 ≥ · · · ≥ vb > vb+1 = . . . = vn = 0 with b = b(v). From
(2.1) we get immediately the explicit representation

f(v, a) =
b∑

i=0

1I{vb+1 + vb + . . .+ vb−i+2 + (b+ k − i+ 1)vb−i+1 ≤ a

≤ vb+1 + vb + . . .+ vb−i+1 + (b+ k − i)vb−i}
(
v −

(
vb−i+1 +

a− vb+1 − vb − . . .− vb−i+2 − (b+ k − i+ 1)vb−i+1

k + b− i

)
1

)
+
,

where vn+1 := 0 and v0 := ∞.

If V̂� is a feasible sequence of states for the input Φ at the times T�, then

V̂�+1 = f(V̂� + S� e(I�), T�+1 − T�), � ∈ ZZ, (2.3)

where

e(I�) = (δI�,1, . . . , δI�,n) (2.4)

is the I�-th unit vector and δi,j = 1I{i = j} the Kronecker symbol. For T� < t ≤ T�+1 it holds

V̂ (t) = f(V̂� + S�e(I�), t− T�) (2.5)

and for T� < s ≤ t ≤ T�+1

V̂ (t) = f(V̂ (s), t− s). (2.6)
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Now we will construct a stationary work load process by using Loynes’ monotonicity method,
cf. e.g. [Loy], [BFL]. The following lemma is the basis; its proof is immediate.

Lemma 2.1. For a ∈ IR+ fixed, the function f(v, a) is monotone non-decreasing and continuous
in v ∈ IRn

+.

For giving the backward construction, iterations of the dynamics are needed. Let

f1(v, a, i, s) := f(v + se(i), a), v ∈ IRn
+, a, s ∈ IR+, i ∈ {1, . . . , n}, (2.7)

where e(i) = (δi,1, . . . , δi,n) is the i-th unit vector. The j-fold iteration of f1 is defined by

fj(v, a1, i1, s1, a2, i2, s2, . . . , aj, ij, sj)

:= f1(fj−1(v, a1, i1, s1, . . . , aj−1, ij−1, sj−1), aj, ij, sj) (2.8)

for j ∈ {2, 3, . . .}, v ∈ IRn
+, a1, . . . , aj, s1, . . . , sj ∈ IR+ and i1, . . . , ij ∈ {1, . . . , n}.

Further let

MK = {ϕ = {[t�, i�, s�]}∞
�=−∞ : . . . < t0 ≤ 0 < t1 < . . . , i� ∈ {1, . . . , n},

s� ∈ IR+, lim
�→±∞

t� = ±∞}

be the set of point process realizations, where Φ is concentrated on, i.e. P (MK) = 1. For

ϕ ∈ MK let a� := t�+1 − t�, �
−(t) := max{� : t� < t}. Let v(τ )(t, ϕ) = (v

(τ )
1 (t, ϕ), . . . , v

(τ )
n (t, ϕ))

be the state of the system at time t if it was started at time t− τ with initial state v = 0, input
realization ϕ ∈ MK and τ > 0. Then v(τ )(t, ϕ) is given by

v(τ )(t, ϕ) = 1I{�−(t−τ)<�−(t)}f�−(t)−�−(t−τ )(0, a�−(t−τ )+1, i�−(t−τ )+1, s�−(t−τ )+1, . . . ,

a�−(t)−1, i�−(t)−1, s�−(t)−1, t− t�−(t), i�−(t), s�−(t)),

τ > 0, t ∈ IR, ϕ ∈ MK . (2.9)

In view of Lemma 2.1 for fixed t and ϕ the work load vector v(τ )(t, ϕ) is non-decreasing and
hence the limit as τ → ∞ exists:

v(t, ϕ) := lim
τ→∞

v(τ )(t, ϕ). (2.10)

For t = t� let

v�(ϕ) := v(t�, ϕ). (2.11)

The state v(t, ϕ) rsp. v�(ϕ) corresponds to the system state at t rsp. t� if the processor-sharing
system was started at t = −∞ with the initial state 0. Clearly, components of v(t, ϕ) may
be infinite. The continuity of f(·, a) and lim

n→±∞
tn = ±∞ imply that v(t, ϕ), v�(ϕ) satisfy the

system dynamics (cf. (2.3)–(2.6)):

v�+1(ϕ) = f(v�(ϕ) + s�e(i�), a�) for � ∈ ZZ, (2.12)

v(t, ϕ) = f(v�(ϕ) + s�e(i�), t− t�) for t� < t ≤ t�+1, (2.13)

v(t, ϕ) = f(v(s, ϕ), t− s) for t� < s ≤ t ≤ t�+1. (2.14)
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For ϕ = {[t�, i�, s�]}∞
�=−∞ ∈ MK (. . . < t0 ≤ 0 < t1 < . . .) the shifted sequence θτϕ is defined

by θτϕ = {[t�+�(τ,ϕ) − τ, i�+�(τ,ϕ), s�+�(τ,ϕ)]}∞
�=−∞, where �(τ, ϕ) = max{� : t� ≤ τ}. (Considering

MK as counting measures, i.e. ϕ =
∑
�
δ[t�,i�,s�], then the shifted measure θτϕ is defined by

θτϕ =
∑
�
δ[t�−τ,i�,s�].) Then, by construction (cf. (2.9)) we have

v(τ )(t, ϕ) = v(τ )(0, θtϕ), t ∈ IR, τ > 0, ϕ ∈ MK (2.15)

and

v(t, ϕ) = v(0, θtϕ), t ∈ IR, ϕ ∈ MK . (2.16)

From now on let

V̂ (t) := v(t,Φ), t ∈ IR and V̂� := v�(Φ), � ∈ ZZ. (2.17)

Then V̂ (t), t ∈ IR is a stationary and ergodic process, which follows by the ”shift” invariance
construction (2.16) and the measurability properties of v(·, ·), note that v(·, ϕ) is left continuous
for fixed ϕ ∈ MK , for details see [BFL].

3 Stability condition

Definition 3.1 Queue i ∈ {1, . . . , n} will be called stable if P (V̂i(0) = 0) > 0. The processor-
sharing system will be called stable if P (V̂i(0) = 0) > 0 for i = 1, . . . , n.

Corollary 3.2 Assume that queue i is stable and consider the point process Φ∗
i = {T ∗

i,�}∞
�=−∞

of the time instants where the i-th queue becomes empty for a positive duration of time:

T ∗
i,0 = sup{t ≤ 0 : V̂i(t− 0) > 0, V̂i(t+ 0) = 0},

T ∗
i,�−1 = sup{t < T∗

i,� : V̂i(t− 0) > 0, V̂i(t+ 0) = 0}, � = 0,−1,−2, . . . ,

T ∗
i,�+1 = inf{t > T∗

i,� : V̂i(t− 0) > 0, V̂i(t+ 0) = 0}, � = 0, 1, 2, . . .

From the stationarity, ergodicity and construction of V̂i(t) and from the stability condition
P (V̂i(0) = 0) > 0 we conclude that Φ∗

i is a stationary ergodic point process, in particular that
lim

�→±∞
T ∗
i,� = ±∞ a.s. Since during the interval [T∗

i,�, T
∗
i,�+1] only a finite amount of work arrives

at queue i, we conclude

P (V̂i(s) < ∞, s ∈ IR) = 1, (3.1)

in particular

P (V̂i(t) < ∞) = 1, t ∈ IR. (3.2)

From (3.1) finally for a stable system we have

P (V̂ (s) < ∞, s ∈ IR) = P (V̂ (t) < ∞) = 1, t ∈ IR, (3.3)
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where V̂ (t) < ∞ means V̂i(t) < ∞ for i = 1, . . . , n.

Remark 3.3. Another definition of stability for a system which often is used is condition (3.3).
However, in general (3.3) does not imply stability of a system in sense of our Definition 3.1,
which can be seen by the following example: Let n = 1, k = 1, S� ≡ 1/2, T1 be uniformly
distributed on [0, 1] and T�+1 − T� ≡ 1, � ∈ ZZ. (Clearly, I� ≡ 1 in view of n = 1). Then
{[T�, S�]}∞

�=−∞ is a stationary and ergodic input. Loynes’ backward construction (2.10), (2.11)

yields for t� < t ≤ t�+1 that v(t, ϕ) =
1−(t−t�)

2 and v�(ϕ) = 0. But this implies P (V̂ (t) > 0) = 1,
i.e. this queue is not stable in our sense.

Remark 3.4. The stability of the system (in the sense of our Definition 3.1) does not imply in
general that the system has empty points (idle periods), i.e.

P (V̂i(0) = 0, i = 1, . . . , n) > 0. (3.4)

This phenomenon is well known from the many serverG/G/m/∞ system. The following example
illustrates this for our processor-sharing model. Let k = 1, n = 2, T1 be uniformly distributed
on [0, 1], T�+1 − T� = 1 and

P (S2j = 2/3, S2j+1 = 1/2, I2j = 1, I2j+1 = 2, j ∈ ZZ) =

P (S2j+1 = 2/3, S2j = 1/2, I2j+1 = 1, I2j = 2, j ∈ ZZ) = 1/2.

Then Φ = {[T�, I�, S�]}∞
�=−∞ is a stationary ergodic marked point process and the states v�(Φ)

at the arrival instants T� are given by

v�(Φ) =

{
(2/9, 0) if I� = 2, S� = 1/2,
(0, 1/9) if I� = 1, S� = 2/3.

An inspection of the dynamics between customer arrivals shows that both queues never become
empty together, but each queue has idle periods, i.e. the system is stable (in the sense of
Definition 3.1) but it has no empty points.

For stating the stability results we need some notations and considerations. The traffic intensity
�i of the type i-customers (given by the point process Φi, cf. (1.1)) is

�i = E
∞∑
�=1

Si,�1I{0 < Ti,� ≤ 1} = E
∫

(0,1]×IR+

sΦi(d(t, s)) = λimB0
i
,

where λi = EΦi((0, 1] × IR+) is the intensity of Φi and mB0
i
= ES0

i is the expectation of

the service time S0
i of a typical type i-customer, which is given by the Palm distribution of

P (Φi ∈ (·)), cf. e.g. [FKAS] formula (1.2.8). The total arrival intensity λ and the total traffic
intensity �̄ are given by λ := E Φ((0, 1]× {1, . . . , n} × IR+) = λ1 + . . .+ λn rsp.

�̄ := E
∞∑
�=1

S�1I{0 < T� ≤ 1} = E

∫
(0,1]×{1,...,n}×IR+

sΦ(d(t, i, s)) = λmB0,

where mB0 = ES0 is the expectation of the service time of a typical customer. Clearly, it holds
�̄ = �1 + . . .+ �n.
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Let V̂ (t) be given by (2.17). Then at time t queue i gets a random fraction Ci(t) of the processor
capacity, which is given by

Ci(t) =
1I{V̂i(t) > 0}
b(V̂ (t)) + k

, i = 1, . . . , n. (3.5)

The k permanent customers get the fractions

Ci(t) =
1

b(V̂ (t)) + k
, i = n+ 1, . . . , n+ k, (3.6)

where the index i corresponds to the (i−n)-th permanent customer. The mean fractions of the
processor capacity are given by

ECi(0) = lim
t→∞

1

t

t∫
0

Ci(τ)dτ, i = 1, . . . , n+ k P − a.s. (3.7)

The mean fractions of the permanent customers are the same:

�∗ := ECi(0), i = n+ 1, . . . , n+ k, (3.8)

cf. (3.6). In view of (3.5)–(3.8) we further conclude that

ECi(0) ≤ �∗, i = 1, . . . , n (3.9)

and

ECi(0) = �∗ iff P (V̂i(0) > 0) = 1. (3.10)

Let

pi := P (V̂i(0) > 0) = E1I{V̂i(0) > 0} = E1I{Ci(0) > 0}, i = 1, . . . , n (3.11)

be the probability that at time t = 0 a type i-customer will be served. By Definition 3.1 queue
i is stable iff pi < 1.

Theorem 3.5. Let V̂ (t) be given by (2.10), (2.17). Then

(i) pi ≤ k�i +
n∑

j=1

min(�j, �i), i = 1, . . . , n. (3.12)

(ii) Queue i ∈ {1, . . . , n} is stable, i.e. pi < 1, iff �i < �∗.

(iii) k�∗ +
n∑

j=1

min(�j, �
∗) = 1. (3.13)
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(iv) The processor-sharing system is stable iff

�̄+ k�max < 1, (3.14)

where �max = max{�1, . . . , �n}.

Proof. (i) We start with Loynes’ construction (2.9), (2.10). Let τ > 0 and T > 0 be fixed.
Starting the dynamics of the processor-sharing system at time −τ with the work load vector
v = 0 (empty system) then

wi(τ, T ) := v
(τ )
i (0,Φ)− v

(τ+T )
i (T,Φ)+

∞∑
�=1

Si,�1I{0 < Ti,� ≤ T}, i = 1, . . . , n (3.15)

is just the amount of service that receive the type i-customers during the interval [0, T ] by the
processor. By an appropriate numbering we may assume without loss of generality that

w1(τ, T )≤ w2(τ, T )≤ . . . ≤ wn(τ, T ). (3.16)

Since queue 1 receives at least the fraction 1/(n+k) of the processor capacity if it is non-empty,
during the interval [0, T ] there is at most the duration of

D1 = (n+k)w1(τ, T )

necessary for serving the work load w1(τ, T ). If queue 2 is non-empty it receives at least the
fraction 1/(n+k) of the capacity and if no type 1-customers are present in the system then even
at least the fraction 1/(n+k−1) of the processor capacity. Thus during [0, T ] there is at most
the duration of

D2 = D1 + (n+k−1)(w2(τ, T )− w1(τ, T ))

= (n+k−1)w2(τ, T ) + w1(τ, T )

necessary for providing queue 2 an amount of service of w2(τ, T ). By induction we conclude
that during [0, T ] there is at most a duration of

Di = (n+k+1−i)wi(τ, T ) +
i−1∑
j=1

wj(τ, T )

= kwi(τ, T ) +
n∑

j=1

min(wj(τ, T ), wi(τ, T )), i = 1, . . . , n (3.17)

necessary for providing queue i an amount of service of wi(τ, T ). The representation (3.17) of
Di allows to drop the assumption (3.16). Thus we get

∫ T

0
1I{v(τ+s)

i (s,Φ) > 0} ds

≤ Di = kwi(τ, T ) +
n∑

j=1

min(wj(τ, T ), wi(τ, T )), i = 1, . . . , n. (3.18)
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From v
(τ )
i (0,Φ) > T/(k+1) it follows v

(τ+s)
i (s,Φ) > 0 for s ∈ [0, T ] since queue i receives at

most the fraction 1/(k+1) of the processor capacity if type i-customers are present. Thus from
(3.15) and (3.18) we conclude for i = 1, . . . , n

1I
{
v
(τ )
i (0,Φ) > T/(k+1)

}
T ≤

∫ T

0
1I
{
v
(τ+s)
i (s,Φ) > 0

}
ds

≤ kwi(τ, T ) +
n∑

j=1

min(wj(τ, T ), wi(τ, T ))

= k(v
(τ )
i (0,Φ)− v

(τ+T )
i (T,Φ)+

∞∑
�=1

Si,�1I{0 < Ti,� ≤ T})

+
n∑

j=1

min

(
v
(τ )
j (0,Φ)− v

(τ+T )
j (T,Φ)+

∞∑
�=1

Sj,�1I{0 < Tj,� ≤ T},

v
(τ )
i (0,Φ)− v

(τ+T )
i (T,Φ)+

∞∑
�=1

Si,�1I{0 < Ti,� ≤ T}
)
.

Taking expectations and using the fact that Emin(X, Y ) ≤ min(EX,EY ) for two r.v.’s X and
Y we get for i = 1, . . . , n

E1I
{
v
(τ )
i (0,Φ) > T/(k+1)

}
T

≤ k
(
Ev

(τ )
i (0,Φ)− Ev

(τ+T )
i (T,Φ)+ �iT

)

+
n∑

j=1

min
(
Ev

(τ )
j (0,Φ)− Ev

(τ+T )
j (T,Φ)+ �jT,

Ev
(τ )
i (0,Φ)− Ev

(τ+T )
i (T,Φ)+ �iT

)
. (3.19)

By (2.15), the stationarity of Φ and since v
(τ )
i (0,Φ) is non-decreasing with respect to τ it holds

Ev
(τ+T )
i (T,Φ) = Ev

(τ+T )
i (0,Φ) ≥ Ev

(τ )
i (0,Φ), i = 1, . . . , n.

Thus (3.19) yields

E1I
{
v
(τ )
i (0,Φ) > T/(k+1)

}
≤ k�i +

n∑
j=1

min(�j, �i), i = 1, . . . , n.

Taking now the limit as T → 0+0 we get

E1I{v(τ )i (0,Φ) > 0} ≤ k�i +
n∑

j=1

min(�j, �i), i = 1, . . . , n.

In view of the monotonicity of v
(τ )
i (0,Φ) with respect to τ we can take the limit as τ → ∞ and

obtain the assertion (i):

pi = E1I{vi(0,Φ) > 0} ≤ k�i +
n∑

j=1

min(�j, �i), i = 1, . . . , n.
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(ii) Remember, the mean fraction �∗ of the processor capacity received by each permanent
customer is given by (cf. (3.6), (3.7), (3.8)):

�∗ = lim
t→∞

1

t

∫ t

0

1

b(V̂ (τ) + k)
dτ. (3.20)

If pi < 1 then we conclude by the stationarity and ergodicity of V̂ (t) = v(t,Φ) and in view of
lim

�→±∞
Ti,� = ±∞ that

lim
t→∞

1

t

∫ t

0
1I{V̂i(τ) = 0}dτ = E1I{V̂i(0) = 0} = 1− pi > 0 P − a.s.,

i.e. queue i possesses infinitely many idle periods. Thus, in view of the system dynamics all

customers arriving at queue i will be served. Since
t∫
0
Ci(τ)dτ is the amount of service received

by queue i during the interval [0, t] (cf. (3.5)) we conclude

�i = lim
t→∞

1

t

∫
(0,t]×IR+

sΦi(d(τ, s)) = lim
t→∞

1

t

∫ t

0
Ci(τ) dτ = lim

t→∞

1

t

∫ t

0

1I{V̂i(τ) > 0}
b(V̂ (τ)) + k

dτ, (3.21)

i.e. �i is just the mean fraction of the processor capacity received by queue i provided pi < 1.

From (3.10), (3.11), (3.20) and (3.21) we get

k�∗ +
n∑

j=1

(
1I{pj < 1}�j + 1I{pj = 1}�∗

)

= lim
t→∞

1

t

∫ t

0

(
k +

n∑
j=1

(
1I{pj < 1}1I{V̂j(τ) > 0}+ 1I{pj = 1}

))/(
b(V̂ (τ)) + k

)
dτ

= 1. (3.22)

Assume now that �i < �∗. From (i) and (3.22) we find

pi ≤ k�i +
n∑

j=1

min(�j, �i) < k�∗ +
n∑

j=1

min(�j, �
∗)

≤ k�∗ +
n∑

j=1

(1I{pj < 1}�j + 1I{pj = 1}�∗) = 1,

i.e. �i < �∗ implies pi < 1. Conversely, if pi < 1, then we obtain from (3.20) and (3.21) that

�∗ − �i = lim
t→∞

1

t

∫ t

0

1I{V̂i(τ) = 0}
b(V̂ (τ)) + k

dτ

providing the following boundaries for 1−pi:

k(�∗ − �i) ≤ 1− pi ≤ (n+ k − 1)(�∗ − �i). (3.23)
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In particular we get that pi < 1 implies �i < �∗. Thus we have shown that pi < 1 iff �i < �∗.

(iii) Using (ii), equation (3.22) reduces to (3.13).

(iv) From Definition 3.1 and assertion (ii) we have that the processor-sharing system is stable
iff �i < �∗ for i = 1, . . . , n. But in view of (3.13) this is equivalent to (3.14).

Remark 3.6. Since the left-hand side of (3.13) is strictly monotone increasing with respect to
�∗, it follows that �∗ is uniquely determined by (3.13) and can be computed numerically e.g. by
an intersection procedure. The inequality (3.23) implies the estimate

k(�∗ − �i)+ ≤ 1− pi ≤ (n+ k − 1)(�∗ − �i)+, i = 1, . . . , n (3.24)

and hence a lower and upper bound for 1− pi can be computed numerically. If some queues are
instable then these types of customers may be considered as permanent customers, too. Hence
it is sufficient to investigate stable processor-sharing systems.

Remark 3.7. The theorem justifies that it is useful to define the stability of the system
accordingly to Definition 3.1; the property P (V̂ (t) < ∞, t ∈ IR) = 1 is not equivalent to the
stability of the system in sense of Definition 3.1 as the example given in Remark 3.3 shows:
There it holds P (V̂ (t) < ∞) = 1 but �1 + 1�1 = 1, i.e. the stability condition (3.14) fails.

The stationary ergodic state process V̂ (t) = v(t,Φ) constructed via Loynes’ monotonicity
method (2.10) is minimal, namely if V̄ (t) is a state process – not necessarily stationary – satisfy-
ing the dynamics (2.3)–(2.6) for the input Φ, then V̂ (t) ≤ V̄ (t), t ∈ IR P − a.s. This follows
by the monotonicity of f(·, a), the construction (2.10), (2.17) and the fact that 0 is the minimal
element in the state space IRn

+; for details we refer to [BFL], Sec. 1.3. Therefore in the following

we refer to V̂ (t) also as the minimal state process. What can be said about the uniqueness of
the state process if V̂ (t) < ∞ ? Clearly, in the class of all state processes there is no hope for
giving conditions ensuring uniqueness, because a feasible state process can evolve from left from
”infinity”. Thus it is only reasonable to look for uniqueness in the class of all stationary state
processes (possibly) ”belonging” to Φ. For the example given in Remark 3.3 the state process
is not unique. Namely, it is easy to check that for any c > 0

v̄c(t, ϕ) := c+
1− (t− t�)

2
, t� < t ≤ t�+1, vc�(ϕ) := c

defines a stationary state process v̄c(t,Φ) ”belonging” to Φ. However, if the stability condition
(3.14) is satisfied, then each queue has idle periods and as a consequence the minimal state
process V̂ (t) is the only stationary state process and for any initial state the system evolves
toward V̂ (t). Before stating and proving the corresponding results we need some further nota-
tions. Denote by v(u, t, ϕ) = (v1(u, t, ϕ), . . . , vn(u, t, ϕ)) the state of the system at time t> 0 if
it was started at time zero with state u and input realization ϕ. Taking into account the system
dynamics it holds

v(u, t, ϕ) = v(v(u, τ, ϕ), t− τ, θτϕ), 0 ≤ τ ≤ t, u ∈ IRn
+, ϕ ∈ MK . (3.25)

From Lemma 2.1 and taking into account the system dynamics again it follows that for t ∈ IR+,
ϕ ∈ MK

v(u, t, ϕ) is monotone non-decreasing in u. (3.26)
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Further, for u ∈ IRn
+ let Iu := {i ∈ {1, . . . , n} : ui > 0} be the set indicating the positive

components of the vector u ∈ IRn
+ and I(u, t, ϕ) := Iv(u,t,ϕ) the corresponding set at time t with

initial state u and input ϕ. For the minimal state process v(t, ϕ) = (v1(t, ϕ), . . . , vn(t, ϕ)) given
by (2.10) analogously we define I(t, ϕ) := Iv(t,ϕ). In accordance to Corollary 3.2, for ϕ ∈ MK

let t∗i,� (. . . < t∗i,0 ≤ 0 < t∗i,1 < . . .) be the time instants where the i-th queue becomes idle with
respect to the minimal state process v(t, ϕ) for a positive duration of time denoted by di,�, i.e.
vi(t, ϕ) = 0 iff t∗i,� ≤ t ≤ t∗i,� + di,� for some �. Denoting by |A| the number of elements of a set
A we recall that b(v) = |Iv|.
Lemma 3.8.

(i) The function f(v, a) is semi contractive in v with respect to the l1-norm in IRn
+, i.e.

‖f(v, a)− f(w, a)‖1 ≤ ‖v − w‖1, v, w ∈ IRn
+, a ∈ IR+. (3.27)

(iia) If Iv �= Iw for v, w ∈ IRn
+, then

‖f(v, a)− f(w, a)‖1 ≤ ‖v − w‖1 − k

(k + n)2
min(a∗, a), (3.28)

where

a∗ =

{
min(m(v)(b(v)+ k), m(w)(b(w)+ k)) for b(v)b(w)> 0,

max(m(v)(b(v)+ k), m(w)(b(w)+ k)) for b(v)b(w) = 0.
(3.29)

(iib) If for v, w ∈ IRn
+, a ∈ IR+ it holds If(v,s) �= If(w,s) for 0 ≤ s ≤ a, then

‖f(v, a)− f(w, a)‖1 ≤ ‖v − w‖1 − k

(k + n)2
a.

(iii) ‖v(u, t, ϕ)− v(w, t, ϕ)‖1 ≤ ‖u− w‖1, u, w ∈ IRn
+, t ∈ IR+, ϕ ∈ MK . (3.30)

(iv) ‖v(u, t, ϕ)− v(w, t, ϕ)‖1 is non-increasing in t ∈ IR+ for u, w ∈ IRn
+, ϕ ∈ MK .

(v) If I(u, s, ϕ) �= I(w, s, ϕ) for s ∈ [0, t], then

‖v(u, t, ϕ)− v(w, t, ϕ)‖1 ≤ ‖u− w‖1 − k

(k+ n)2
t. (3.31)

(vi) If u ≤ w and vi(u, s, ϕ) > 0 for s ∈ [0, t] for some i, then

vi(w, t, ϕ)− vi(u, t, ϕ)≥ wi − ui. (3.32)

(vii) If I(u, s, ϕ) = I(w, s, ϕ) for s ∈ [0, t], then

v(u, s, ϕ)− v(w, s, ϕ) = u− w for s ∈ [0, t]. (3.33)
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Proof. (i),(iia) Let v, w ∈ IRn
+. Without loss of generality we assume for bv := b(v) and

bw := b(w) that

bv ≥ bw. (3.34)

Let a∗ be defined as in statement (iia). Assume that a∗ > 0, i.e. Iv ∪ Iw �= ∅ and bv + bw ≥ 1. In
the following let 0 ≤ a ≤ a∗. Then the components of the work load vectors f(v, a) and f(w, a)
are given by

f (i)(v, a) =

{
vi − a

k+bv
for i ∈ Iv,

0 for i ∈ Īv
, f (i)(w, a) =

{
wi − a

k+bw
for i ∈ Iw,

0 for i ∈ Īw

for i = 1, . . . , n, where Īv = {1, . . . , n} \ Iv and Īw = {1, . . . , n} \ Iw. Using this explicit
expressions and taking into account (3.34) we get

‖f(v, a)− f(w, a)‖1
=

∑
i∈Iv∩Iw

∣∣∣∣vi − a

k + bv
− wi +

a

k + bw

∣∣∣∣+ ∑
i∈Iv∩Īw

(
vi − a

k + bv

)
+

∑
i∈Īv∩Iw

(
wi − a

k + bw

)

≤ ‖v − w‖1 + a
∑

i∈Iv∩Iw

(
1

k + bw
− 1

k + bv

)
− a

∑
i∈Iv∩Īw

1

k + bv
− a

∑
i∈Īv∩Iw

1

k + bw

= ‖v − w‖1 + a

(k + bv)(k + bw)
((k + bv)|Iv ∩ Iw| − (k + bw)bv − (k + bv)|Īv ∩ Iw|)

≤ ‖v − w‖1 + a

(k + bv)(k + bw)
((k + bv)bw − (k + bw)bv − (k + bv)|Īv ∩ Iw|)

= ‖v − w‖1 − a

(k + bv)(k + bw)
(k(bv − bw) + (k + bv)|Īv ∩ Iw|). (3.35)

Thus we have (3.27) for 0 ≤ a ≤ a∗. Since Iv �= Iw and bv = bw implies Īv ∩ Iw �= ∅ we get
for Iv �= Iw the inequality k(bv − bw) + (k + bv)|Īv ∩ Iw| ≥ k, and hence (3.35) implies (3.28)
for 0 ≤ a ≤ a∗. Looking at the derivation of (3.35) and taking into account the considerations
above we conclude that equality holds in (3.27) iff Iv = Iw, i.e. for 0 < a ≤ a∗ we have

‖f(v, a)− f(w, a)‖1 = ‖v − w‖1 iff Iv = Iw. (3.36)

For a > a∗ we prove (3.27) and (3.28) by iterating the above result. Let a(1) := a∗, v(1) := v,
w(1) := w. Using the recursion (2.2) we get for a > a(1)

f(v(1), a) = f(v(2), a− a(1)), f(w(1), a) = f(w(2), a− a(1)),

where

v(2) := f(v(1), a(1)), w(2) := f(w(1), a(1)).

The same arguments as given above applied to v(2) and w(2) yield an a(2) such that (3.27) holds
with v(2), w(2) and a ≤ a(2). For a(1) < a ≤ a(1) + a(2) thus we have

‖f(v(1), a)− f(w(1), a)‖1 = ‖f(v(2), a−a(1))− f(w(2), a−a(1))‖1 ≤ ‖v(2) − w(2)‖1. (3.37)
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Since (3.27) and (3.28) hold for v(1), w(1) and a = a(1) we thus conclude from (3.37) the validity
for a(1) < a ≤ a(1) + a(2). Proceeding in the same way we obtain a sequence a(i) of at most 2n
numbers and iterating we find that (3.27) and (3.28) are true for all a > 0.

(iib) This is an immediate consequence of (iia) and the iterative construction just given and of
(3.37).

(iii) The dynamics v(u, t, ϕ) satisfies

v(u, t, ϕ) = f(v(u, t�, ϕ) + s�e(i�), t− t�) for t� < t ≤ t�+1, � ≥ 1, (3.38)

v(u, t, ϕ) = f(u, t) for t0 < 0 ≤ t ≤ t1, (3.39)

v(u, t, ϕ) = f(u+ s0e(i0), t) for t0 = 0 ≤ t ≤ t1, (3.40)

where ϕ = {[t�, s�, i�]}∞
�=−∞ ∈ MK . In view of these dynamics we can apply (3.27) successively

from t over the arrival instants t� down to 0 (. . . < t0 ≤ 0 < t1 < . . . < t� < t ≤ t�+1) and thus
conclude (iii).

(iv) From (iii) and (3.25) we get

‖v(u, t, ϕ)− v(w, t, ϕ)‖1 = ‖v(v(u, s, ϕ), t− s, θsϕ)− v(v(w, s, ϕ), t− s, θsϕ)‖
≤ ‖v(u, s, ϕ)− v(w, s, ϕ)‖1 for 0 ≤ s ≤ t,

which implies (iv).

(v) Assume that I(u, s, ϕ) �= I(w, s, ϕ) for 0 ≤ s ≤ t. Since ‖v(u, s, ϕ)− v(w, s, ϕ)‖1 does not
jump at the arrival instants t�, we conclude by taking into account the dynamics (3.38)–(3.40)
and (iib), that during [0, t] the distance ‖v(u, s, ϕ)−v(w, s, ϕ)‖1 decreases in s at least with rate
k/(k + n)2, which gives (3.31).

(vi) Since v(·, s, ϕ) is non-decreasing, cf. (3.26), u ≤ w implies that v(u, s, ϕ) ≤ v(w, s, ϕ) and
b(v(u, s, ϕ)) = |I(u, s, ϕ)| ≤ |I(w, s, ϕ)|= b(v(w, s, ϕ)). Now, if vi(u, s, ϕ)> 0, s ∈ [0, t] for some
i then it holds vi(w, s, ϕ) > 0, s ∈ [0, t], too, and during [0, t] both components vi(u, s, ϕ) and
vi(w, s, ϕ) get continuously service with rate 1/(|I(u, s, ϕ)|+ k) ≥ 1/(|I(w, s, ϕ)|+ k). At the
arrival instants ti,� of type i-customers both components jump with the same height si,� and in
summary we must have wi − ui ≤ vi(w, t, ϕ)− vi(u, t, ϕ).

(vii) If I(u, s, ϕ) = I(w, s, ϕ) for s ∈ [0, t] then in view of the dynamics (3.38)–(3.40) and (3.36)
we conclude that v(u, s, ϕ) and v(w, s, ϕ) get the same service rate at the queues and since the
input process ϕ is the same, (3.33) follows directly.

Theorem 3.9. If the processor-sharing system is stable, i.e. if (3.14) is satisfied, then

(i) V̂ (t) = v(t,Φ) is the only stationary state process.

(ii) For any random initial state W it holds

‖V̂ (t)− v(W, t,Φ)‖1 −→
t→∞

0 P − a.s.

Proof. (i) The assertion (i) is an easy consequence of (ii) and the semi-contractivity property
(iii) of Lemma 3.8 as follows: Assume V̄ (t), t ∈ IR is a stationary state process for the input Φ, i.e.
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(2.3)–(2.6) hold with V̄� = V̄ (T�− 0) and Ψ = {[T�, I�, S�, V̄�]}∞
�=−∞ is a stationary marked point

process. Then we get from Lemma 3.8, (iv) that H(t) = ‖V̂ (t) − V̄ (t)‖1 is P − a.s. monotone
non-increasing in t and hence by the Birkhoff-Chintchin Ergodic-Theorem we conclude

H(0) = ‖V̂ (t)− V̄ (t)‖1, t ∈ IR P − a.s.

Applying now (ii) for W = V̄ (0), we get H(0) = ‖V̂ (t) − v(V̄ (0), t,Φ)‖1 −→
t→∞

0 P − a.s., i.e.

H(0) = 0 P − a.s. and thus V̄ (t) = V̂ (t), t ∈ IR P − a.s.

(ii) The proof is divided into several steps.

a) It holds

P ( lim
t→∞

‖V̂ (t)− v(W, t,Φ)‖1 = 0)

= lim
m→∞

P ( lim
t→∞

‖V̂ (t)− v(W, t,Φ)‖1 = 0, W ≤ V̂ (0) +m1),

where 1 = (1, . . . , 1). Consider a fixed w ∈ IRn
+ and ϕ ∈ MK such that v(t, ϕ) < ∞ for t ∈ IR.

Then there is an m ∈ ZZ+ such that

0 ≤ w ≤ v(0, ϕ) + m1, (3.41)

Using the triangle inequality for ‖ · ‖1, the monotonicity of v(·, t, ϕ) (cf. (3.26)) and (3.41) we
get

‖v(t, ϕ)− v(w, t, ϕ)‖1 ≤ ‖v(t, ϕ)− v(0, t, ϕ)‖1+ ‖v(w, t, ϕ)− v(0, t, ϕ)‖1
≤ ‖v(t, ϕ)− v(0, t, ϕ)‖1+ ‖v(v(0, ϕ)+ m1, t, ϕ)− v(0, t, ϕ)‖1
≤ 2‖v(t, ϕ)− v(0, t, ϕ)‖1+ ‖v(v(0, ϕ)+m1, t, ϕ)− v(t, ϕ)‖1.

b) Using the semi-contractivity of v(·, t,Φ), the construction of V̂ (t), cf. (2.10), (2.15), (2.16),
(2.17) and the stationarity of Φ we get for j = 1, 2, . . .

P ( lim
t→∞

‖v(0, t,Φ)− V̂ (t)‖1 ≤ 1/j) ≥ lim
t→∞

P (‖v(0, t,Φ)− v(t,Φ)‖1 ≤ 1/j)

= lim
t→∞

P (‖v(t)(0, θtΦ)− v(0, θtΦ)‖1 ≤ 1/j)

= lim
t→∞

P (‖v(t)(0,Φ)− v(0,Φ)‖1 ≤ 1/j) = 1. (3.42)

From (3.42) we obtain

P ( lim
t→∞

‖v(0, t,Φ)− V̂ (t)‖1 = 0) = lim
j→∞

P ( lim
t→∞

‖v(0, t,Φ)− V̂ (t)‖1 ≤ 1/j) = 1.

c) In view of a) and b) it remains to prove:

‖v(v(0, ϕ)+ m1, t, ϕ)− v(t, ϕ)‖1−→ 0 for P − a.e. ϕ. (3.43)
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Now let ϕ ∈ MK and t∗i,� the time instants where queue i ∈ {1, . . . , n} becomes idle for a positive
duration di,�. By the assumed stability of the system we may assume that

lim
�→±∞

t∗i,� = ±∞ and
0∑

�=−∞
di,� =

∞∑
�=1

di,� = ∞. (3.44)

Further let w = v(0, ϕ) +m1 for some m ∈ ZZ+. For t ∈ IR+ then

hi(t) := vi(w, t, ϕ)− vi(v(0, ϕ), t, ϕ) = vi(w, t, ϕ)− vi(t, ϕ) ≥ 0, i = 1, . . . , n

and h(t) = h1(t) + . . .+ hn(t) gives the distance between v(w, t, ϕ) and v(t, ϕ) with respect to
the l1-norm. From Lemma 3.8, (iv) it follows that h(t) is non-increasing in t and hence the limit

η := lim
t→∞

h(t)

exists. Assume now that η > 0. Let ε := ηk2/(2(k+ n)3). Then there is a t∗∈ IR+ such that

η ≤ h(t) ≤ η + ε for t ≥ t∗. (3.45)

Let j = argmax
i

hi(t
∗). Then from (3.45) we have

hj(t
∗) ≥ η

n
. (3.46)

The following observations are crucial:

1. The j-th component vj(t, ϕ) becomes infinitely times idle during the interval (t∗,∞) and
the cumulative idle time is infinite, i.e.

∞∫
t∗

1I{vj(s, ϕ) = 0} ds = ∞.

2. If vj(w, t
∗
j,�, ϕ) > 0 then vj(w, s, ϕ) decreases with respect to s in [t∗j,�, t

∗
j,� + dj,�] with

a rate bounded by 1/(k + 1) to zero. (Note, vj(s, ϕ) = 0 for s ∈ [t∗j,�, t
∗
j,� + dj,�]). If

vj(w, s, ϕ) has reached zero, then vj(w, s, ϕ) remains zero up to t∗j,�+dj,�. Thus we conclude
vj(w, s, ϕ)> 0 = vj(s, ϕ) on s ∈ [t∗j,�, t

∗
j,� + d), where d = min(vj(w, t

∗
j,�, ϕ)(k+ 1), dj,�).

3. If vj(w, t
∗
j,�+dj,�, ϕ) > 0 then hj(t

∗
j,�+dj,�) > 0. Since vj(s, ϕ) > 0 for s ∈ (t∗j,�+dj,�, t

∗
j,�+1)

we conclude from Lemma 3.8, (vi) that hj(s) is non-decreasing for s ∈ (t∗j,� + dj,�, t
∗
j,�+1].

Now, by iterating the arguments in step 1 and 2 we conclude that on the interval [t∗,∞)
the j-th components vj(w, t, ϕ) and vj(t, ϕ) differ on the idle periods of vj(t, ϕ) at least
for η(k+ 1)/n time units, cf. (3.46), hence there is a t∗∗ such that

t∗∗∫
t∗

1I{vj(w, s, ϕ)> 0 = vj(s, ϕ)}ds≥ η(k+ 1)

2n
. (3.47)
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Since vj(w, s, ϕ) > 0 = vj(s, ϕ) implies I(w, s, ϕ) �= I(s, ϕ), we conclude by applying Lemma
3.8, (v), (iii), (3.44), (3.47), (3.45) and using the dynamics (3.25)

h(t∗∗) = ‖v(w, t∗∗, ϕ)−v(t∗∗, ϕ)‖1 ≤ ‖v(w, t∗, ϕ)−v(t∗, ϕ)‖1 − k

(k + n)2
η(k+ 1)

2n

< h(t∗)− ηk2

2(n+ k)3
≤ (η + ε)− ε = η,

contradicting the left-hand side of (3.45). Thus we conclude η = 0 and hence (3.43) is proved.

4 Conclusions

The results given in this paper remain valid for k ∈ (0,∞). The k permanent customers can
be considered as one permanent customer getting the k-fold portion of the processor capacity
obtained by the customers at the head of the queues. The proofs remain valid; only a minor
change is necessary: instead of �∗ one considers k�∗ as the fraction of processor capacity that
the permanent customer gets.

Also, the results of the paper remain valid if one considers arrival processes where at the Tn
simultaneously at each of the n queues a customer arrives. The input is given by the marked
point process Φ = {[T�, S�]}∞

�=−∞, where S� = [S1,�, . . . , Sn,�] is the vector of service times; Si,�
is the service time of the customer arriving at the i-th queue at time T�.
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