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Abstract

A perfect graph is critical if the deletion of any edge results in an imperfect graph. We give
examples of such graphs and prove some basic properties. We relate critically perfect graphs
to well-known classes of perfect graphs, investigate the structure of the class of critically
perfect graphs, and study operations preserving critical perfectness.

1 Introduction

We assume familiarity with basic notions of graph theory and consider finite, undirected graphs
without loops or multiple edges; subgraphs are node-induced.

To better understand a graph property P , it is often useful to investigate extremal cases, i.e.,
graphs having P but losing it by a small modification. We distinguish two types of such graphs:
minimal graphs (they possess P but lose it by the deletion of any node) and critical graphs
(they have P but lose it by the deletion of any edge). The subject of our investigation is a rich
and well-studied graph property: perfectness.

Berge proposed to call a graph perfect if, for each of its subgraphs G′, the chromatic number
χ(G′) equals the clique number ω(G′), otherwise the graph is imperfect. Chordless cycles of
length at least four have been termed holes and their complements antiholes. Obviously, any
graph that contains an odd hole or an odd antihole is imperfect. Berge conjectured in [2] that
a graph is perfect iff it contains neither odd holes nor odd antiholes as subgraphs, i.e., iff the
graph is Berge (Strong Perfect Graph Conjecture, for short SPGC). Padberg [16] introduced
the notion of minimally imperfect graphs; in these terms, the SPGC states that the odd holes
and the odd antiholes are the only minimally imperfect graphs. Therefore, minimally imperfect
Berge graphs are called monsters (since the existence of this third type of minimally imperfect
graphs would contradict the SPGC).

Although several, in general NP-hard, combinatorial optimization problems can be solved
in polynomial time for perfect graphs, see [8], the structure of perfect graphs is not well-
understood. In particular, the SPGC still seems to be out of reach. On the other hand, the
investigation of minimally imperfect graphs has revealed that these graphs have quite strong
properties, see e.g. [5, 9, 13, 14, 15, 16, 18, 19]. That motivated us to introduce a new class
of extremal cases with respect to perfectness: critically perfect graphs. We provide several
examples and prove some basic properties in section 2.

We are interested in relating the class CP of critically perfect graphs to well-known classes of
perfect graphs. It turns out that many linegraphs of bipartite graphs as well as complements
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of such graphs belong to CP; let us denote this subset of CP by LG. Since there is no class
of perfect graphs known which contains both the linegraphs of bipartite graphs and their
complements, it seems hopeless to find a class of perfect graphs containing all graphs of CP.

In order to examine the structure of the class CP, we first characterize the graphs belonging to
LG (see section 3). Then we study operations preserving critical perfectness in section 4. We
obtain a subset of CP which can be constructed from graphs in LG by applying this kind of
operations. Finally, we check when complementation preserves critical perfectness.

2 Critical Perfectness

We define an edge e ∈ E of a perfect graph G = (V, E) to be critical if G− e is imperfect. In
particular, for every critical edge e of a perfect graph G, there is a subgraph Ge ⊆ G s.t. Ge− e
is minimally imperfect.

According to the three different types of minimally imperfect graphs, we distinguish between
three types of critical edges. We say that an edge e of a perfect graph G is H-critical (A-
critical, M-critical, resp.) if G − e contains an odd hole (an odd antihole, a monster, resp.).
Note that an H-critical edge is a single chord in an odd cycle of length ≥ 5 which forms a triangle
with two edges of this cycle; further, if the SPGC is true, there are no M-critical edges.

We define a graph to be critically perfect if it is a perfect graph without isolated nodes and
all of its edges are critical. Critical perfectness is a very strong property. Nevertheless, there
are surprisingly many graphs having this property; a few examples are shown in Figure 1 (note
that G1, ..., G6 are linegraphs of bipartite graphs† and G1 = G1 = G4 = G4 holds).

Some properties of minimally imperfect graphs immediately determine properties of a critically
perfect graph G: if x and y are adjacent nodes of G, then neither x dominates y, i.e., N (y) ⊆
N (x) ∪ {x} (easy), nor do all induced paths connecting x and y in G − xy have even length
(Meyniel [14]), nor are all nodes in G − {x, y} adjacent either to x or to y (Olariu [15]). In
addition, we state the following basic properties.

Lemma 2.1 For any critically perfect graph G, it holds that

(i) every edge of G is contained in a triangle,

(ii) there is no simplicial node in G, i.e., a node x s.t. N (x) is a clique,

(iii) G has minimal degree δ(G) ≥ 4 and maximal degree Δ(G) ≤ n− 3.

Proof. Let G = (V, E) be a critically perfect graph.
(i) Suppose e ∈ E is not contained in a triangle. Then e is neither H-critical nor A-critical.
Hence, there is Ge ⊆ G s.t. Ge − e is a monster. Lovász’s characterization of perfect graphs
[13] says α(Ge)ω(Ge) ≥ n but α(Ge− e)ω(Ge− e) < n. Therefore, ω(Ge− e) < ω(Ge) (note that
ω(Ge) ≥ ω(Ge − e) and α(Ge) ≤ α(Ge − e)) holds and e is contained in the intersection of all
maximum cliques of Ge. It follows ω(G) = 2, since e is a maximal clique of G, a contradiction
to ω > 3 for any monster by Tucker [19]. �

†A well-known characterization of linegraphs of bipartite graphs is that one can colour their edges with two
colours s.t. every maximal clique is monochromatic and no two maximal cliques of the same colour intersect.
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Figure 1: Examples for critically perfect graphs.
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(ii) Since G is noncomplete, a node y in the clique N (x) would have a neighbour in
G− (N (x) ∪ {x}), i.e., y would dominate x, a contradiction.�
(iii) We first show δ(G) ≥ 4. Edges incident to nodes with degree < 3 are not critical. Assume
that there is x ∈ V with N (x) = {x1, x2, x3}. Since δ(C2k+1) ≥ 4 for k > 2 and δ(M) ≥ 6 for
any monster M holds by Sebö [18] and [19], the edges incident to x are H-critical. Consider
the edge xx1, it has to be contained in a triangle. Without loss of generality, let x1x2 be an
edge. Further, x1, x, x3 are contained in an even hole C with x2 �∈ C and NC(x2) = {x, x1},
i.e., x1x3, x2x3 �∈ E. But now, xx3 is not contained in a triangle, a contradiction to (i).
Now, we show Δ(G) ≤ n− 3. A node of degree n− 1 would dominate all other nodes. Consider
u ∈ V with d(u) = n− 2 and w �∈ N (u). Since vw �∈ E, v ∈ N (u) would imply that u dominates
v, we have N (u) = N (w). Let e be an edge incident to u and Ge − e the corresponding
minimally imperfect subgraph. By Meyniel [14], it follows w �∈ Ge − e, i.e., Ge ⊆ N (u) ∪ {u}
and, in Ge − e, u is contained in exactly one stable set of size 2, a contradiction to Ge − e
minimally imperfect. �

Note that the bounds for δ(G) and Δ(G) in (iii) are sharp (this is shown by the graph G1 in
Figure 1 and by the complement of the linegraph of the second graph in Figure 3, resp.).

3 Characterization of the Graphs in LG

In order to characterize the graphs in LG, we describe two structures in the underlying bipartite
graphs F which guarantee that the edges of L(F ) and L(F ), respectively, are critical.

We say that two incident edges x and y form an H-pair if there is a K1,3 with edges x, y, z and
an even cycle C that contains x and y but only one endnode of z. We call F an H-graph if it
is connected and every two of its incident edges form an H-pair. Examples of H-graphs are the
bipartite graphs shown in Figure 2 and all 3-connected bipartite graphs (easy).

Figure 2: Examples for H-graphs.

We say that two nonincident edges form an A-pair if they are the end edges of an odd path with
length at least five. We call F an A-graph if it is connected and every two of its nonincident
edges form an A-pair. Examples for A-graphs are the bipartite graphs shown in Figure 3 and
all 3-connected bipartite graphs (easy).

Figure 3: Examples for A-graphs.
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Let us first investigate the relationship of the defined structure in H-graphs with critical edges
in linegraphs.

Theorem 3.1 Let G be a perfect graph and the linegraph of a graph F . An edge e = xy of G
is critical iff x and y form an H-pair in F .

Proof. (If) Let x and y form an H-pair in F , then there is an edge z incident to both and an
even cycle C containing x and y but only one endnode of z. In G = L(F ), the edge e = xy is
contained in the even hole L(C) and it holds NL(C)(z) = {x, y}, i.e., the edge e is H-critical. �

(Only if) Let G be perfect, the linegraph of a graph F , and e a critical edge of G. We show that
the edges corresponding to the endnodes of e form an H-pair in F . According to the three types
of critical edges, we distinguish between three cases.

Case 1: e is H-critical. Let e = xy, the nodes x and y are contained in an even hole C2k, k ≥ 2
and there is another node z with NC2k

(z) = {x, y}. In F , x and y are incident edges on the even
cycle L−1(C2k); z is incident to x and y and has exactly one endpoint on L−1(C2k) (else z has
four neighbours on C2k). Thus, x and y form an H-pair in F .

Case 2: e is A-critical. Let e = v1v2k+1 and v1, ..., v2k+1 be the nodes of the corresponding
odd antihole C2k+1, k ≥ 2 in G − e with vivi+1 �∈ E(G) for 1 ≤ i ≤ 2k. For k ≥ 3, the
nodes v1, v2, v3, v2k, v2k+1 induce a subgraph of G which is forbidden according to Beineke’s
characterization of linegraphs [1]. Hence, it holds k = 2 and the assertion follows by Case 1,
since e is also H-critical (note C5 + e � C5 + e).

Case 3: e is M-critical. Let e = xy and M − e be a monster. By [1], M is K1,3-free but M − e is
not since the SPGC is true for K1,3-free graphs by a result of Parthasarathy and Ravindra

[17]. Let us now consider a K1,3 = {w, x, y; z} with center z in M − e. The nodes x, z, w and
y, z, w, resp., induce P3’s which are contained in the holes Cx and Cy, resp. (see Hoàng [9]).
Since M − e is Berge, Cx and Cy are even holes. L−1(Cx) and L−1(Cy) are even cycles in F and
C = L−1(Cx ∪Cy)− {w, z} is an even cycle containing the edges x, y and only one endnode of
z. But now, L(C ∪ {z})− e is an odd hole in M − e, a contradiction to M − e Berge. �

We obtain the following corollary as an immediate consequence of the previous proof.

Corollary 3.2 Let G be perfect and a linegraph. An edge of G is critical iff it is H-critical.

Theorem 3.3 Let G be the linegraph of F . G is critically perfect iff F is a bipartite H-graph.

Proof. (If) Let F be a bipartite H-graph, then its linegraph G is perfect by König’s
Edge-Colouring-Theorem [11]; every edge of G is critical by Theorem 3.1. �

(Only if) Let G be critically perfect and the linegraph of F . We know by Theorem 3.1 that the
edges of F corresponding to adjacent nodes in G form an H-pair. Thus, F is an H-graph. We
have to show that F is bipartite.
Assume F contains an odd cycle. Since G contains an odd hole if this cycle has a length ≥ 5,
it has to be a triangle with edges e1, e2, e3. Since F is an H-graph, e1 and e2 appear on an even
cycle C that has to be a C4 (else (C−{e1, e2})∪{e3} would be an odd cycle of length ≥ 5). Let
e13 be the edge of C incident to e1 and e3, and e23 be the edge of C incident to e2 and e3. But
e1 and e3 also appear on an even cycle C′ and we get an odd cycle of length ≥ 5 in each case:
(C ′ − {e3}) ∪ {e13, e23} if e23 �∈ C ′, or (C ′ − {e23, e3}) ∪ {e13} if e23 ∈ C ′. Since the existence of
an odd cycle in F contradicts the perfectness of G, F has to be a bipartite graph. �
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Now, let us relate the structure in A-graphs to critical edges in complements of linegraphs in a
similar way.

Theorem 3.4 Let G be perfect and the complement of the linegraph of a graph F . An edge
e = xy of G is critical iff x and y form an A-pair in F .

Proof. (If) Let x and y form an A-pair in F , then they are the end edges of an path P2k, k ≥ 3.
It holds L(P2k) = C2k−1 + e where e is an additional edge between these nodes of C2k−1 which
correspond to the end edges of the path P2k, i.e., the edge e is A-critical. �

(Only if) Let G be perfect, the complement of the linegraph of F , and e a critical edge of G.
We show that the edges corresponding to the endnodes of e form an A-pair in F . According to
the three types of critical edges, we distinguish between three cases.

Case 1: e is A-critical. Let e = v1v2k+1 and v1, ..., v2k+1 be the nodes of the corresponding odd
antihole C2k+1, k ≥ 2 in G − e with vivi+1 �∈ E(G) for 1 ≤ i ≤ 2k. It holds vivi+1 ∈ E(G) for

1 ≤ i ≤ 2k, i.e., v1 and v2k+1 are the endnodes of a path P2k+1 = C2k+1 + e in G, hence the end
edges of a path with length 2k + 1 in F .

Case 2: e is H-critical. Let e = v1v2k and v1, ..., v2k+1 be the nodes of the corresponding odd
hole C2k+1, k ≥ 2 in G− e with vivi+1 ∈ E(G) for 1 ≤ i ≤ 2k + 1(mod2k + 1). For k ≥ 3, the
nodes v1, v3, v2k, v2k+1 induce a K1,3 in G which is forbidden by [1] (note that G is K1,3-free).
Hence, it holds k = 2 and the assertion follows by Case 1, since e is also A-critical.

Case 3: e is M-critical. Let e = xy and M − e be a monster. By [1], M is K1,3-free but M − e is
not since M + e is a monster as well by Lovász’s Perfect Graph Theorem [13], and the SPGC
is true for K1,3-free graphs by [17]. Let us now consider a K1,3 = {w, x, z; y} in M − e, i.e., a
K1,3 with center y in M + e. The nodes w, y, z and x, y, z, resp., induce P3’s in M + e which are
contained in the holes Cw and Cx, resp. (see [9]). Since M+e is Berge, Cw and Cx are even holes.
In M , we have Cw and an even path Px connecting z and x. Finally, P = L−1(Cw ∪ Px)− {z}
is a path of odd length ≥ 5 with x and y as end edges; but L(P ) is an odd antihole in M − e, a
contradiction to M − e Berge. �

Corollary 3.5 Let G be perfect and the complement of a linegraph. An edge of G is critical iff
it is A-critical.

Theorem 3.6 Let G be perfect and the complement of the linegraph of a graph F . G is critically
perfect iff F is a bipartite A-graph.

Proof. (If) Let F be a bipartite A-graph, then the complement G of its linegraph is perfect by
König’s Matching-Theorem [12]; every edge of G is critical by Theorem 3.1. �

(Only if) Let G be critically perfect and the complement of the linegraph of F . We know by
Theorem 3.4 that the edges of F corresponding to adjacent nodes in G form an A-pair. Thus, F
is an A-graph. We have to show that F is bipartite. Assume F contains an odd cycle D. Since
G contains an odd antihole if D has a length ≥ 5, D has to be a triangle with nodes x, y, z.
Since F contains nonincident edges (note that G is not a stable set) and is edgeconnected, there
is an edge incident to D, say x′ is adjacent to x. The edges xx′ and yz form an A-pair, i.e., they
are the end edges of an odd path P with length ≥ 5 and we get an odd cycle C with length ≥ 5:
C = {xx′...y} if P = {xx′...yz}, or C = {x...yz} if P = {x′x...yz}, a contradiction. �
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4 Operations Preserving Critical Perfectness

In this section, we study graph operations with the property that the class CP is closed under
applying these operations.

A graph operation transforms graphs G1, ..., Gi into a new graph G. If an operation transfers
a common property P of G1, ..., Gi to G, we say that this operation preserves the property P .
Let us call a perfection preserving operation a P-operation. We define a P*-operation to be
a P-operation that generates G from disjoint graphs G1 and G2 s.t.

(i) G1 ⊆ G and G2 ⊆ G

(ii) e ∈ E(G1) or e ∈ E(G2) ∀e ∈ E(G).

It follows from the definition that the class CP is closed under applying P*-operations.

Lemma 4.1 Every P*-operation preserves critical perfectness.

Let us give some examples of P*-operations. Obviously, the union and all perfection preserving
identification operations are P*-operations: the clique identification; its generalization, the
subgraph identification by Hsu [10]; and the stable set identification by a result of Corneil

and Fonlupt [6]. Furthermore, the multiplication and its generalization, the substitution by
Lovász’s Replacement Lemma [13], and the composition by Bixby [3] are P*-operations as
well.

Let us mention that, if G = L(F ), the multiplication of a node v ∈ V (G) is similar to the
addition of parallel edges to v in the underlying graph F . Further, since no node of a critically
perfect graph dominates one of its neighbours, no critically perfect graph satisfies the condition
of the amalgam operation introduced by Burlet and Fonlupt [4], exept for the special case
of Bixby’s composition. The same holds for all further generalizations of the amalgam, e.g.,
the so-called 2-amalgam defined by Cornuéjols and Cunningham [7].

Finally, note that a graph G generated from two graphs G1, G2 ∈ LG by P*-operations does
not belong to LG in general, as is shown by the two examples in Figure 4.

Figure 4: Examples for graphs generated by P*-operations.

Let us now check, when complementation, which preserves perfectness by Lovász’s Perfect
Graph Theorem [13], preserves critical perfectness. Both a graph and its complement are crit-
ically perfect iff the deletion and the addition of any edge results in an imperfect graph. This
requirement is very strong. Indeed, the elements of CP have noncritical complements in general,
i.e., CP is not closed under complementation. E.g., all linegraphs of bipartite A-graphs that
are not also H-graphs (see the linegraphs of the A-graphs shown in Figure 3), are noncritical.
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Obviously, the same holds for all graphs generated by P*-operations from at least one graph
with noncritical complement.

However, there are many examples of critically perfect graphs with critical complements, e.g.,
the graphs shown in Figure 1 and in Figure 4. We are able to prove some necessary conditions
that the complement of a critically perfect graph is critical as well.

Lemma 4.2 If the complement of a critically perfect graph G is critical, then G

(i) is a connected graph,

(ii) has no clique-cutset Q s.t. in at least two components of G−Q, there exists a node x with
xv ∈ E(G) ∀v ∈ Q,

(iii) has no nonadjacent nodes with the same neighbourhood.

Proof. Let G be a critically perfect graph.
(i) Assume that G is disconnected with components G1 and G2. In G, consider an edge
e = x1x2 with x1 ∈ V (G1), x2 ∈ V (G2) and let Ge−e be the corresponding minimally imperfect
subgraph of G − e. By Lovász [13], Ge + e ⊆ G + e is minimally imperfect as well, and e
is the only edge connecting (Ge + e) ∩ G1 and (Ge + e) ∩ G2. Therefore, Ge + e cannot be
(2ω− 2)-connected, a contradiction to Sebö [18]. �
(ii) Assume that Q is a clique-cutset of G, G1 and G2 are two components of G − Q, and
x1 ∈ G1, x2 ∈ G2 are nodes with x1v, x2v ∈ E(G) ∀v ∈ Q. In G, consider the edge e = x1x2 and
the minimally imperfect subgraph Ge − e. By [13], Ge + e ⊆ G+ e is minimally imperfect. But
Ge + e ∩ (Q ∪ {x1, x2}) is a clique-cutset of Ge + e, a contradiction to Chvátal’s Star-Cutset
Lemma [5]. �
(iii) Assume that x1 and x2 are nonadjacent nodes with the same neighbourhood; in G, they
are adjacent nodes and would dominate each other, a contradiction. �

Therefore, neither the complements of graphs generated by the union (see Lemma 4.2(i)),
nor by the identification in a node or an edge (see Lemma 4.2(ii)), nor by the multiplication
(see Lemma 4.2(iii)) are critically perfect. Furthermore, it follows by Lemma 4.2(i) that the
well-known complete join does not preserve critical perfectness.

We are further interested in

- sufficient conditions that guarantee the critical perfectness of a graph and its complement,

- critically perfect graphs that cannot be constructed from the graphs in LG by applying
P*-operations or complementation,

- additional examples for P*-operations, and

- further operations preserving or constructing critical perfectness.
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