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Abstract

A widely used approach for the computation of time-harmonic electromag-
netic fields is based on the well-known double-curl equation for either �E or �H.
An appealing choice for finite element discretizations are edge elements, the
lowest order variant of a H(curl)-conforming family of finite elements.

However, the large nullspace of the curl-operator gives rise to serious dif-
ficulties. It comprises a considerable part of all spectral modes on the finite
element grid, tending to pollute the solution with non-physical contributions
and crippling standard multilevel solvers.

We tackle these problems by an adaptive multilevel algorithm. After every
standard V-cycle with respect to the canonical basis of edge elements, the non-
physical contributions are removed by a projection step. It requires the solution
of Poisson’s equation, augmented by certain boundary terms, in the nullspace,
which can be carried out efficiently by an inner multilevel iteration. The whole
scheme yields convergence rates independent of the refinement level of the mesh.

Furthermore, a simple criterion for meshes is derived which can resolve all
field modes corresponding to negative eigenvalues. This requirement is essential
to guarantee both stability and efficiency of an iterative multilevel solver for
indefinite systems. For controlling adaptive mesh refinement we have devised an
a posteriori error indicator based on stress recovery.

Numerical experiments demonstrate the efficiency of the method for the
simulation of waveguides.

Key words. Maxwell’s equations, edge elements, Nédélec elements, scattering problems,
waveguide computations
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2 1 INTRODUCTION

1 Introduction

The past two decades have seen numerical simulation becoming an indispensable tool
for the analysis and the design of technical devices in electrical engineering. In the
high-frequency domain passive elements (e.g. waveguides and transmission lines) are
typically characterized by a set of frequency dependent parameters like scattering coef-
ficients. They can be obtained from the solution of partial differential equations which
have their origin in Maxwell’s equations. If the structures have complex geometries,
the only feasible option is the numerical calculation of approximate solutions. The
finite element method has emerged as a powerful tool for this purpose.

Plenty of finite element techniques for electromagnetic fields have been investigated
(see e.g. [24, 36]). In particular, in recent years edge elements, sometimes also called
Whitney forms of the lowest order, have gained in popularity as a finite element scheme
for the calculation of electric fields. Contrary to nodal elements, they only enforce the
continuity of the tangential field components, whereas the proper jump conditions
of the normal components hold only in a weak sense. Such H(curl)-conforming fi-
nite element spaces were introduced in an abstract and comprehensive manner by
Nédélec [32], but it took some time until their distinct advantages in electromagnetic
field computations were fully appreciated [6, 10, 16].

As for nodal elements, there is no obvious way how to handle fields at re-entrant
boundaries like at the sharp edges of ideal conductors. The same is true for similarly
shaped interfaces between regions with an abrupt change of the material properties.
At such points no unique surface normal exists and there is no point in enforcing all
continuity relations simultaneously; a problem, which is avoided gracefully in the case
of Whitney forms.

Furthermore, edge elements are well-suited to avoid the pollution of a numerical so-
lution by spurious modes [11]. These unwanted contributions arise from the nullspace
of the curl-operator in Maxwell’s equations and can be suppressed in a weak sense by
a proper variational principle. However, as this nullspace is rather large, it may lead
to severely ill-conditioned matrices of the linear systems of equations. So conventional
iterative solvers, which are indispensable in the case of large-scale three-dimensional
problems, exhibit poor convergence properties.

Thus fast iterative solvers are badly needed to curb soaring computational costs on fine
meshes. For a wide range of boundary value problems for partial differential equations
multilevel/multigrid methods are now employed as fast iterative solvers of the discrete
problems. However, these techniques are only beginning to be adapted for the compu-
tation of electromagnetic fields (cf. [31]). They can not only boost the efficiency of a
simulation code by orders of magnitude, but also neatly mesh with adaptive strategies
based on a-posteriori error estimation and local mesh refinement: adaptive refinement
creates the very hierarchy of meshes the multilevel solver operates on. The impor-
tance of locally refined meshes for simulations of various electromagnetic phenomena
has been realized by several authors [33, 18, 26]. This offers another incentive to look
for an appropriate multilevel solver.

This paper introduces a new multigrid method for the scattering problems in the
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frequency domain. It is presented along with a suitable strategy for adaptive refinement
of the finite element mesh based on an error indicator and unstructured tetrahedral
meshes. The design of the multigrid algorithm heavily exploits the exceptional features
of edge elements, in particular the existence of discrete potentials in another finite
element space. They make it possible to adjust the generic linear multigrid algorithm in
order to cope with the inherent lack of ellipticity of the problems under consideration.

The resulting algorithms work well both in lossy and lossless media and on locally
refined grids. Heavy local refinement turns out to be essential in regions with singular
fields, like at re-entrant corners, and near steep jumps of material coefficients. Here
again we encounter the typical situations where edge elements exhibit their specific
virtues.

The outline of the paper is a follows: in the next section we present the general setting
and introduce the weak (variational) formulation of the boundary value problem. In
the third section we review the construction and some properties of edge elements. In
the forth section we give a detailed description of the new multigrid algorithm and
explain the rationale behind its various components. The fifth section is devoted to
the construction of a local error indicator based on averaging techniques. The final
section examines the performance of the adaptive multilevel scheme when applied to
simulate a waveguide taper device.

2 The Time-Harmonic Maxwell’s Equations

Since the technical devices whose simulation is the goal of our research are usually
characterized in the frequency domain, we restrict our simulations to time–harmonic
electromagnetic fields varying with an angular frequency ω > 0. In this case we have
for all times t ∈ R the representation

E(x, t) = E(x)eiωt

H(x, t) = H(x)eiωt

for the electric and magnetic field E and H, respectively. E(x) and H(x) are com-
plex amplitudes defined on the simply connected bounded domain Ω ⊂ R3, which
designates the domain of computation. We confine ourselves to linear isotropic media
without free charges. In this case Maxwell’s equations state that on Ω

curlH = i ωεE (1)

curlE = −i ωμH . (2)

Here μ is the permeability and ε represents a complex dielectric constant, related to
the generic dielectric constant ε′ and the conductivity σ by

ε = ε′ − iσ/ω .

This assumption is valid in regions where the current density j can be obtained from
Ohm’s law by j = σE. Both ε and μ are uniformly positive functions in L∞(Ω), where
ε may have large jumps at material interfaces.
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In the following we shall consider two types of boundary conditions. The first is im-
posed on the surface part ΓD, formed by a perfect conductor. This leads to a Dirichlet
boundary condition enforcing zero tangential components of the electric field:

n×E = 0 on ΓD . (3)

Here n denotes outer unit normal of the surface. Furthermore, on the remaining part
ΓC of the boundary Γ we assume that absorbing Silver–Müller boundary conditions
[2] hold. They are expressed by the Cauchy type boundary conditions

n× (
1

μ
curlE) + n× (α n×E) = ζ Einc on ΓC . (4)

Here α and ζ are scalar functions, Einc is a prescribed tangential field and plays the
role of an excitation, e.g. by an incoming wave. These boundary conditions are suitable
for artificial boundaries in scattering problems for waveguide structures [24], since they
are specifically designed to let outgoing waves pass through unaffected.

Formally, by multiplying (2) with with 1/μ, taking the curl of this equation and
substituting into (1) we get

curl
1

μ
curlE − ω2εE = 0 . (5)

To cast (5) together with (4) into variational form we recall the fundamental principle
that the solution must be a stationary point of the Lagrangian. This means that we
have to look for a saddle point of the functional

F (E) = (
1

μ
curlE, curlE)0 − ω2(εE,E)0 + [αn×E,n×E]ΓC

− 2
[
ζ E,Einc

]
ΓC

.
(6)

To simplify the notation, we introduced the following abbreviations for inner products
and boundary integrals:

(u, v)0 =

∫
Ω

uv dΩ

[u, v]Γ =

∫
Γ

uv dΓ

The appropriate domain of definition of the functional (6), which additionally accom-
modates the Dirichlet boundary conditions, is given by

HΓD
(curl; Ω) := {w ∈ (L2(Ω))3 ; curlw ∈ (L2(Ω))3, w ×n = 0 on ΓD} .

The field E has to be determined such that the first variation of (6) vanishes:

Seek E ∈ HΓD
(curl; Ω) such that for all w ∈ HΓD

(curl; Ω)(
1

μ
curlE, curlw

)
0

− ω2 (εE,w)0 + [αE × n,w × n]ΓC
=

[
ζ Einc,w

]
ΓC

.
(7)
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For σ �= 0 the bilinear form a : HΓD
(curl; Ω)×HΓD

(curl; Ω) �→ R occurring in (7) is
coercive. The challenging case is σ = 0, where (7) may not have any solutions at all
for certain values of ω. In this presentation we focus on the case σ = 0 but we want
to stress that the numerical schemes work for nonvanishing σ as well. For a detailed
discussion concerning existence and uniqueness of solutions we refer to [15, 27].

In the sequel we require that (7) has a unique solution. Nevertheless, the operator A
associated with a can have several negative eigenvalues if ω is large. In this case a is
still symmetric, but indefinite.

3 The Finite Element Spaces

We aim at a conforming finite element discretization of (7). To this end we pick a finite
dimensional subspace of HΓD

(curl; Ω) that consists of piecewise polynomials with
respect to a triangulation Th of Ω. Such subspaces are provided by Nédélec’s curl–
conforming finite elements [32], which are available for both simplicial and hexahedral
triangulations. On tetrahedra Nédélec’s lowest order elements coincide with so–called
Whitney 1–forms [39, 10].

To be able to handle complex geometries and on behalf of a–posteriori grid adaption,
we preferred tetrahedral meshes for our computations. Numerical evidence also hints
at superior accuracy compared to hexahedral meshes [24]. For a tetrahedron T the
local lowest order Nédélec space is given by

ND(T ) := {x �→ a+ b× x ; x ∈ T, a, b ∈ R3} .
Suitable local degrees of freedom arise from path integrals along the edges of an element
T and can be expressed by the functionals

wh �→
∫
e

〈wh, t〉 ds , e is edge of T, wh ∈ ND(T ) . (8)

Therefore these elements have been dubbed “edge–elements”. Unisolvence of these
degrees of freedom has been established in [32]. They also ensure that the global finite
element space ND(Th) is contained in H(curl; Ω). The corresponding canonical basis
functions are locally supported and attached to the edges of the mesh Th. Ifwe denotes
the basis function belonging to the edge e, a straightforward computation establishes
the simple representation (see e.g. [35])

we = λi grad λj − λj gradλi (9)

on a tetrahedron adjacent to e. There λi and λj stand for the barycentric coordinate
functions associated with both endpoints of e. Thanks to (9) the entries of the stiffness
matrix related to the bilinear form a(·, ·) can be computed efficiently. We end up with
a linear system of equations

A u = b

for the complex coefficient vector u of the discrete electric field Eh ∈ ND(Th) with
respect to the finite element basis {we; e edge of Th}. The dimension of this system
of linear equations equals the number of edges in Ω ∪ ΓC .



6 3 THE FINITE ELEMENT SPACES

Higher order HΓD
(curl; Ω)–conforming elements of this type are also available [35].

Approximation properties of edge elements are studied in [30]. Roughly speak-
ing, in the lowest order case they display first order accuracy with respect to the
HΓD

(curl; Ω)–norm.

There are several compelling reasons to prefer edge elements to other finite element
discretizations of HΓD

(curl; Ω) (cf. [12]): by virtue of their construction edge elements
guarantee the continuity of tangential components across inter–element boundaries.
Thus they adequately reflect continuity properties of the electric field. This is ulti-
mately due to their close relationship to 1–forms [21], the kind of differential forms
that can be used to describe the electric field in an abstract mathematical formulation
of Maxwell’s equations [4].

Secondly, the use of edge elements greatly facilitates the treatment of Dirichlet bound-
ary conditions; degrees of freedom on ΓD are simply set to zero. We write NDΓD

(Th)
for the resulting finite element space. Since tangential components of the discrete
fields on any boundary faces are readily available, the Cauchy–conditions are as easily
implemented.

Thirdly, an outstanding feature of edge elements is the fact that irrotational vector
fields in ND(Th) posses easily accessible discrete potentials, in stark contrast to al-
ternative finite element approximations. This property turns out to be crucial for the
multilevel scheme:

Theorem 1 Let SΓD
(Th) be the space of continuous, piecewise linear finite element

functions over Th that vanish on ΓD. Then for any wh ∈ NDΓD
(Th) with curlwh = 0

we can find a φh ∈ SΓD
(Th) such that wh = grad φh.

For the proof of this theorem we refer to [21].

As a consequence, the L2(Ω)–orthogonal discrete Helmholtz decomposition

NDΓD
(Th) = gradSΓD

(Th) ⊕ND⊥
ΓD

(Th)

with the space of discrete weakly divergence free vector fields

ND⊥
ΓD

(Th) :={wh ∈ NDΓD
(Th) ; (wh, grad φh)0 = 0 ∀φh ∈ SΓD

(Th)}
(10)

is no longer a mere theoretical tool, but gains relevance for the design of practical
algorithms. For instance, Th. 1 offers a convenient way to enforce the (weak) divergence
free condition for discrete vector fields.

If, for the moment, we neglect terms contributed by the Cauchy type boundary con-
ditions (4), then for any solution Eh of the discretized problem we immediately have
(εEh, gradφh)0 = 0 for all φh ∈ SΓD

(Th). In case Eh lacks this property it is possible
to determine a curl–free correction gradψh by an auxiliary problem:

Seek ψh ∈ SΓD
(Th) such that

(εgradψh, grad φh)0 = − (εEh, gradφh)0 ∀φh ∈ SΓD
(Th) . (11)
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The variational problem (11) is a standard second order elliptic problem discretized
by means of linear finite elements. Then the corrected vector field Eh + gradψh is
obviously weakly solenoidal.

The situation gets considerably more intricate if we consider the complete func-
tional (7), where also the Cauchy boundary conditions are taken into account. Then
Eh is sought in the affine subspace of vector fields ξh ∈ NDΓD

(Th) satisfying for all
φh ∈ SΓD

(Th)

− ω2 (εξh, gradφh)0 + [αξh × n, gradφh ×n]ΓC
=

[
ζEinc, gradφh

]
ΓC

.
(12)

Finding a curl–free correction of Eh that carries it into this space amounts to solving
the following variational problem, in analogy to (11):

Seek ψh ∈ SΓD
(Th) such that for all φh ∈ SΓD

(Th)

(ε gradψh, grad φh)0 −
[ α
ω2

n× gradψh,n× gradφh

]
ΓC

=

= − (εEh, gradφh)0 +
[ α
ω2

n×Eh,n× grad φh

]
ΓC

−
[
ζ

ω2
E inc

h , grad φh

]
ΓC

.
(13)

This time the bilinear form associated with (13) is no longer positive definite under
any circumstance. In general it is indefinite and (13) might not have any solution at all.
However, for the scattering problems considered in this paper, the crucial parameter
α in (13) is a complex number (see equations (23) and (24) in section 6). Except for
the unrealistic case of extremely strong attenuation, its imaginary part is dominating
and (13) can be solved efficiently with a standard multilevel algorithm. So for realistic
values of α we did not encounter any difficulties in our simulation runs.

4 The Multilevel Solution Procedure

We aim to adapt the classical multigrid idea (see [19, 13]) to the particular problem (7)
when discretized by means of the lowest order edge elements introduced in the previous
section.

We start with a sequence of tetrahedral meshes {Tk}Lk=0 arising from the successive
refinement of an initial coarse grid T0. Various refinement schemes have been devised
[9, 3] that maintain shape regularity and allow local refinement. They all manage
to avoid dangling nodes and rely on subdividing individual tetrahedra into a few
smaller ones. Our simulations are based on the red–green refinement policy detailed
in [9, 7]. The basic action is to chop up a tetrahedron into eight small tetrahedra. It is
supplemented by a few special “green” subdivisions in order to take care of dangling
nodes in the case of local refinement. We can easily confirm that the edge element
spaces belonging to different levels of refinement are properly nested:

NDΓD
(T0) ⊂ NDΓD

(T1) ⊂ . . . ⊂ NDΓD
(TL) . (14)
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We opt for a standard scheme and use the canonical intergrid transfer operators P l
l−1 :

NDΓD
(Tl−1) �→ NDΓD

(Tl) (prolongation) and R
l−1
l : ND′

ΓD
(Tl) �→ ND′

ΓD
(Tl−1) (re-

striction) furnished by the embedding (14). In particular, this means that the restric-
tion is the adjoint of the prolongation: Rl−1

l =
(
P l
l−1

)∗
. Owing to the small supports

of the edge element basis functions, both operators permit purely local evaluation.
Moreover, the weights occurring in the transfer matrices only depend on the pattern
of refinement of a tetrahedron and not on its shape. This permits us to compute the
weights in advance for all varieties of green and red refinements.

On each level of refinement simple Gauß–Seidel steps serve as smoothers. They boil
down to a successive relaxation of individual nodes. As usual in an adaptive setting
[29], only those degrees of freedom are covered by relaxation on level l that have been
affected when Tl−1 was refined into Tl. This practice is often referred to as “local
multigrid”.

The efficacy of a multilevel approach to linear symmetric problems hinges on the proper
ellipticity of the variational problem. This means that all eigenvalues should be positive
and that the amplification (i.e. the eigenvalue) of an eigenfunction is proportional only
to its (spatial) frequency. These conditions are obviously violated in the current setting,
the multigrid approach facing two major obstacles:

1. The bilinear for a(·, ·) gives rise to an indefinite operator.

2. The problem utterly lacks ellipticity on the kernel of the curl–operator.

Considerations in the spectral domain offer a clue: in the entire space R3 we have for
w ∈ HΓD

(curl;R3) that satisfies (w, grad φ)0 = 0 for all φ ∈ H1(R3)

(curlw, curlw)0 =

∫
R3

|k|2 |ŵ(k)|2 dk , (15)

where ŵ stands for the Fourier transform of w. From (15) we learn that the spectral
components of weakly divergence free functions experience an amplification depending
solely on the square of their frequency.

We are led to conclude that even in a bounded domain the operator A still retains an
elliptic character, when we restrict it to the orthogonal complement ND⊥

ΓD
(Th) (as

defined in (10)) of the kernel of the curl–operator and ignore the space M− spanned
by negative eigenmodes.

For the moment assuming homogeneous material (i.e. μ, ε = const.), we infer from (15)
that a plane wave E(x) = exp(ikx) ·
ex can only coincide with a negative eigenmode if
|k|2 < ω2με. In other words, its spatial wavelength must be below a critical wavelength

λC :=
2π

ω
√
εμ

(16)

Experience and theory (cf. [14]) teach us that a multigrid scheme for indefinite sym-
metric problemsmay perform well if all eigenfunctions corresponding to negative eigen-
values can be well represented on the coarsest grid. To solve the coarse grid problem
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we can resort to a direct method based on sparse LU–factorization, which is not sen-
sitive to negative eigenvalues. Thus the final corrections in M− are already provided
by the coarse grid solver. According to Nyquist’s theorem, we need at least two sam-
pling points per wavelength to sample a sine wave. Provided that the above heuristic
considerations hold locally, we arrive at the following requirement:

The length he of an edge e of the coarsest mesh T0 must satisfy

he ≤ λC
2

=
π

ω
√
ε′μ

, (17)

where the maximal values of ε and μ in elements adjacent to e should be taken.

For simulations of technical structures this restriction should still be feasible in most
cases and need not lead to prohibitively many elements in T0. We point out that due
to large variation of μ and ε we may end up with a grossly non–uniform initial grid.

Note that on finer meshes the diameter of supports of nodal basis functions is well
below the threshold (17). Thus even a plain Gauß–Seidel smoother is impervious to
the impact of negative eigenmodes, since for any we we have a(we,we) > 0. This is
because the dominant frequency components ofwe belong to the spaceM+ spanned by
eigenvectors corresponding to positive eigenvalues. In sum, the multigrid convergence
should not be affected by the presence of negative eigenvalues, if the above requirement
is met.

In addition, observe that for a basis function we

‖we‖0 ≤ Ch ‖curlwe‖0 , (18)

where h is the size of the elements surrounding e and C > 0 does not depend on h. This
estimate is quickly established through straightforward affine equivalence techniques.
The inequality (18) indicates that the basis functions have a distinct oscillatory char-
acter and are sufficiently orthogonal to N (curl). This ensures the smoothing property
of Gauß–Seidel sweeps, though they are basically unstable, i.e. the plain Gauß–Seidel
method does not yield a convergent iterative method for the indefinite problem. An
important consequence is that only a small number of smoothing steps makes sense,
whereas many of them are detrimental. In general, we observed optimal performance
for one or two pre- and postsmoothing steps.

As an alternative smoother, following [40], we could have used a relaxation based on
the (curl ·, curl ·)0–part of the bilinear form a(·, ·) only. This leads to a smoothing
iteration that converges in the ‖curl ·‖0–seminorm. Although this approach seems
to be promising at first glance, there are serious drawbacks: First, storing another
operator inflates memory requirements. Secondly, a thorough analysis reveals that the
resulting multigrid cycle no longer provides a symmetric preconditioner. Yet symmetry
of the preconditioning operator is essential for Krylov–methods we wish to employ for
the sake of additional robustness (see below).

In the case of homogeneous materials and under some restrictions on Ω it has been
shown in [22] that for uniform refinement a V–cycle multigrid method is an asymp-
totically optimal preconditioner for the bilinear form (curl ·, curl ·)0 restricted to
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ND⊥(TL). If the negative eigenmodes are taken care of on the coarsest grid, this
result will carry over to the current scheme.

Excellent convergence in the space ND⊥(TL) is not enough, however. Obviously the
nodal basis functions we on any level l do not exactly lie in ND⊥(Tl). Invariably each
smoothing step introduces some pollution in N (curl), hence. These unwanted con-
tributions evidently belong to M− which makes them invisible for further smoothing
steps. Eventually these spurious components might be building up and severely pollute
the solution after a few V–cycles. We cannot dismiss their impact, since the presence
of a zero order term makes the smoothers susceptible to curl–free perturbations.

To weed out these N (curl)–components a projection onto the constrained space given
by (12) is required. It can be done efficiently by carrying out a few standard V–cycles
for the problem (13) and using the result as a curl–free correction to the tainted ap-
proximation. In the case ΓC = ∅ standard multigrid theory predicts rapid convergence
of these iterations, virtually independent of the jumps of ε and the meshwidth h. From
numerical experiments we conclude that the presence of the additional boundary term
does not disrupt convergence. So we can curb curl–free errors after each V–cycle with
reasonable computational effort. Please note that we entirely owe this possibility to
the existence of discrete potentials for edge elements.

So we obtain an outer multilevel iteration within the space of edge elements, where
each V–cycle is followed by an inner iteration to remove the N (curl)–components.
At a first glance, this additional projection (henceforth denoted by QL) makes the
nested iteration scheme structurally unsymmetric. However, if it is ensured that QL

is carried out with a precision exceeding the one required for the outer iteration, no
substantial contributions of N (curl)–components will appear and the symmetry of
the outer multilevel scheme is preserved.

To avoid non–solenoidal pollution from the very beginning, it is essential to remove
any N (curl)–components in the initial guess; the respective projection will be denoted
by Q0

L. The only difference between Q0
L and QL lies in the fact that the source term

defined by the incident field Einc
h in (13) has to be dropped in QL. The reason for this

is that the preconditioner merely solves a defect equation, where source terms (related
to the right hand side vector of the linear system) do not contribute explicitely.

As the multilevel preconditioner is symmetric it can be embedded into any suitable
Krylov–subspace iteration. To enhance the robustness of the scheme, we use V–cycles
as preconditioners for a conjugate residual method. This is meant to be an additional
safeguard against negative eigenmodes that have eluded the coarse grid solver; it is
well known that this CG variant can cope with symmetric indefinite systems. If only
a few negative eigenvalues are present, it recovers the speed of convergence of the
preconditioned CG method after a few steps (cf. [20]).

We point out that a plain preconditioned CG method does not perform worse in
numerical experiments (see Sect. 5), though theory guarantees convergence only for
positive definite problems. However, in the current setting the preconditioner renders
negative eigenvalues virtually invisible to the Krylov–subspace iteration. Thus the
convergence properties of the preconditioned CG method are preserved unscathed
even in the presence of a few negative eigenvalues (cf. [37]). The basic algorithms
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Solve A u = b with initial guess u0 :

Remove non-solenoidal contributions: u0 = Q0
L(u0)

r0 = b− A u0

ρ0 = C r0
Remove non-solenoidal contributions: ρ0 = QL(ρ0)

p0 = ρ0

for k = 1, 2, ...

α =
ρt

k�1 rk�1

pt
k�1 A pk�1

uk = uk−1 + αpk−1

rk = rk−1 − α A pk−1

if
rt

krk

btb
< tol : end

ρk = C rk
Remove non-solenoidal contributions: ρk = QL(ρk)

pk = ρk +
ρt

k�1 rk�1

ρt
k rk

pk−1

Figure 1: Preconditioned conjugate gradient method with projection steps Q0
L and QL.

The symbol C denotes the operation of the preconditioner; tol is a prescribed tolerance.

for solving A u = b by a multilevel preconditioned conjugate gradient algorithm are
depicted in Figs. 1 and 2.

5 The Adaptive Mesh Refinement

In the presence of sharply localized phenomena the gain through local mesh refinement
easily outweighs its higher computational costs (compared to uniform grids). In the
case of waveguide simulation, there are typical situations, where we have to deal with
near singularities of the solution, particularly in the vicinity of sharp metallic edges
and corners. There the mesh should be significantly finer than in the rest of the
computational domain to get a prescribed overall accuracy. To determine where and
how far local refinement must be carried out, a local error monitor is needed.

Brisk research has been going on the field of local a–posteriori error estimators
(cf. [38, 25, 8, 5]), but the theory has so far skirted indefinite problems. An attrac-
tive, though somewhat heuristic approach based on stress recovery was introduced by
Zienkiewicz and Zhu [41]. It was investigated in more detail and extended to weighted
projection schemes in [1]. These authors utilize a stress field computed from the dis-
crete solution at points where the approximation displays superconvergence. Then
this stress field is improved by a weighted L2-projection into a suitable finite ele-
ment space. The analysis in [1] is carried out for positive definite systems arising in
structural mechanics, whereas our electric field computations are not based on min-
imization principles. So convergence results derived in [1] do not readily apply here
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V Cycle(ρl, rl, l) :

if (l == 0): solve A
0 ρ0 = r0 by FB-Substitution and return

ρl = 0

ρl = GS Forward(ρl, A l, rl)

rl−1 = Rl−1
l (rl − A l ρl)

V Cycle(ρl−1, rl−1, l − 1)

ρl = ρl + P l
l−1(ρ

l−1)

ρl = GS Backward(ρl, A l, rl)

Figure 2: Recursive symmetric multigrid V-cycle with Gauß–Seidel smoothing for com-
puting ρ = C r. Rl−1

l and P l
l−1 denote prolongation and restriction between levels l and

l− 1.

as our functional (6) does not induce an energy norm. Hence we will call the device
presented below an error indicator.

Let Eh denote the discrete solution for the electric field. In our case, the magnetic
field H plays the part of the stress and is given by equation (2)

Hh = − 1

i ωμ

∑
k

curlEh , (19)

It is clear from taking the derivative that Hh does not match the order of approxi-
mation of Eh. If μ is constant, Hh belongs to the space of Raviart–Thomas elements
[32], which sport continuity of normal components. However, the magnetic field is a
1-form like the electric field and thus it should be approximated by edge elements. To
construct such an improved approximation Ĥh, we resort to a global L2–orthogonal
projection of Hh onto ND(Ω). It can be obtained from the discrete variational prob-
lem (

Ĥh −Hh,wh

)
0
= 0 ∀wh ∈ ND(Ω) .

We end up with a system of linear equations corresponding to the mass matrix for
edge elements. Thus its coefficient matrix is positive definite and its condition number
is bounded independently of the size of the elements of the mesh. Thus the above
problem can be solved efficiently by a conjugate gradient algorithm, where a dozen
iterations are quite sufficient.

Now a local error indicator ηT for each element T in the mesh can be gained by
calculating the weighted mean square deviation of both magnetic field approximations.
As we are working with oscillating fields, one should take the average with respect to
time by working with the complex conjugate (denoted by the asterisk ∗):

ηT =
1

2

∫
T

μ (Ĥh −Hh)
∗ (Ĥh −Hh)dΩ , (20)

Speaking in physical terms, this quantity gives the average deviation of the local
magnetic energy density.
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A global indicator η for the relative error is obtained by summing up the local devia-
tions and dividing the result by the total magnetic energy:

η =

1
2

∫
Ω

μ (Ĥh −Hh)
∗(Ĥh −Hh)dΩ

1
2

∫
Ω

μH∗
hHhdΩ

(21)

Since the numerator in (21) is the sum of the local contributions in (20), we can use
their relative size to guess at the distribution of the discretization error. In detail, we
mark an element as eligible for further refinement, if its indicator ηT is beyond a thresh-
old Θ determined by the maximal local error encountered on the mesh: Θ = γmax

T
ηT .

Setting the parameter γ to 0.25 is usually a satisfactory choice. To avoid any stagna-
tion of the adaptive process, it is ensured that at least 5 per cent of all elements are
marked for refinement.

Numerical experiments confirmed that the indicator is well capable of steering adaptive
mesh refinement. To assess its quality as an estimator, we did some calculations for
a simple test problem, where the analytical solution is available. We simulated a
standing wave between two parallel metallic plates with perfectly conducting walls; the
simulation area has the shape of a rectangular box. On a boundary plane perpendicular
to the plates a transversal electromagnetic (TEM-) wave is excited by a Dirichlet
boundary condition; the wave is reflected completely by a further metallic plate on
the opposite face.

We created a regular tetrahedral mesh to discretize the simulation area. The initial
grid was chosen such that the ratio between the maximal edge length and the wave
length is 1

3
. Additionally three steps of uniform mesh refinement were carried out.

Ref. Depth η ηtrue η/ηtrue

0 0.128 0.106 1.2
1 0.0394 0.0216 1.8
2 0.0111 0.00507 2.2
3 0.00296 0.00125 2.4

Table 1: Estimated and true errors of the test problem.

Table 1 shows the results for the different refinement levels. In the second and the
third column the estimated and the true errors are printed, the last column presents
the ratio of these values. The table does not indicate an asymptotic convergence for
the estimated values as would be desirable; however, the agreement seems to be still
acceptable to assess the quality of the numerical solution. At least the figures hint
at the reliability of the error indicator; it hardly ever misses regions where there is a
significant approximation error left.

Calculations with local grid refinement yielded quite a similar behavior of the error
indicator.
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Figure 3: Initial finite element mesh of the taper structure (left) and electric field of
an incident TEM-wave. The inner conductor has not been modelled.

6 Numerical Experiments

We calculate the electric field within a three–dimensional taper structure in a closed
metallic box (see figures 3 and 4). The taper section is placed in the middle of the model
and connects two microstrip lines of different width. Inner and outer conductor are
formed by metallic surfaces with negligible resistance, where the tangential component
of the electric field has to vanish. The inner conductor has rectangular cross sections;
thus the electric field is singular at the edges and the mesh is refined adaptively in
these regions.

We assume that both the input port at the front and the output port at the back
of the structure propagate only TEM–modes. Thus in the immediate vicinity of each
port the field may be split into an incident and a reflected TEM–wave by [28]

E(x) = Einc(x) + Eref (x)

= Einc(x, y) e−iβz + Eref (x, y) eiβz . (22)

Here the direction of propagation is aligned to the z-axis; β denotes the propagation
constant and is given by

β = ω
√
εμ ; (23)

For practical computations of scattering coefficients it is neccessary that the planes of
both ports are placed far enough from the discontinuity region, so that all higher–order
modes excited by the obstacle have decayed at the ports.

The incident field Einc(x, y) of a TEM–mode can be derived from a two–dimensional
static potential for which Laplace’s equation holds on the plane defining the port [34].
Of course, the numerical precision of this solution should be beyond the precision
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Figure 4: Mesh after the second adaptive refinement step. The elements above the inner
conductor have been removed for display.

desired for the complete 3D–structure. The incident field at the front port is shown in
figure 3.

To obtain a suitable boundary condition for the ports, we apply the operator of the
natural boundary condition of the functional (6) to (22) (note that on the input port
the unit normal n is aligned to the negative z–direction):

n× (
1

μ
curlE) = n× (− iβ

μ
n×Einc) + n× (

iβ

μ
n×Eref ) (24)

We may substitute Eref by (22) to get

n× (
1

μ
curlE) = −2 (

iβ

μ
Einc) + n× (

iβ

μ
n×E) . (25)

This equation states a Cauchy-type boundary condition like (4). On the output port
Einc is set to zero.

For our computations we assumed the structure to be filled with homogeneous dielec-
tric material (εr = 1 and μr = 1). The height of the inner conductor is 10 mm; its
width at the front port is 20 mm and 40 mm at the back. The complete structure is
200 mm long and 100 mm high, the taper section has a length of 20 mm. We solved
the problem using adaptive mesh refinement as described in section 5. On every re-
finement level we set the initial solution guess to zero; the requested tolerance for the
outer iteration (tol in figure 1) was 10−6.

We started all computations on the initial mesh shown in figure 3, which comprises
566 degrees of freedom on the edges (dirichlet nodes are not counted). Figure 5 shows
the electric field in a plane right above the inner conductor for an excitation frequency
of 3 GHz after two adaptive refinement steps.
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Figure 5: Electric field in a plane above the inner conductor. The excitation frequency
is 3 GHz.

We applied various excitation frequencies to assess the influence of the ratio between
edge length and critical wavelength

r = max
he
λC

with he and λC as defined in (16) and (17). As stated in (17), r should be below 0.5
to ensure the convergence of the multilevel solvers.

The first run was carried out at a frequency f = 1.5 GHz, yielding r = 0.25 on
the basic mesh. So the negative eigenvalues are well resolved. To demonstrate the
efficiency of the projection scheme proposed in section 4, we compare in table 2 the
results obtained both with and without projection (denoted by CR-ML-P and CR-ML
in the table). The smoother in the multilevel preconditioner was a local Gauß–Seidel
procedure with one pre- and one post-smoothing step; for the basic Krylov-subspace
solver we chose a conjugate residual algorithm.

Ref. Nodes #Iter CPU [sec]

Depth CR-ML CR-ML-P CR-ML CR-ML-P

1 2946 115 16 16 4
2 8423 297 19 144 19
3 25542 607 18 1128 73
4 67549 1186 18 6679 235
5 173264 2593 20 41430 780

Table 2: Convergence history for f = 1.5 GHz, r = he/λC = 0.25 .

Table 2 shows the number of nodes created in each refinement step (the refinement
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depth in the mesh increased with every step for all the examples presented here). In
the remaining colums the iteration counts and processor (CPU) times for the solvers
are given. The results demonstrate that the convergence rate of the multilevel solver
without projection deteriorates with increasing refinement depth. The iteration count
roughly increases by a factor 2, indicating that the smoothing operations for levels> 1
do not speed up the convergence. On the contrary, the additional projection schemes
yields a convergence rate which is independent of the refinement depth. Although
it requires about 10 inner multilevel iterations for each outer iteration, this effort
definitely pays off.

To study the behaviour of an alternative basic solver, we replaced the conjugate resid-
ual algorithm (CR) with a conjugate gradient iteration (CG). Furthermore, we also
used the multilevel algorithm as a stand–alone solver, but with three pre–smoothing
steps, which improved the convergence significantly. In all cases the projection scheme
was employed. Both alternatives worked well; the results are shown in table 3. As a
conjugate gradient algorithm requires fewer vector updates than a CR–iteration, it
renders a better performance with regard to the CPU–times.

Ref. Nodes #Iter CPU [sec]

Depth CR-ML-P CG-ML-P ML-P CR-ML-P CG-ML-P ML-P

1 2946 16 16 14 4 4 5
2 8423 19 18 17 19 17 22
3 25542 18 18 21 73 71 111
4 67549 18 18 22 235 223 403
5 173264 20 19 23 780 747 1330

Table 3: Convergence history for f = 1.5 GHz, r = 0.25 .

Setting the frequency to 3 GHz we reach a critical region where the coarse grid resolu-
tion is near to the limit stated in (17); i.e. r = 0.5. Table 4 shows that the convergence
rates for CR-ML-P and CG-ML-P have decreased, but still remain stable for all re-
finement levels. The stand-alone multilevel solver did not convergence at all.

Ref. Nodes #Iter CPU [sec]

Depth CR-ML-P CG-ML-P ML-P CR-ML-P CG-ML-P ML-P

1 3180 27 26 † 8 8 †
2 8010 27 27 27 26
3 26887 28 28 121 116
4 64937 28 28 356 342
5 155951 31 31 1171 1136

Table 4: Convergence history for f = 3 GHz, r = 0.49 . The † indicates that the solver
did not converge.

Astonishingly, covergence could also be obtained beyond the critical limit for r. We
carried out runs for f = 6 GHz yielding r = 0.98 on the initial mesh. However, as
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diplayed in table 5, the convergence has suffered tremendously, although remaining
relatively stable. Even more surprising is the observation that the performance of
the CG–algorithm was clearly superior, although in this situation not all the nega-
tive eigenvalues are captured by the direct coarse grid solver. There seems to be no
straightforward explanation for this behaviour; one reason might be that the (simpler)
CG–algorithm is less affected by rounding errors.

Ref. Nodes #Iter CPU [sec]

Depth CR-ML-P CG-ML-P ML-P CR-ML-P CG-ML-P ML-P

1 1349 55 55 † 9 8 †
2 3076 164 161 86 76
3 11709 431 391 1017 887
4 66350 416 398 7702 7041
5 203587 468 396 29364 24693

Table 5: Convergence history for f = 6 GHz, r = 0.98 . The † indicates that the solver
did not converge.

No convergence could be observed when we raised the frequency to 9 GHz (corre-
sponding to r = 1.47).

To sum up some of the above results, we depict the convergence rates for several runs
in figure 6. The convergence rate is defined by

ρ =

(‖rm‖
‖r0‖

) 1
m

,

where ‖rm‖ denotes the euclidian norm of the residual after the (final) m–th iteration.
ρ gives the average decrease of the residual norm in each iteration.

We also carried out calculations substituting a symmetric QMR–algorithm [17] for
the CR–iteration. Symmetric QMR was designed especially for complex symmetric
matrices like occuring in our case. The convergence rates did not differ significantly,
but we had to restrict the tolerance for the inner iteration (i.e. the projection scheme)
by several orders of magnitude to obtain stability. So we consider this solver less
favourable compared to CG and CR.

7 Conclusion

We have developed a nested multilevel scheme for the solution of indefinite complex
linear systems which arise when the time–harmonicMaxwell’s equations are discretized
with edge elements. The inner iteration, being introduced to remove modes lying in
the nullspace of the double–curl operator, restores an optimal convergence rate for the
outer multilevel solver. Here the basic idea is that the large discrete nullspace of of the
curl–operator can be represented by the gradient space of Lagrangian finite element
functions: discrete potentials can be found in a proper finite element space. Thus our
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Figure 6: Convergence rates for different coarse grid resolutions.

multilevel approach also benefits from the close relationship between edge elements
and differential forms, the very relationship that made them an attractive choice for
the approximation of electric fields in the first place.

Numerical experiments revealed that – within the presented framework – the best
performance can be achieved by employing the nested multilevel iteration as a pre-
conditioner in a plain conjugate gradient iteration.

Further investigations could try to relax the restrictive requirements concerning the
precision for the inner iteration. As pointed out in [23], an appealing alternative might
arise from carrying out relaxation sweeps in parallel both in the Nédélec space and in
the gradient space on each level of the multigrid iteration.
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