
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7, D-14195 Berlin

A Network Dimensioning Tool

Dimitris Alevras Martin Grötschel Roland Wessäly

Preprint SC 96–49 (December 1996)

A Network Dimensioning Tool

D. Alevras M. Grötschel R. Wessäly

December 12, 1996

Abstract

Designing low cost networks that survive certain failure situations belongs to one of the

prime tasks in the telecommunications industry. In this paper we describe a mathematical

model integrating several aspects of survivability that are elsewhere treated in a hierarchical

fashion. We present mathematical investigations of this model, a cutting plane algorithm,

as well as several heuristics for its solution. Moreover, we report computational results with

real-world data.

The problem we address is the following. Suppose, between each pair of nodes in a region,

a communication demand is given. We want to determine the topology of a telecommunica-

tion network connecting the given nodes and to dimension all potential physical links. For

each link, the possible capacities are restricted to a given finite set. The capacities must be

chosen such that the communication demands are satisfied, even if certain network compo-

nents fail, and such that the network building costs are as small as possible. Moreover, for

each pair of nodes and each failure situation, we want to determine the paths on which the

demand between the nodes is routed.

Keywords: Telecommunication Network Design, Survivable Networks, Network Ca-

pacity Planning, Cutting Plane Algorithm, Heuristics, Routing

Mathematical Subject Classification (1991): 90B12, 90C11, 90C27, 90C90, 94A99

1 Introduction

Due to deregulation, telecommunication has become a highly competitive area: Low cost and

high quality of its service are vital for the success of a company. For a mobile telecommuni-

cations provider, such as our project partner e-plus Mobilfunk GmbH, good service includes

high connection quality (low interference and background noise) and high network survivability

(low impact of component failures). Both parameters depend on the quality of the technical

equipment used, but they also depend heavily on a proper planning of the network, an issue

we address in our paper. We focus in this paper on the problem of designing and dimensioning

a network (the e-plus backbone network) in such a way that it survives certain component

failures, has low cost and is easy to manage.

The process of dimensioning a network is based on the application of methods from such diverse

areas as statistics, economics, electrical engineering and operations research. We contribute to

the last aspect and show how models and solution techniques from integer programming can

help designing good quality telecommunication networks.

1

Figure 1 indicates architecture of a typical mobile-telecommunications network. The architec-

ture consists of two layers: the switching layer and the transport layer.

Logical Switching Network

Physical Transport Network

Transport Layer

Switching Layer

Figure 1: Typical mobile-telecommunications network architecture

The network planning process starts with a forecast of point-to-point demands in terms of

Erlang. Based on Grade-of-Service requirements, such as the number of blocked calls and

routing rules, the switching layer planning (whose details we do not describe here) results in a

logical transport network. Each link in the transport network expresses the telecommunication

demands between its end nodes in terms of numbers of channels; in our case one channel has a

capacity of 64 kbit/s.

The transport layer planning consists of deciding the capacities of the physical links (taking

advantage of multiplexing capabilities), and of providing the routing tables that map the logical

demands of the transport network to paths in the dimensioned physical network. If survivability

is required at this layer, then the routing tables also include routings for failure situations.

There are several ways to implement survivability in the physical network. One method is

to consider the uncapacitated network design problem. This deals with connectivity

requirements only and is treated, for instance, in Monma and Shallcross [MS89], Monma,

Munson and Pulleyblank [MMP90], Grötschel, Monma and Stoer [GMS92a, GMS92b], and

Stoer [Sto92]. In the capacitated network design problem the demands between pairs of

nodes must be taken into account, in addition to the connectivity of the network.

In this paper, we study the problem of selecting from a discrete set of possible capacities

which one to install on each link of the physical network so that each demand can be routed

(even in the case of a single node or single edge failure) and the capacity installation cost is

minimum. Additional restrictions to the percentage of a demand routed through a particular

node or edge of the network and to the length of the paths between two demand nodes are

considered. We model this problem as a mixed-integer linear program and present a cutting

plane algorithm for its solution. Due to the difficulty of the problem, finding optimal solutions

is out of reach. But, by combining LP-relaxations and heuristics, we obtain low cost solutions

with a quality guarantee, i.e., a bound on the gap between the solution value and the (unknown)

optimal one.

Variants of our problem have been considered in the literature. Minoux [Min81] considers

survivability in a generalized multicommodity-flow model, but the allowed capacities are non-

discrete. Instances up to 20 nodes are solved within an accuracy of 5–10%. In cooperation

2

with France Telecom Lisser, Sarkissian and Vial [LSV95] developed another model including

non-discrete capacities and survivability. In [LSV95] two survivability models are presented,

both different from ours. In both models, part of the demand is routed in case of a failure in a

separate network, called spare network. In case of a network failure (node or edge failure) the

local-survivability model routes only the failing flow, and the global-survivability model routes

only the affected demands. Tests with up to 53 nodes, 79 edges and 1378 demands are reported.

Several models in the literature consider the installation of discrete capacities without address-

ing survivability issues, see e.g. Bienstock and Günlük [BG95], and Magnanti, Mirchandani,

and Vachani [MMV95]. These latter studies, however, restrict the possible capacities to mul-

tiples of two base-capacities. Dahl and Stoer [DS92, DS94] studied a problem for Norwegian

Telecom Research that is similar to ours but without imposing length restrictions on the paths

between demand nodes.

The model we present in this paper was developed in cooperation with e-plus Mobilfunk

GmbH, one of the three mobile-telecommunication service providers in Germany. The solution

methodology we describe later forms the core of a network dimensioning tool, called DISCNET

(Dimensioning of Survivable Cellular-Phone Networks), that we implemented and that is in

use at e-plus for its transport network planning.

The remaining part of the paper is organized as follows. In the next section we formally define

the problem and present the model. A high-level description of the solution approach is given in

Section 3, while in Section 4, we describe the related polytopes and classes of valid inequalities

for these polytopes. A number of subproblems that come up are multicommodity-flow problems.

Details of the multicommodity-flow algorithms are presented in Section 5. Section 6 contains a

brief description of the heuristic approaches. In Section 7 we present computational results and

in Section 8 we discuss three methods of realizing survivability in the network. We conclude

with some open questions in Section 9.

2 The Model

The problem we consider can be described as follows. The input consists of two graphs on the

same node-set V , the supply graph G = (V, E) and the demand graph H = (V,D). The

set V consists of the nodes of the logical transport network. In our application, V is the set of

MSC locations; in some cases BSC locations are included (MSC =̂ Mobile Switching Center,

BSC =̂ Base Station Controller). The edge-set E of the supply graph is the set of all physical

links that may potentially be used. Different types of links (e.g., microwave, leased lines etc.)

are represented by parallel edges. The demand graph contains an edge whenever there is a

positive demand between its two end nodes.

In our practical application, it was natural to assume that every edge e ∈ E of the supply graph

is already equipped with an initial capacity M0
e ∈ Z+ (possibly M0

e = 0) of cost K0
e = 0, the

so-called free capacity. For each e ∈ E, the following further data are given:

3

• Te ∈ Z+, where Te is the number of possible additional capacities that can be

installed,

• M t
e ∈Z+, 1 ≤ t ≤ Te, the potential capacities, (we assume thatM0

e < M1
e <· · · < MTe

e),

• Kt
e ∈ Q+, 1 ≤ t ≤ Te, the cost of installing capacity Mt

e .

It has turned out to be useful to call the capacities M1
e, . . . ,M

Te
e breakpoint capacities, and

hence Te the number of breakpoints, and to consider the incremental capacities and costs

• mt
e := Mt

e −Mt−1
e , 1 ≤ t ≤ Te,

• kte := Kt
e −Kt−1

e , 1 ≤ t ≤ Te,

instead of the original values. For notational reasons, we set m0
e := M0

e and k0e := K0
e.

For each edge uv ∈ D of the demand graph, the value

• duv ∈Z+ is the communication demand between nodes u and v.

Moreover, the network designer specifies, for each uv ∈ D, the following parameters:

• δuv , 0 < δuv ≤ 1, the diversification parameter; δuv is the maximum fraction of the

demand duv allowed to flow through any supply edge or node (other than nodes u and v),

• ρuv, 0 ≤ ρuv ≤ 1, the reservation parameter; ρuv is the fraction of the demand duv that

must be satisfied in a single node or a single supply edge failure,

• �uv ∈ Z+, the path length restriction; �uv is the maximum number of supply edges

allowed in any path on which demand between u and v is routed.

For the network we want to design we also wish to determine the routings of the demands for

each operating state s of the network. The operating states are

• the normal state (s = 0), which is the state with all nodes and all edges operational, and

• the failure states, which are the states with a single node u (s = u) or a single edge e

(s = e) nonoperational.

We denote by Gs = (Vs, Es) the supply graph for the operating state s, where Vs is the set of

nodes that are still operational in operating state s, and, likewise, Es is the set of the operational

edges in operating state s. Similar notational conventions apply to the demand graph.

Our goal is to choose, for each supply edge, a capacity such that there exist routings that satisfy

all the restrictions and such that the sum of all capacity installation costs is as small as possible.

4

We model our network dimensioning problem as a mixed-integer linear programming

problem with two types of variables, integer decision variables xte and continuous routing

variables f(s, uv, P).

For each edge e ∈ E we introduce an ordered set of 0/1 variables x0e ≥ x1e ≥ · · · ≥ xTe
e . Since

we assume that a free capacity M0
e is always installed, we set x0e := 1. Choosing capacity Mτ

e

, 0 ≤ τ ≤ Te, is equivalent to setting x0e = x1e = · · ·= xτe = 1 and xτ+1
e = · · ·= xTe

e = 0.

For each operating state s and each demand edge uv ∈ Ds, let P(s, uv) denote the set of valid

uv-paths in Gs. If s is the normal operating state, a uv-path in G = G0 is valid if its length

(number of edges) is at most �uv . We call such a path short. If s is a failure state then

any uv-path in Gs is valid. For each operating state s, each edge uv ∈ Ds, and each path

P ∈ P(s, uv), we define a variable f(s, uv, P), called flow or routing variable, that represents

the communication traffic between the nodes u and v routed on path P in operating state s.

We use the symbol x to denote the vector (in the Euclidean space of dimension
∑

e∈E(|Te|+1))

whose components are the variables xte introduced above; similarly f denotes the vector(in the

Euclidean space of dimension
∑

s

∑
uv∈Ds

|P(s, uv)|) whose components are the routing variables

f(s, uv, P).

The objective is to minimize the total cost of installing the necessary capacities on the edges of

the supply graph. This is formulated as

min
∑
e∈E

Te∑
t=1

ktex
t
e . (1)

To represent feasible choices of capacities and feasible routings, the vectors x and f must

satisfy the following constraints. The 0/1-variables associated with a supply edge must satisfy

the ordering constraints

1 = x0e ≥ x1e ≥ · · · ≥ xTe
e ≥ 0 for all e ∈ E , (2)

and the integrality constraints

xte ∈ {0, 1} for all e ∈ E and t = 1, . . . , Te , (3)

by definition. For notational convenience, we introduce auxiliary variables

ye :=
Te∑
t=0

mt
ex

t
e for all e ∈ E , (4)

representing the capacities installed on the supply edges.

For each operating state s and for each supply edge e ∈ Es, the flow through e may not exceed

its capacity. This trivial observation yields the capacity constraints

ye ≥
∑

uv∈Ds

∑
P∈P(s,uv):e∈P

f(s, uv, P) for all s and all e ∈ Es . (5)

5

The routing variables must be chosen in such a way that all the demands duv in the normal

operating are satisfied. In any other operating state we require that the “reduced demands”

ρuvduv are met. Thus, the following demand constraints

∑
P∈P(0,uv)

f(0, uv, P) = duv for all uv ∈ D , (6)

∑
P∈P(s,uv)

f (s, uv, P) = ρuvduv for all s �= 0 and all uv ∈ Ds , (7)

must be satisfied. The node-flow constraints

∑
P∈P(0,uv):w∈P

f(0, uv, P)≤ δuvduv for all uv ∈ D and all w ∈ V − {u, v} , (8)

and the edge-flow constraints

f(0, uv, P)≤ δuvduv for all uv ∈ D and all P = {uv} , (9)

are the diversification constraints. The summation in the node-flow constraints is over all

short paths between nodes u and v that contain node w. These constraints restrict the amount

of flow dedicated to a particular demand that goes through a particular node, i.e., they ensure

that in the normal operating state, no more than a fraction δuv of the total demand duv between

nodes u and v flows through a single node w. The node-flow constraints imply that every edge

e ∈ E carries no more than δuvduv of the traffic between u and v, unless e = uv. To cover the

latter case, the edge-flow constraints are used. These are employed only, of course, if E contains

edges between u and v (which are considered as paths P = {uv}). The constraints (8) and (9)

yield that the flow between u and v is diversified, i.e., is routed on at least � 1
δuv

� node-disjoint

paths.

The nonnegativity constraints

f ≥ 0 (10)

state that all routing variables must have a nonnegative value.

Putting all this together, the mixed-integer linear programming model, denoted by NDP , of

6

our network dimensioning problem is the following:

min
∑
e∈E

Te∑
t=1

ktex
t
e

s.t. 1 = x0e ≥ x1e ≥ · · · ≥ xTe
e ≥ 0 for all e ∈ E

xte ∈ {0, 1} for all e ∈ E and t = 1, . . . , Te

ye =
Te∑
t=0

mt
ex

t
e for all e ∈ E

ye ≥
∑

uv∈Ds

∑
P∈P(s,uv):e∈P

f(s, uv, P) for all s and all e ∈ Es

∑
P∈P(0,uv)

f (0, uv, P) = duv for all uv ∈ D

∑
P∈P(s,uv)

f(s, uv, P) = ρuvduv for all s �= 0 and all uv ∈ Ds

∑
P∈P(0,uv):w∈P

f (0, uv, P)≤ δuvduv for all uv ∈ D and all w ∈ V − {u, v}

f(0, uv, P) ≤ δuvduv for all uv ∈ D and all P = {uv}
f(s, uv, P) ≥ 0 for all s, all uv ∈ Ds and all P ∈ P(s, uv)

A feasible solution of our problem is a 0/1-vector x, that satisfies the ordering constraints

and yields a feasible capacity vector y. The capacity vector y, which is calculated from x

using (4), is feasible if it permits feasible routings for all operating states, i.e., if the system of

linear equations and inequalities (5), . . . , (10) has a feasible solution for y.

3 Algorithmic Approach

A close look at the mixed-integer programming formulation NDP of our network dimensioning

problem suggests a decomposition approach for its solution. The problem consists of an “integral

part” (deciding the decision variables x) and a “continuous part” (determining the flow variables

f(s, uv, P)); both parts are linked by the auxiliary variables y. Let us set

Y := {y ∈ RE | ∃f such that (y, f) satisfies (5), . . . , (10)}, (11)

and

X := conv{x = (xte)e∈E,t=0,... ,Te | xte ∈ {0, 1}, x satisfies (2), and

y ∈ Y ,where ye =
∑Te

t=0m
t
ex

t
e, e ∈ E}.

(12)

We call the integer program

(MP) min{kTx | x ∈ X},

7

where k = (kte)e∈E,t=0,... ,Te, our master problem. Since we do not know how to describe the

polyhedron X by linear equalities and inequalities we solve, instead of (MP), a relaxation

(MP ′) min{kTx | Ax ≤ b}

where the system Ax ≤ b contains the nonnegativity constraints, the ordering constraints (2)

and further inequalities valid for X . These further inequalities are chosen from a set of inequal-

ities, to be described later, and are determined algorithmically “on the run” using a cutting

plane procedure.

Given a solution x of (MP′) we can compute, via (4), a capacity vector y and ask

(FP) Is y ∈ Y ?

Deciding this question is our feasibility problem, i.e., solving (FP) means to check whether

the (not necessarily integral) capacity vector y, determined through a relaxation (MP′) of

the master problem (MP) admits feasible routings f (s, uv, P) of the demands in all operating

states.

Our algorithmic approach utilizes this way of decomposing the network dimensioning problem

as follows. We begin with an initial LP-relaxation Ax ≤ b of the master problem and find an

optimal solution x with the simplex method. We know several classes of inequalities valid for

X, see Section 4, and check, using the separation algorithms described in Section 4, whether x

satisfies these. If not, we add the violated inequalities found to the current LP-relaxation and

resolve. If the separation algorithms do not find any violated inequality, we set y :=
∑Te

t=0m
t
ex

t
e

and solve the feasibility problem (FP) for y. This means that we run a sequence of linear

programs, one for each operating state.

In case y is not feasible for one of the states, then an inequality in the x-variables can be derived

that is violated by the current x. This inequality is added to the current LP-relaxation (MP′)
and we restart with solving the new relaxation.

If the capacity vector y turns out to be feasible for all operating states then there are two

possibilities. If x is integral we have found an optimal solution of NDP , where the routings

are given by the values f(s, uv, P) of the last feasibility test. If x is not integral we resort to

heuristics to find “reasonable” integral solutions. We could continue with a branch-and-bound

procedure, but that turned out to be too time consuming in our practical application.

This process is sketched in the flow chart of Figure 2.

The cutting plane phase provides a lower bound zLP =
∑

e∈E
∑Te

t=1 k
t
ex

t
e, where x is an optimal

solution of the last LP-relaxation (MP′); and the best heuristic solution provides an upper

bound zIP to the unknown optimal solution value of (MP). Thus, we get a quality guarantee

for the best solution found by the algorithm, i.e., an upper bound on the gap between the values

of the best solution found and an optimal solution, given by the quantity zIP−zLP
zLP

100.

8

Separation algorithms

Feasible
routings?

Yes

No

No

Is x integer?

Yes

Yes

STOP
No Yes

No

Done?

Optimal solution
found

Choose heuristic and
solve

inequalities
found?

Add inequalities to

START

Separation algorithms

Solve LP-relaxation

Any

 Solve (FP)

the LP-relaxation

Figure 2: Flow chart of the algorithm.

4 Valid Inequalities

In this section we describe valid inequalities for the polytopes X and Y introduced in Section

3. First we describe necessary and sufficient conditions for a capacity vector y to be in Y , and

then we present several classes of inequalities valid for X.

4.1 Valid inequalities for Y

Metric inequalities

Suppose a supply graph G = (V, E) with capacities ye, for all e ∈ E, and a demand graph

H = (V,D) with demands duv , for all uv ∈ D, are given. The problem of deciding whether, for

each uv ∈ D, flow vectors exist such that all demands can be satisfied without violating the

capacities is the decision version of a standard multicommodity-flow problem. Iri [Iri71], and

Kakusho and Onaga [KO71] have shown that a capacity vector y is feasible for this problem if

and only if, for each choice of values μe ≥ 0 (e ∈ E), the inequality∑
e∈E

μeye ≥
∑
uv∈D

πuvduv (13)

is satisfied, where πuv is the shortest [u, v]-path value with respect to the weights μ.. In our case,

the multicommodity-flow problems are more complicated in the normal operating state, because

9

of diversification and path-length restrictions. The above result, however, can be modified as

follows.

A capacity vector y is feasible for the normal operating state if and only if, for each choice of

values μe ≥ 0 (e ∈ E), γwuv ≥ 0 (uv ∈ D,w ∈ V − {u, v}) and γuvuv ≥ 0 (uv ∈ D, uv ∈ E), the

following inequality

∑
e∈E

μeye ≥
∑
uv∈D

duvπuv −
∑
uv∈D

(δuvduvγ
uv
uv +

∑
w �=u,v

δuvduvγ
w
uv) (14)

is satisfied. Here, πuv is calculated as follows. Given uv ∈ D, we assign to each edge e ∈ E−{uv}
the weight μe, to edge uv (if it is contained in E) the weight μe + γuvuv , and to each node

w ∈ V − {u, v} the weight γwuv. Then πuv is the value of a shortest among all [u, v]-paths with

at most �uv edges.

Inequalities (13) and (14) are called metric inequalities, see, e.g., [DS94].

Cut inequalities

A special case of a metric inequality is a cut inequality. Given W ⊆ V , define μe = 1 for every

e ∈ δG(W) = {e = (w, z) ∈ E : w ∈ W, z ∈ V − W}, and μe = 0 otherwise. Furthermore,

set γw
uv = γuvuv = 0 for all uv ∈ D, w ∈ V − {u, v}. It can be shown that, under appropriate

connectivity assumptions, πuv = 1 for every uv ∈ δH(W), and πuv = 0 otherwise, are the

shortest [u, v]-path values with respect to the edge weights μ. Then inequality (14) reads as

follows:

∑
e∈δG(W)

ye ≥
∑

uv∈δH (W)

duv . (15)

We call these inequalities cut inequalities.

Metric and thus cut inequalities are valid for Y , but, in general they do not define facets of X,

when transformed via (4). Applying the same procedure to the induced graphs Gs = (Vs, Es)

andHs = (Vs, Ds) without the diversification dependent parameters γwuv and γuv
uv the inequalities

(14) and (15) are easily adapted to failure situations.

4.2 Valid inequalities for X

Based on valid inequalities for Y we now derive two classes of valid inequalities for X. The

first class, the strengthened metric inequalities, is the result of a divide-and-round procedure.

The second class, the band inequalities, is similar to minimal cover inequalities for the knapsack

problem (see, e.g., Padberg [Pad75]). In our case, Dahl and Stoer [DS92] showed that these

can be strengthened, because of the reservation constraints, to the so-called strengthened band

inequalities. A third class of inequalities for X, that is not based on a valid inequality for Y ,

10

is that of diversification-band inequalities. If survivability is implemented setting the diversifi-

cation parameter and not the reservation parameter this third class has proven to be useful in

the lower bound calculation.

Strengthened metric inequalities

Let
∑

e∈F μeye ≥ d, F ⊆ E, be a valid inequality for Y . Using equality (4) we substitute

y-variables by x-variables and get the inequality

∑
e∈F

μe

Te∑
t=0

mt
ex

t
e ≥ d , (16)

which is apparently valid for X . To this inequality we apply a divide-and-round procedure to

get a stronger inequality. Let g denote the greatest common divisor of the numbers μem
t
e for

all e ∈ F and all t = 0, . . . , Te in inequality (16). Dividing the coefficients of (16) by g we get,

due to the integrality of every feasible solution, the strengthened metric inequality

∑
e∈F

μe

Te∑
t=0

mt
e

g
xte ≥

⌈
d

g

⌉
. (17)

Regarding the LP’s to solve we try to avoid the strengthening of metric inequalities. These

inequalities are very dense (every breakpoint of every supply edge in the set F appears in

the strengthened metric inequality) and have “wild” coefficients, and thus, they may cause

numerical instabilities in the course of solving the LP.

Band inequalities

Let
∑

e∈F μeye ≥ d, F ⊆ E, be a valid inequality for Y . Assign to every supply edge e ∈ F a

breakpoint te (0 ≤ te < Te) such that
∑

e∈F μeM
te
e < d. Then the band inequality∑

e∈F
xte+1
e ≥ 1 (18)

is valid for X. Dahl and Stoer [DS94] have shown that maximal band inequalities are, under

rather weak conditions, facet defining for the polytope

conv{x ∈ {0, 1}|T (F)| |
∑
e∈F

μe

Te∑
t=0

mt
ex

t
e ≥ d, 1 = x0e ≥ x1e ≥ · · · ≥ xTe

e ≥ 0, e ∈ F} ,

(19)

where |T (F)| = ∑
e∈F Te; see also Wolsey [Wol90]. Band inequalities can be strengthened in

the case of edge failures. Let d =
∑

uv∈D πuvduv in inequality (16) and, as before, assign to

every supply edge e ∈ F a breakpoint te (0 ≤ te < Te). If
∑

e∈F−{e} μeM
te
e <

∑
uv∈De

πuvρuvduv
for every e ∈ F , then we derive the inequality∑

e∈F
xte+1
e ≥ 2 , (20)

11

which is valid for X. We refer to (20) as a strengthened band inequality.

Diversification-band inequalities

The third class of valid inequalities for the polytope X is based on diversification. The di-

versification parameter bounds, for every demand edge, the corresponding flow through any

component. Applying this to the edges of a cut yields diversification-band inequalities.

Let W ⊆ V be a subset of the nodes and let us define the following quantities:

d =
∑

uv∈δH (W) duv, the demand that has to use the supply edges δG(W),

α =
∑

uv∈δH (W) δuvduv , the maximum fraction of d that any of the supply edges in

δG(W) can serve.

Now, we assign to every supply edge e ∈ δG(W) some breakpoint te, 0 ≤ te < Te, together

with its capacity Mte
e . Given these chosen capacities, for every feasible flow in the supply graph

G, the flow through a supply edge e ∈ δG(W) supplying part of the demand d is at most

min{Mte
e , α}. In case the “remaining demand”

r := d−
∑

e∈δG(W)

min{Mte
e , α}

is positive we have to increase the chosen capacities to satisfy d. Since every edge can carry at

most a flow of value α, at least � rα� of the incremental capacities mte+1
e , e ∈ δG(W), have to

be chosen in addition. Hence, for each choice of breakpoints te, 0 ≤ te < Te, (e ∈ δG(W), the

inequality

∑
e∈δG(W)

xte+1
e ≥

⌈
r

α

⌉

is valid for X.

4.3 Separation of inequalities

The separation problem for the metric inequalities can be solved in polynomial time using linear

programming. Whenever we test the feasibility of a capacity vector we find a violated metric

inequality if the provided capacities are not feasible. Details follow in Section 5.

However, the separation problem for band and strengthened band inequalities is equivalent to

the NP − hard multiple-choice knapsack problem. To solve this separation problem we use a

heuristic algorithm proposed by Dahl and Stoer [DS92], and an exact algorithm based on a

dynamic programming algorithm for the multiple-choice knapsack problem (see Martello and

Toth [MT90]).

12

For the separation of diversification-band inequalities, we have implemented several heuristics

whose tedious details we do not want to describe here. Note that a diversification-band in-

equality is determined by a cut δG(W) and a choice of breakpoints te, e ∈ δG(W). In each

of our heuristics we concentrate on a limited set of cuts (e.g., cuts found in previous runs of

the cut inequality separation procedure, or cuts with small shores) and choose breakpoints by

restricted enumeration of “promising” breakpoint combinations.

5 The multicommodity feasibility problem

Having computed a vector x and the corresponding capacity vector y with components ye =∑Te
t=0m

t
ex

t
e, one has to test whether the capacities satisfy the various requirements of the net-

work in all operating states, i.e., one has to solve the feasibility problem (FP). This amounts to

solving as many multicommodity-flow problems as there are operating states. Although these

tests can be done using fast LP-solvers, the overall time to check feasibility is high. Therefore,

whenever it is possible to infer the feasibility or infeasibility of the given capacity vector by

faster means this should be done.

5.1 Alternative ways to decide feasibility of the capacity vector

Given a capacity vector y we apply various simple tests to determine whether y provides feasible

routings for some operating states. Given feasible routings in the normal operating state, we

denote by flow(e) the flow through e for every supply edge e ∈ E, and by flowuv(w) the

part of the demand duv that is routed through w for every demand edge uv and every node

w ∈ V − {u, v}. Both values, flow(e) and flowuv(w) are easily calculated using the inequality

8 and 9. respectively.

If one of the following criteria is satisfied we can skip solving the multicommodity-flow problem

for the respective operating state, since the routings provided in the normal operating state

remain feasible in this state.

Criterion 1. Assume that the capacities in the normal operating state are feasible and consider

a supply edge e ∈ E. If for all demands uv ∈ D the inequality duv − flow(e) ≥ ρuvduv holds,

then there are feasible routings if edge e fails.

Criterion 2. Assume that the capacities in the normal operating state are feasible and consider

a node w ∈ V . If for all demands uv ∈ Dw the inequality flowuv(w) ≤ (1− ρuv)duv holds, then

there are feasible routings if node w fails.

Even though very simple, these criteria apply quite often, particularly in the decrease heuristics.

13

5.2 Formulation of the feasibility problems

As we mentioned above, if there are no other means to determine whether a given capacity

vector y is feasible or not one has to solve the multicommodity-flow problems. There is one

more reason one would be willing to do so. What is actually needed is not only an answer

whether the capacity vector is feasible or not. If it is not feasible, some inequality valid for

the polytope X needs to be generated such that, when added to the LP-relaxation (MP′), it
will cut off the current nonfeasible solution point x. It turns out that one can formulate the

feasibility problems in such a way that such an inequality can be derived whenever the problem

is not feasible; see Minoux [Min81].

We introduce a new variable α that has the following meaning. If an additional capacity α

is added to each capacity ye then feasible routings exist. Our goal is to make α as small as

possible. If the minimum value is positive the capacity vector is not feasible, otherwise it is. The

multicommodity-flow problem for a particular failure state s, can, thus, be viewed as follows:

min α (21)

s.t.
∑

uv∈Ds

∑
P∈P(s,uv):e∈P

f(s, uv, P)− α ≤ ye for all e ∈ Es (22)

∑
P∈P(s,uv)

f(s, uv, P) = ρuvduv for all uv ∈ Ds (23)

f(s, uv, P) ≥ 0 for all uv ∈ Ds, P ∈ P(s, uv) (24)

In the case of diversification, one has to consider in the normal operating state the diversification

constraints8, 9 in addition to the ones above.

The LP-dual of the above multicommodity-flow problem is the following:

max
∑

uv∈Ds

ρuvduvπuv −
∑
e∈Es

yeμe (25)

s.t. −
∑
e∈P

μe + πuv ≤ 0 for all uv ∈ Ds, P ∈ P(s, uv) (26)

∑
e∈Es

μe = 1 (27)

μe ≥ 0 for all e ∈ Es (28)

Two observations are in order. First, from linear programming duality we get that if the

capacity vector y is infeasible, in which case the optimal value α∗ of the primal feasibility

problem is positive, then y satisfies

∑
uv∈Ds

ρuvduvπuv >
∑
e∈Es

yeμe ,

i.e., y violates a metric inequality, see Section 4. Therefore solving the feasibility problem we

automatically generate a violated metric inequality whenever the problem is not feasible. The

14

second observation is that the feasibility problem can be solved using a column generation

approach in which the auxiliary problem is a restricted shortest path problem, see Section 5.4.

5.3 Solving the feasibility problems

The variables of the feasibility problem correspond to the valid paths for each demand. This

number is in general exponential and thus we follow a column generation approach to solve the

linear programs corresponding to the feasibility problems.

We solve the primal feasibility problem for a “well-chosen” subset of the variables (valid paths)

and get the optimal value α∗ and the primal and dual variables. Clearly, if α∗ ≤ 0, we can stop

since we know that the true optimal value involving all variables is at most as large as the one

obtained with the restricted number of variables. If α∗ > 0 then we need to continue in order

to find the optimal value of α or decide that the current one is optimal. To this end, we solve,

for each demand, the restricted shortest path problem, see Section 5.4, with the dual variables

μe as weights on the edges. If the restricted shortest path length is smaller than the value of

the dual variable πuv of the particular demand then this path violates one of the constraints

(26) and thus the corresponding variable is added to the set of primal variables. If the length

of the restricted shortest path is larger than the value πuv , for all demands uv ∈ Ds, then the

current solution α∗ is optimal.

5.4 Solving the restricted length shortest path problem

The auxiliary problem of the column generation procedure described above is a restricted short-

est path problem. In general the problem is defined as follows. Given a simple graphG = (V, E),

a node u ∈ V , weights μe ≥ 0 and lengths λe ≥ 0 for each edge e ∈ E, we want to find the

minimum-weight path of length at most �uv from u to every other node v. The problem of de-

ciding whether a path of weight at most M and length at most L exists between two specified

nodes is in general NP − complete; however, it is polynomially solvable if all the weights or all

lengths are equal; see Garey and Johnson [GJ79]. In our case, λe = 1 for all e ∈ E and thus

the problem is polynomially solvable.

The algorithm to solve the restricted shortest path problem is a modification of the Dijkstra

shortest path algorithm, [Dij59]. Let � denote the value of the path length restriction and

suppose that we want to calculate the length restricted shortest path tree for a node u ∈ V .

In every iteration of the algorithm we determine the length restricted shortest path for exactly

one node. This node will be called labeled. The algorithm terminates if all nodes are labeled

that can be reached from u on a path with at most � edges.

In more detail, for every v ∈ V , let di(v) be the shortest distance from u to v using at most i

edges in the current iteration of the algorithm. Denote by U be the set of all unlabeled nodes,

initially set to V − {u}, and define R := {v ∈ U : ∃k ≤ � with dk(v) < ∞} ⊆ U ; i.e., R is the

set of unlabeled nodes that can be reached from u using only labeled intermediate nodes. At

15

each iteration of the algorithm, we label the node with the smallest distance from u, breaking

ties by selecting the one corresponding to the path with the fewest edges, and then we update

the distance labels di(v) of its unlabeled neighbors.

algorithm RESTRICTED SHORTEST PATH

begin

U := V − {u}, R := {v ∈ V | (u, v) ∈ E}
For each v ∈ V set

di(v) :=

⎧⎪⎨
⎪⎩

0 if v = u

μe if e = (u, v) ∈ E

∞ otherwise

while R �= ∅
find v ∈ R and 1 ≤ i ≤ � such that ∀w ∈ R, 1 ≤ j ≤ �

(i) di(v) ≤ dj(w) and (ii) di(v) = dj(w)⇒ j ≥ i

U := U − {v}, R := R− {v}
for all neighbors w ∈ U

for all j with i+ 1 ≤ j ≤ �

dj(w) = min{dj(w), dj−1(v) + μ(v,w)}
end

if d�(w) < ∞
R := R ∪ {w}

end

end

end

end

The restricted length shortest paths from u to v ∈ V −{u} can be easily determined by keeping

track of the predecessors for each v ∈ V and each 1 ≤ i ≤ �.

6 Heuristic algorithms

In this section we present two classes of heuristics we use to get integer feasible solutions: the

decrease and the increase heuristics. Since none of the heuristics outperforms consistently the

others, in a typical run of DISCNET we run all of them.

6.1 Decrease Heuristics

In the decrease heuristics we start with a feasible capacity vector and try to reduce the capacity

of its components (supply edges) keeping it feasible. A feasible capacity vector is obtained by

rounding up the capacity of each edge – as calculated from the solution of the LP-relaxation

16

(MP ′) via (4) – to the next breakpoint capacity. One can select the particular edge for which

the capacity reduction will be tried, and the number of reductions to be tried on this particular

edge. By reduction we mean reducing the capacity of an edge from the current breakpoint

capacity to that of a smaller breakpoint capacity.

We consider the following five criteria for the selection of the edge and the capacity reduction

strategy, that give rise to five decrease heuristics.

Criterion 1. Select the edge with the smallest fractional xte, and reduce its capacity as much

as possible.

Criterion 2. Select the edge whose capacity reduction will incur the biggest cost reduction,

and reduce its capacity to the previous breakpoint capacity.

Criterion 3. Select the edge whose capacity reduction will incur the biggest cost reduction,

and reduce its capacity as much as possible.

Criterion 4. Select the edge whose reduction will incur the biggest relative cost reduction

(cost reduction per unit of capacity reduction), and reduce its capacity as much as possible.

Criterion 5. Select the edge whose reduction will incur the biggest relative cost reduction (cost

reduction per unit of capacity reduction), and reduce its capacity to the previous breakpoint

capacity.

6.2 Increase Heuristics

The increase heuristics are partial branch-and-cut heuristics. In particular, if the current x-

vector has fractional components, we select one of them to be fixed at the value of 1 and then

we proceed with the cutting plane algorithm. It should be noted that although we fix only one

breakpoint at a time, probably more are fixed implicitly due to the ordering constraints (2).

The outcome of an increase heuristic can be either a feasible integer solution or an infeasible

integer solution. In the second case, we try to restore feasibility using the feasibility tests

(which, of course, will return some violated metric inequality since the current x-vector is not

feasible). In both cases, we apply the decrease heuristics in an effort to reduce the obtained

solution cost.

In the increase heuristics one has to choose a decision variable xte, i.e., a particular edge and

a particular breakpoint of that edge, to fix. The candidates are those variables that satisfy

0 < xte < 1. We have developed the following four criteria for such a selection which give rise

to four increase heuristics.

Criterion 1. Choose the fractional variable xte closest to 1.

Criterion 2. Choose the fractional variable xte that will incur the minimum additional cost

(1− xte)k
t
e.

Criterion 3. Choose the fractional variable xte such that the M t
e − ye, i.e., the additional

capacity needed to make ye a breakpoint capacity, is minimal.

17

Criterion 4. Choose the fractional variable xτe such that Kτ
e −∑Te

t=1 k
t
ex

t
e, i.e., the additional

cost incurred from increasing ye to the breakpoint capacity Mτ
e , is minimal.

7 Computational Results

In this section we present computational results for different problem instances supplied by

e-plus, with various settings for the diversification, reservation and path-length parameters.

The characteristics of the three networks we use are given in Table 1. The unit of the demand

value is a channel (64 kbit/s). The available capacities for each supply edge are multiples of

30 channels (2 Mbit/s), multiples of 480 channels (34 Mbit/s) and multiples of 1920 channels

(140 Mbit/s), and any combination of these three capacities. Clearly, one has to choose a

“reasonable” number of capacities (breakpoints) for each supply edge, since the problem size

gets too big if all possible capacity combinations for each supply edge are considered. We

consider 3, 5, and 7 breakpoints with the capacities shown in Table 2.

Name |V | |E| |D| range of demands

Network1 11 34 24 95 – 384

Network2 12 53 28 34 – 480

Network3 14 39 82 30 – 360

Table 1: Characteristics of the test problems.

No. of breakpoints Capacities (in channels)

3 30 480 960

5 30 60 90 480 960

7 30 60 90 120 150 480 960

Table 2: Breakpoint capacities.

The parameters are set as follows. The path-length parameter takes the values 3, 5, and ∞ (no

length restriction). For each of these values, four different diversification/reservation settings

are tested. Table 3 shows these parameter settings together with the names of the respective

problems.

Name d1r0 d1r50 d1r100 d50r0

Diversification 1.0 1.0 1.0 0.5

Reservation 0.0 0.5 1.0 0.0

Table 3: Diversification and reservation parameter settings.

18

The total time reported in Table 4 corresponds to a complete run of the program that consists of

the calculation of the lower bound (cutting-plane part), the execution of five decrease heuristics,

and the execution of four increase heuristics. All runs were done on a SPARCSTATION 20 with a

71 SuperSPARC-II processor and 192MB RAM. Each of the increase heuristics is followed by a

run of all decrease heuristics. Keeping this in mind, the times shown in Table 4 are reasonable,

considering also the fact thatDISCNET is a tool to be used during the planning process, which

typically starts long time before the realization of the network.

Name � d1r0 d1r50 d1r100 d50r0

Network1 3 0:21 - 4:27 4:06 - 12:08 5:29 - 12:15 2:39 - 8:40

5 0:21 - 4:50 5:11 - 13:57 5:59 - 14:04 3:17 - 8:36

∞ 0:21 - 4:18 4:41 - 14:26 5:36 - 13:59 3:55 - 8:56

Network2 3 2:10 - 16:15 23:26 - 84:47 26:00 - 122:01 11:53 - 37:18

5 1:47 - 16:47 35:43 - 89:34 26:44 - 127:57 12:27 - 39:00

∞ 1:45 - 16:37 36:30 - 93:55 29:39 - 130:57 13:14 - 42:45

Network3 3 2:31 - 25:06 28:19 - 81:03 32:30 - 72:16 29:40 - 75:35

5 3:05 - 31:37 42:18 - 93:17 46:00 - 82:14 54:11 - 95:44

∞ 2:38 - 29:06 42:50 - 110:38 53:30 - 98:39 53:52 - 94:27

Table 4: Computation time ranges (in min:secs).

Name � d1r0 d1r50 d1r100 d50r0

Network1 3 38 - 45 36 - 41 24 - 26 35 - 41

5 39 - 41 30 - 31 19 - 22 31 - 32

∞ 39 - 41 26 - 29 18 - 22 30 - 31

Network2 3 34 - 43 32 - 33 21 - 22 23 - 31

5 37 - 41 29 - 31 19 - 20 23 - 24

∞ 37 - 41 27 - 30 19 - 20 21 - 26

Network3 3 46 - 49 29 - 33 26 - 27 40 - 43

5 43 - 46 31 - 33 24 - 25 41 - 46

∞ 44 - 48 30 - 32 23 - 24 38 - 41

Table 5: Gap ranges(%).

From Table 5 we see that the gaps are quite large. We believe that the reason for this is the

weak lower bound, which in turn is a result of the restricted knowledge of the facial structure

of the polytope X. In particular, the smaller the reservation parameter, the large the gap.

19

8 Implementing Survivability

In this section we compare and discuss three ways to introduce survivability at the transport

layer by appropriately setting parameters of the presented model.

The physical network is said to have survivability of α%, if at least α% of each demand can

be satisfied in case of a single node or single edge failure. In our model we have two input

parameters which are used to introduce survivability; the diversification parameter and the

reservation parameter. These two parameters can be set one at a time or in any combination.

Setting the diversification parameter δuv for the demand duv of the logical switching network,

we require that at most 100δuv% of duv is routed through any node (other than u and v) or

any link of the physical network. This implies that we get routings which provide node disjoint

paths, each of them carrying at most δuvduv channels, and therefore, only that many channels

of the demand can be lost in a single node or single link failure. That is, (1− δuv)duv channels

“survive” without any rerouting effort. There are two drawbacks, however. First, setting the

diversification parameter to δuv implies that the demand will be routed through at least � 1
δuv

�
node disjoint paths. For example, setting δuv to 0.49, we require at least 3 node disjoint paths

on which we route duv . Second, we cannot achieve 100% survivability with this parameter, and

diversification values below 1
3 are undesirable by the network operator, because this would force

at least 4 paths each of them carrying only a small fraction of the demand. Another drawback

is the high cost of the resulting network; see Figure 3.

Using the reservation parameter to introduce survivability we take advantage of possible redun-

dancy in the network by allowing rerouting in failure situations. Depending on the particular

failure all demands might be rerouted. For a specific demand of duv channels the reservation

parameter ρuv guarantees that at least ρuvduv channels will be still satisfied in a failure state. In

our tests we have observed that much more can actually be satisfied. For instance, by maximiz-

ing – in a post processing step – the total satisfied demand, we found that all but few demands

are indeed fully satisfied. However, it should be noted that this is an empirical observation, and

in theory one can guarantee only that ρuvduv channels will “survive” a failure. The advantage

of this method is the design of low cost networks; see Figure 3, also for a comparison with the

costs of the previous method. The obvious disadvantage of this method is the need for rerouting

in case of a failure. Indeed, as we have observed in practice, this rerouting may be extensive

which makes the management of the network rather difficult.

To compare the costs of the two methods, we made several test runs for Network1; see Section 7.

We choose as survivability values 0%, 25%, 50%, 66%, 75% and 100%, where the last value

cannot be achieved using the diversification parameter only. Although 75% survivability can

be achieved by setting the diversification parameter equal to 0.25, we do not consider this

option because, as we mentioned above, this forces too many paths for each demand. For the

other values of survivability, the corresponding diversification/reservation values are 1.0/0.0,

0.75/0.25, 0.5/0.5 and 0.34/0.66. The best solution values we get with our network dimensioning

tool DISCNET are shown in Figure 3.

20

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
o
rm

a
li
ze
d
C
o
st

0 25 50 66 75 100

Survivability (%)

diversification

reservation

Figure 3: Comparison of costs of introducing survivability by setting the diversification or the

reservation parameters

In general, there is a trade-off between the easiness of the network management provided by

the first method and the total installation cost provided by the second. Since the network

management costs are not included in the installation costs, it is up to the network operator to

decide whether these costs counterbalance the difference in the installation costs.

A third way we consider to introduce survivability in the network, is a combination of the

two methods. A minimum survivability is achieved by the diversification parameter setting,

with the advantage of easy network management. Additional survivability is introduced by

the reservation parameter setting. In case of a failure situation the operator has to decide

whether to reconfigure the network, or not. This decision depends on various aspects, e.g.,

on the affected traffic, the expected recovery time, and the required effort to reconfigure the

network.

To compare the cost of implementing the third method, to those of the previous ones, we run

two additional series of tests, combining diversification and reservation parameters. In the first

series we keep a minimum survivability of 25% (achieved by setting the diversification parameter

to 0.75) and we increase survivability by setting the reservation parameter to 0.50, 0.66, 0.75

and 1.0. In the second series we change the minimum survivability value to 50% and increase

survivability by setting the reservation parameter to 0.66, 0.75 and 1.0. We only consider

reservation parameter settings bigger than the minimum survivability, since the diversification

parameter setting dominates the other cases.

The best solution values we get with DISCNET are shown in Figure 4. The lowest curve in

Figure 4 is the reservation curve of Figure 3 (minimum survivability of 0%).

21

1.0

1.1

1.2

1.3

1.4

1.5

1.6

N
o
rm

a
li
ze
d
C
o
st

0 25 50 66 75 100

Survivability (%)

Diversification

50%

75%

100%

Figure 4: Comparison of costs for the different methods of introducing survivability

9 Conclusions

In this paper we modeled the problem of designing survivable telecommunications networks,

and presented an algorithm to solve it. The algorithm is in the core of a network designing tool

we developed for e-plus Mobilfunk GmbH, called DISCNET. The tool has been implemented

in C++ and it is already being used at e-plus.

DISCNET solves problem instances of practical interest in reasonable times. The solutions

produced for problems with “real” data were 15-20% better than the ones produced by the

network designers. It is clear, that designing the network by hand, the network designer cannot

incorporate all the restrictions included in our model and satisfied by the solutions produced

by DISCNET. Moreover, the sizes of today’s networks have grown beyond the size that is

manageable by the network designers, making the use of a tool like DISCNET necessary. The

output of a typical run, as reported in Section 7, suggests different topologies, including the

routings for all operating states. The network designer chooses a topology suitable for his needs,

after considering the trade off between high installation cost and maintenance difficulty. As we

mentioned in Section 7 the gap is still large, as is often the case in capacitated fixed-charge

network design problems; see e.g. Magnanti, Mirchandani and Vachani [MMV95]. We believe

that the main reason for this is the poor quality of the calculated lower bound, which in turn

is a result of rather weak inequalities used to strengthen the formulation. Therefore, further

investigation of the polytope X is necessary.

We conclude with some open problems that are interesting from both a practical and a theo-

retical point of view.

First, is the problem of finding alternative ways to deal with survivability. The methods dis-

cussed in Section 8, impose rather strong restrictions. For example alternative ways could

22

be

• set the percentage of the flow on a particular edge that should be rerouted when the edge

or one of its end-nodes fails, or,

• set the percentage of the demand that should be rerouted if one of the edges or nodes

that are used to route the demand fails.

Second, is the problem of providing routings that make the network management easier. In our

model, besides the diversification constraints, we do not impose any restriction on the routings.

We merely guarantee that with the chosen capacities there exist feasible routings for every

operating state. The network operator, however, might have some preferences that make the

network management easier. Such preferences are for instance

• minimal rerouting in the case of failures,

• a maximum number of paths used to route a particular demand (recall that the diversi-

fication parameter imposes a minimum number of paths),

• a minimum value for the positive fraction of a demand routed on each path, and

• a maximum number of paths that use a particular link.

None of these requirements is considered in our model. In fact, we believe that adding all these

restrictions to the feasibility problems, will make the whole problem intractable. What would

be of interest, is to try to satisfy these requirements as much as possible in a post-processing

step.

References

[BG95] D. Bienstock and O. Günlük. Computational experience with a difficult mixed-

integer multicommodity flow problem. Mathematical Programming, 68:213–237,

1995.

[Dij59] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271, 1959.

[DS92] G. Dahl and M. Stoer. MULTISUN –Mathematical model and algorithms. Technical

Report TF R 46/92, Televerkets Forskningsinstitutt, 1992.

[DS94] G. Dahl andM. Stoer. A polyhedral approach to multicommodity survivable network

design. Numerische Mathematik, 68:149–167, 1994.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to Theory

of NP-completeness. Freeman, San Francisco, 1979.

23

[GMS92a] M. Grötschel, C.L. Monma, and M. Stoer. Computational results with a cutting

plane algorithm for designing communication networks with low-connectivity con-

straints. Operations Research, 40(2):309–330, 1992.

[GMS92b] M. Grötschel, C.L. Monma, and M. Stoer. Facets for polyhedra arising in the design

of communication networks with low-connectivity constraints. SIAM Journal on

Optimization, 2(3):474–504, 1992.

[Iri71] M. Iri. On an extension of the maximum-flow minimum-cut theorem to multicom-

modity flows. Journal of the Operations Research Society of Japan, 13:129–135,

1971.

[KO71] O. Kakusho and K. Onaga. On feasibility conditions of multicommodity flows in

networks. Transactions on Circuit Theory, 18:425–429, 1971.

[LSV95] A. Lisser, R. Sarkissian, and J.P. Vial. Optimal joint syntheses of base and spare

telecommunication networks. Technical report, University of Genève, November

1995.

[Min81] M. Minoux. Optimum synthesis of a network with non-simultaneous multicom-

modity flow requirements. In P. Hansen, editor, Studies on Graphs and Discrete

Programming, pages 269–277. North–Holland Publishing Company, 1981.

[MMP90] C.L. Monma, B.S. Munson, and W.R. Pulleyblank. Minimum-weight two-connected

spanning networks. Mathematical Programming, 46:153–171, 1990.

[MMV93] T.L. Magnanti, P. Mirchandani, and R. Vachani. The convex hull of two core ca-

pacitated network design problems. Operations Research, 60(2):233–250, 1993.

[MMV95] T.L. Magnanti, P. Mirchandani, and R. Vachani. Modeling and solving the two–

facility capacitated network loading problem. Operations Research, 43(1):142–156,

1995.

[MS89] C.L. Monma and D.F. Shallcross. Methods for designing communications net-

works with certain two-connected survivability constraints. Operations Research,

37(4):531–541, 1989.

[MT90] S. Martello and P. Toth. Knapsack Problems – Algorithms and Computer Imple-

mentations. Discrete Mathematics and Optimization. Wiley, 1990.

[Pad75] M.W. Padberg. A note on zero-one programming. Operations Research, 23(4):833–

837, 1975.

[Sto92] M. Stoer. Design of Survivable Networks. Lecture Notes in Mathematics. Springer,

1992.

[Wol90] L.A. Wolsey. Valid inequalities for 0–1 knapsack and mips with generalized upper

bound constraints. Discrete Applied Mathematics, 29:251–261, 1990.

24

