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Abstract

The paper deals with the multilevel solution of elliptic partial differential equations (PDEs) in a

finite element setting: uniform ellipticity of the PDE then goes with strict monotonicity of the

derivative of a nonlinear convex functional. A Newton multigrid method is advocated, wherein

linear residuals are evaluated within the multigrid method for the computation of the Newton

corrections. The globalization is performed by some damping of the ordinary Newton correc-

tions. The convergence results and the algorithm may be regarded as an extension of those for

local Newton methods presented recently by the authors. An affine conjugate global conver-

gence theory is given, which covers both the exact Newton method (neglecting the occurrence

of approximation errors) and inexact Newton–Galerkin methods addressing the crucial issue of

accuracy matching between discretization and iteration errors. The obtained theoretical results

are directly applied for the construction of adaptive algorithms. Finally, illustrative numerical

experiments with a NEWTON–KASKADE code are documented.
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1 Introduction

The present paper deals with the multilevel solution of elliptic partial differential equations
(PDEs), which come up in a variety of scientific and engineering applications such as
continuum mechanics. In a finite element setting (see e.g. the recent textbook of Braess
[4]), such problems arise as convex minimization problems: uniform ellipticity of the
PDE then goes with strict monotonicity of the derivative of the nonlinear functional. As
for the numerical solution by multilevel methods, there are two basic algorithmic lines
(cf. the textbooks [9, 11]): a) the nonlinear multigrid method or the full approximation
scheme (FAS) , wherein nonlinear residuals are evaluated within multigrid cycles, and b)
the Newton multigrid method, wherein linear residuals are evaluated within the multigrid
method for the computation of the Newton corrections. The present paper follows the
second line. It may be regarded as an extension of convergence results and algorithms
presented recently by the authors in [8] for local Newton methods. The globalization
herein is performed by some damping of the ordinary Newton corrections — in the spirit
of earlier suggestions by Bank and Rose [1] or by Hackbusch and Reusken [10], but
rather different both in the presented theoretical results and in the suggested algorithms.

In Section 2 below, an affine conjugate global convergence theory of the Newton method
with damping is given — based on the observation that affine conjugacy is a natural re-
quirement for optimization problems in general. The analysis covers both the exact New-
ton method, which neglects the occurrence of approximation errors, and inexact Newton–
Galerkin methods, which include the crucial issue of accuracy matching between inner
and outer iteration. In Section 3, the obtained theoretical results are transferred into
adaptive algorithms, essentially by means of replacing certain theoretical Kantorovitch
quantities by computationally available estimates – following ideas presented in a differ-
ent context in [6]. In this way, an adaptive damping strategy can be derived. Moreover,
an accuracy matching strategy for inner versus outer iteration is suggested on the basis
of a simplified computational complexity model. Finally, in Section 4, the obtained theo-
retical results and algorithm suggestions are illustrated by numerical experiments with a
NEWTON–KASKADE code.

2 Affine Conjugate Global Convergence Results

Consider the minimization problem

f(x) = min ,

wherein f : D ⊂ X → R is assumed to be a strictly convex C2− functional defined on
an open convex set D. In order to assert the existence of a minimum point x∗ ∈ D, we
assume that the Banach space X is reflexive and that for some x0 ∈ D, x0 �= x∗, the level
set L0 := {x ∈ D | f(x) ≤ f(x0)} is closed and bounded. Uniqueness of the minimum
point x∗ follows from the strict convexity of f and the convexity of D.

The nonlinear minimization problem is equiavalent to the nonlinear operator equation

F (x) := f ′(x) = 0 , x ∈ D . (2.1)

In order to guarantee the feasibility of Newton’s method, we further assume that (2.1) is
a strictly elliptic problem, i.e. the symmetric Frechét–derivative F ′(x) = f ′′(x) is strictly
positive.

Let X be endowed with a norm ‖ · ‖. In addition, we will also be interested in local energy
products defined for each x ∈ D to be symmetric bilinear forms of the kind 〈· , F ′(x)·〉,
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that also induce local energy norms of the kind 〈· , F ′(x)·〉1/2. Motivated by the notation
in Hilbert spaces, where we can actually define the operator F ′(x)1/2, we also introduce
here the shorthand notation ‖F ′(x)1/2 · ‖ ≡ 〈·, F ′(x)·〉1/2 in connection with the local
norm only.

Following [8], we want to carefully observe the associated affine conjugacy property, which
means that we simultaneously treat the whole class of transformed convex minimization
problems

g(y) = f(By) = min , x = By ,

wherein B is understood to be an arbitrary bounded linear bijective operator. By trans-
formation, we arrive at the gradient mappings

G(y) = B∗F (By) = 0 ,

and the Fréchet–derivatives

G′(y) = B∗F ′(x)B , x = By .

By construction, all G′(·) are selfadjoint strictly positive operators. The associated linear
system for the full ordinary Newton correction reads

G′(yk)Δyk = −G(yk) ⇐⇒ B∗F ′(xk)BΔyk = −B∗F (xk) ,

which implies that Δxk = BΔyk. It is therefore only natural to require affine conju-
gacy also for any damped Newton iteration both in the theoretical convergence analysis
and in the algorithmic realization. As a strict consequence of such a requirement, any
convergence theorems should only use affine conjugate theoretical quantities like iterative
functional values f(xk) or local energy products of iterative corrections Δxk.

As for a globalization of the ordinary Newton method, we may either use continuation
methods (cf. [6]) or some damping strategy, which is the option taken here. It is well–
known that the geometrical concept behind any damping of Newton’s method is the
so–called Newton path. Under the assumptions of the implicit function theorem, the
associated Newton path x(λ) for 0 ≤ λ ≤ 1 connects the starting point x(0) = xk with
the solution point x(1) = x∗. It is characterized in the image space of the mapping F by
the homotopy

F
(
x(λ)

)
= (1 − λ)F (xk) (2.2)

and in the domain space of F by the initial value problem for the implicit differential
equation

dx

dλ
= −F ′(x)−1F (xk) , x(0) = xk . (2.3)

From this, we observe that the Newton correction is just the local tangent of the Newton
path in xk, since

dx

dλ

∣∣∣∣
λ=0

= −F ′(xk)−1F (xk) ≡ Δxk, (2.4)

which motivates the name. Moreover, on the basis of (2.2), any level function of the
special form

T (x|B) := 1
2‖B

∗F (x)‖2

will show a monotonic decrease along the Newton path according to

T
(
x(λ)|B

)
= (1 − λ)2T (xk|B). (2.5)

It is, however, not at all clear a–priori, whether our problem dependent nonlinear func-
tional f also decreases monotonically. For this reason, we first study the behavior of f
along the Newton path x(λ) as a function of λ.
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Lemma 2.1 Let f ∈ C2(D) denote some strictly convex functional to be minimized over
some convex domain D ∈ X. Let F ′(x) = f ′′(x) be symmetric strictly positive in D and
let x : [0, 1] → D denote the Newton path starting at some iterate x(0) = xk and ending
at the solution point x(1) = x∗ with F (x∗) = 0. Then f(x(λ)) is a strictly monotone
decreasing function of λ.

Proof. By means of the abstract mean value theorem in Banach space we may verify
that

f(x(λ)) − f(xk) =

λ∫
σ=0

〈F (x(σ)), ẋ(σ)〉 dσ.

Insertion of (2.2) and (2.3) then leads to

f(x(λ)) − f(xk) = −
λ∫

σ=0

(1 − σ)‖F ′(x(σ))−1/2F (xk)‖2 dσ,

with a strictly positive definite integrand. Therefore, for 0 ≤ λ2 < λ1 ≤ 1:

f(x(λ1)) − f(x(λ2)) = −
λ1∫

σ=λ2

(1 − σ)‖F ′(x(σ))−1/2F (xk)‖2 dσ < 0 .

Obviously, this result is the desired generalization of the monotone level function decrease
(2.5). On this firm geometrical basis we are now ready to consider the exact Newton
iteration with damping (k = 0, 1, ...)

F ′(xk)Δxk = −F (xk), xk+1 = xk + λkΔxk, λk ∈]0, 1] (2.6)

under the tentative requirement of iterative functional decrease

f(xk+1) < f(xk)

As a first step, we study the local behavior of the functional f along the Newton direction
Δxk starting at xk as a function of λ.

Theorem 2.2 Let f : D → R1 be a strictly convex C2–functional to be minimized over
some open convex domain D ⊂ X. Let F (x) = f ′(x) with F ′(x) = f ′′(x) symmetric
strictly positive. Assume the special affine conjugate Lipschitz condition

‖F ′(x)−1/2(F ′(y) − F ′(x))(y − x)‖ ≤ ω‖F ′(x)1/2(y − x)‖2 for x, y ∈ D (2.7)

with 0 ≤ ω < ∞. For some iterate xk ∈ D, define the quantities

εk := ‖F ′(xk)1/2Δxk‖2 , hk := ω‖F ′(xk)1/2Δxk‖ .

Moreover, let xk + λΔxk ∈ D for 0 ≤ λ ≤ λk
max with

λk
max :=

4

1 +
√

1 + 8hk/3
≤ 2 .

Then
f(xk + λΔxk) ≤ f(xk) − tk(λ)εk (2.8)
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where

tk(λ) = λ− λ2

2
− λ3

6
hk . (2.9)

The optimal choice of damping factor is

λk =
2

1 +
√

1 + 2hk

≤ 1 . (2.10)

Proof. Dropping the iteration index k, we apply the mean value theorem to obtain

f(x + λΔx) − f(x) = −λε +
λ2

2
ε

+λ2
1∫

s=0

1∫
t=0

s
〈
Δx,

(
F ′(x + stλΔx) − F ′(x)

)
Δx

〉
dtds .

Upon recalling the Lipschitz condition (2.7), the Cauchy–Schwarz inequality yields

f(x + λΔx) − f(x) +

(
λ− λ2

2

)
ε

≤ ωλ3
1∫

s=0

1∫
t=0

s2t‖F ′(x)1/2Δx‖3dtds =
λ3

6
h · ε ,

(2.11)

which confirms (2.8) and the cubic parabola (2.9). Maximization of tk by solving the
quadratic equation t′k = 0 yields λk as in (2.10). Moreover, by observing that

tk = λ

(
1 − λ

2
− λ2

6
hk

)
= 0

has only one positive root λk
max, the remaining statements are readily verified.

From this theorem for the exact Newton iteration, we may directly proceed to obtain the
comparable results for the inexact Newton iteration with damping (k = 0, 1, ...)

F ′(xk)δxk = −F (xk) + rk, xk+1 = xk + λkδx
k, λk ∈]0, 1]. (2.12)

The inner iteration, which is formally represented by the introduction of the inner residual
rk, will be further specified to satisfy a Galerkin condition of the kind

〈δxk, F ′(xk)(δxk − Δxk)〉 = 〈δxk, rk〉 = 0 (2.13)

and to have a relative error denoted by

δk :=
‖F ′(xk)1/2(Δxk − δxk)‖

‖F ′(xk)1/2δxk‖ .

For this specification, we immediately verify the following corollary:

Corollary 2.3 The statements of Theorem 2.2 hold for inexact Newton – Galerkin meth-
ods as well, if only the exact Newton corrections Δxk are replaced by the inexact Newton
corrections δxk and εk, hk are replaced by

εδk := ‖F ′(xk)1/2δxk‖2 =
εk

1 + δ2
k

, hδ
k := ω‖F ′(xk)1/2δxk‖ =

hk√
1 + δ2

k

. (2.14)
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Proof. Dropping the iteration index k, the first line of the proof of Theorem 2.2 may
be rewritten as

f(x + λδx) − f(x) = −λεδ +
λ2

2
εδ

+λ2
1∫

s=0

1∫
t=0

s
〈
δx,

(
F ′(x + stλδx) − F ′(x)

)
δx

〉
dtds + 〈δx, r〉 ,

wherein the last right hand term vanishes due to the Galerkin condition (2.13) so that
merely the replacement of Δx by δx needs to be performed.

With these local results established, we are now ready to formulate the associated global
convergence theorem.

Theorem 2.4 General assumptions as Theorem 2.2 or Corollary 2.3, respectively (in the
latter case δk bounded). Let the level set L0 := {x ∈ D | f(x) ≤ f(x0)} be closed and
bounded. Let F ′(x) = f ′′(x) be symmetric uniformly positive for all x ∈ L0. Then the
damped (inexact) Newton iteration (for k = 0, 1, . . .) with damping factors in the range

λk ∈ [ε , min(1, λk
max − ε)]

and sufficiently small ε > 0 depending on L0 converges to the solution point x∗.

Proof. The proof just applies the local reduction results of the preceding Theorem 2.2
or Corollary 2.3. The essential remaining task to show is that there is a common minimal
reduction factor for all possible arguments xk ∈ L0. For this purpose, we simply construct
a polygonal upper bound for tk(λ) such that (omitting technical details)

f(xk + λΔxk) ≤ f(xk) − εεk
2

for λ in the above indicated range and all possible iterates xk with some

ε < min(λk, λ
k
max − λk) .

This implies a strict reduction of the functional in each iterative step as long as εk > 0
and therefore global convergence in the compact level set L0 towards the minimum point
x∗ with ε∗ = 0.

Remark 1. It may be worth noting that the above analysis is nicely connected with
the analysis for the local Newton methods (λ = 1) as discussed in [8]. If we require that

λk
max =

4

1 +
√

1 + 8hk/3
≥ 1,

then we arrive at the local contraction condition

hk ≤ 3.

This is exactly the condition that would have been obtained in the proof of Theorem 2.1
or 3.1 in [8], if the requirement f(xk+1) ≤ f(xk) had been made. However, the condition
hk+1 ≤ hk cannot be guaranteed, so that λk+1

max ≥ 1 is not assured. In order to assure such
a condition, the more stringent assumption hk ≤ 2 is required as in [8].
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Remark 2. Similar results can be obtained without assuming a Galerkin condition like
(2.13). In particular we get

tk(λ) = (1 − δk)λ− λ2

2
− λ3

6
hδ
k ,

such that δk < 1 is required to assert functional decrease, which is optimal for

λk =
2(1 − δk)

1 +
√

1 + 2(1 − δk)hδ
k

≤ 1 .

The global convergence theorem would be the proper analog of Theorem 2.4.

Summarizing, we have thus established the theoretical optimal damping strategy (2.10) in
terms of the computationally unavailable Kantorovitch quantities hk for the exact Newton
method or hδ

k for the inexact Newton–Galerkin methods.

3 Adaptive Newton–Galerkin Algorithms

In this section, we want to use the above theoretical results for the construction of Newton–
Galerkin algorithms. Examples of inner iterations that satisfy the Galerkin condition
(2.13) are:

• for X = Rn any preconditioned conjugate gradient (PCG) method,

• for X = W 1,p , 1 < p < ∞ any finite element method (FEM).

Adaptivity issues to be treated are the number of inner PCG iterations in the Newton –
PCG method or the iterative meshes to be generated within a Newton – FEM. In both
cases, an adaptive damping strategy needs to be worked out.

3.1 Adaptive damping strategy

We first want to construct a computational damping strategy on the basis of the the-
oretically optimal damping strategy as derived in the preceding Section 2. In order to
construct such a strategy, we will apply a recipe that has been suggested in [6] in a differ-
ent context: we replace the computationally unavailable (affine conjugate) Kantorovitch
quantities hk by certain (also affine conjugate) computational local estimates [hk] ≤ hk

and the damping factors λk due to (2.10) by the computational estimates

[λk] :=
2

1 +
√

1 + 2[hk]
≤ 1 . (3.1)

Since [hk] ≤ hk, we have
[λk] ≥ λk

so that both a prediction strategy and a correction strategy need to be worked out. The
efficiency of such a strategy will depend on the required accuracy of the computational
estimate, which is analyzed in the following lemma.

Lemma 3.1 Standard assumptions and notation as just introduced. Let

0 ≤ hk − [hk] ≤ σ[hk] for some σ < 1 . (3.2)

Then, for λ = [λk], the following functional decrease is guaranteed:

f(xk + λΔxk) ≤ f(xk) − λ

6
(λ + 2)εk . (3.3)
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Proof. With hk ≤ (1 + σ)[hk] and (2.11) we have

f(xk + λΔxk) − f(xk) ≤ −tk(λ)εk =

(
−λ +

λ2

2
+

λ3

6
hk

)
εk

≤
(
−λ +

λ2

2
+

λ3

6
(1 + σ)[hk]

)
εk .

At this point, recall that λk is a root of t′k = 0 so that [λk] is a root of

1 − λ− λ2

2
[hk] = 0 .

Insertion of the above quadratic term into the estimate then yields

f(x + λΔx) − f(x) ≤
(
−λ +

λ2

2
+

λ

3
(1 + σ)(1 − λ)

)
εk . (3.4)

Upon using σ < 1, we arrive at the upper bound (3.3).

The above functional monotonicity test (3.3) is suggested for use in actual computation.
If we further impose σ = 1

2 in (3.2), i.e. if we require at least one exact binary digit in the
Kantorovitch quantity estimate, then (3.4) leads to the restricted functional monotonicity
test

f(xk + λΔxk) − f(xk) ≤ −λ

2
εk . (3.5)

We are now ready to discuss specific computational estimates [hk]. Some careful exami-
nation shows that we have three basic cheap ways of computational estimation.

From (2.11) we have the third order bound

E3(λ) := f(xk + λΔxk) − f(xk) + λ

(
1 − λ

2

)
εk ≤ λ3

6
hkεk , (3.6)

which, in turn, naturally inspires the computational estimate

[hk] :=
6|E3(λ)|
λ3εk

≤ hk . (3.7)

If E3(λ) < 0, this means that the Newton method performs locally better than for the
mere quadratic model of f (equivalent to hk = 0). Therefore, we decide to set

[λk] = 1 , if E3(λ) < 0 . (3.8)

On the level of the gradient mapping we have the second order bound

E2(λ) := 〈Δxk , F (xk + λΔxk) − (1 − λ)F (xk)〉 ≤ 1
2λ

2hkεk (3.9)

which inspires the associated estimate

[hk] :=
2|E2(λ)|
λ2εk

≤ hk . (3.10)

On the Frechet derivative level we may derive the first order bound

E1(λ) :=
〈
Δxk ,

(
F ′(xk + λΔxk) − F ′(xk)

)
Δxk

〉
≤ λhkεk (3.11)
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Figure 1: Cancellation of leading digits in estimators [hk] based on formulas for |E3|, |E2|,
|E1|, respectively.

which leads to the associated estimate

[hk] :=
|E1(λ)|
λεk

≤ hk . (3.12)

Again, due to the Galerkin condition (2.13), we get the same results for inexact Newton-
Galerkin methods, if we replace Δxk by δxk, εk by εδk, and hk by hδ

k. In actual computa-
tion the theoretical orthogonality condition (2.13) may be perturbed, e.g. by numerical
quadrature errors in FEM or by rounding errors from scalar products in PCG. For this
reason, the terms E3 and E2 must be evaluated in the special form

E3(λ) := f(xk + λδxk) − f(xk) − λ〈F (xk), δxk〉 − λ2

2
εδk

and
E2(λ) := 〈δxk, F (xk + λδxk) − F (xk)〉 − λεδk

with the local energy computed as εδk = 〈δxk, F ′(xk)δxk〉. In this form, the discrete
approximations are differentiable with respect to λ just as the associated continuous terms.
In addition, cancellation of leading digits in the terms Ei, i = 1, 2, 3 should be carefully
monitored — see Fig. 1, where a snapshot at some iterate in the illustrative example in
Section 4 below is taken. The third order expression is the most sensitive one in this
respect, but also preferable from the point of view of simplicity.

In principle, any of the above three estimates can be inserted into the expression (3.1) for
[λk] requiring at least one trial value of λ (or, respectively, xk+1). We have therefore only
designed a possible correction strategy

λi+1
k :=

2

1 +
√

1 + 2[hk](λ)

∣∣∣
λ=λi

k

(3.13)
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In order to construct a theoretically backed initial estimate λ0
k, we may recall that hk+1 =

Θkhk, where

Θk :=
‖F ′(xk+1)−1/2F (xk+1)‖

‖F ′(xk)−1/2F (xk)‖ .

Under the tacit assumption that any “local” Lipschitz constants do not change “too much”
from one iterate to the next, this inspires the definition

[hk+1]0 := Θk[hk]i∗ ,

wherein i∗ denotes the index of the last computed estimate within the previous iterative
step k. For k ≥ 0, we are thus led to the prediction strategy:

λ0
k+1 :=

2

1 +
√

1 + 2[hk+1]0
≤ 1 . (3.14)

Still, the starting value λ0
0 needs to be set ad hoc, taking into account the expected

difficulty of the problem to be solved.

3.2 Accuracy matching

With computational estimates for hδ
k at hand, we now want to develop a suitable accu-

racy matching between the outer iteration (characterized by hk) and the inner iteration
(characterized by δk). For hk small, local strategies based on the contraction of correction
energies have already been described in [8]. We therefore restrict out attention to the case
of hk large. For actual computation, we are interested in the first bit of the damping fac-

tors [λ
δ

k] rather than in the accuracy of the quantities [hδ
k], which come out of the inexact

Newton iteration. In view of (2.10) and (2.14), we obtain for h �1 the rough estimate

λ
δ

k ≈
√

2

hδ
k

� 1

In order to catch the first binary digit in λ
δ

k (see Lemma 3.1), we arrive at the requirement

4

√
1 + δ2

k ≤ 1 + 1
2 ,

which is nearly equivalent to
δk ≤ 2 .

Within this mildly restricted range, we are free to use the overall computational complexity
as the only criterion for choosing δk.

As a slight modification of the concept presented in [8], the information gain at iteration
step k can be defined as

Ik := f(xk) − f(xk+1) = −tk(λk)ε
δ
k ,

which is roughly estimated as

Ik ≈ 2

3

√
2

hδ
k

εδk ∼ (1 + δ2
k)

− 3
4 .

Following [8], we aim at maximizing the information gain per unit work

ik =
Ik
Ak

within each step k, wherein the amount of work Ak depends highly on the inner iteration.
We examine two different cases (compare [8]):
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Finite dimensional problems: Newton–PCG. Consider a nonlinear elliptic prob-
lem in fixed finite dimension N (possibly large). Such a problem may arise as a discretized
nonlinear elliptic PDE, which has been treated by a grid generator before starting the
solution process. For the inner iteration we assume that some preconditioned conjugate
gradient (PCG) method has been selected without further specification of the precondi-
tioner. At iteration step k, the computational work involved is

• evaluation of the Jacobian matrix F ′(xk) and the right hand side F (xk), where the
computational amount is typically independent of δk,

• some PCG iterations, where the computational amount of one iteration again is
independent of δk, and the number of iterations can be estimated as log(1 + δ−2

k ).

The total amount of work roughly scales as

Ak ∼ const + log(1 + δ−2
k ) .

From this, the information gain per unit work arises as

ik ∼
(
const + log(1 + δ−2

k )
)−1

(1 + δ2
k)

3/4 .

Obviously, the optimal choice of δk depends on the involved constant, which, in turn, de-
pends on the preconditioner used and the computational costs of evaluating F ′(xk) , F (xk),
respectively, within the PCG iteration. In the absence of knowledge about the above con-
stant, we suggest a fixed default value, say δk = 1.

Infinite dimensional problems: adaptive Newton–FEM. Consider a nonlinear
elliptic PDE problem in finite element formulation, which is a strictly convex minimization
problem over some infinite dimensional space X. Recall that the above theory covers the
case of X being a reflexive Banach space. For the inner iteration we assume an adaptive
multilevel FEM such as KASKADE [7, 3, 2]. Let d denote the underlying spatial dimension.
At iteration step k on discretization level j let N j

k be the number of nodes and εjk the local
energy. With l = lk we mean that discretization level, at which we achieve the prescribed
tolerance δk. The important difference to the fixed dimension case now is that within an
adaptive multilevel method the approximating dimension of the problem depends on the
required accuracy. In the linear elliptic case we have the rough relation for the relative
discretization error (on energy equilibrated meshes)

(
N0

k

N l
k

) 2
d

∼ ε∞k − εik
ε∞k

≤ δ2
k .

With a suitable preconditioner such as BPX, the number of PCG iterations inside KASKADE
is essentially independent of the number of nodes. Therefore the amount of work involved
within one linear FEM call can be estimated as

Ak ∼ N l
k ∼ N0

k

δdk
.

From this we end up with

ik ∼ δdk
(1 + δ2

k)
3/4

.

For d = 1, this function has its maximum at δopt =
√

2. For d = 2, 3, the function is
monotonically increasing, so that the optimal choice of δk is as large as possible within δk ≤
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2. On the other hand, the FEM error estimators are typically less reliable when the error
is “too” large, and our applied complexity model is anyway only useful asymptotically
for δk small. Thus we suggest to choose δk moderately large for any d to obtain a more
robust algorithm. For all the numerical experiments in Section 4 below, we took the
default value δk = 1, unless stated differently. This setting defines our standard option of
adaptive mesh refinement within NEWTON–KASKADE.

4 Numerical Experiments with NEWTON – KASKADE

In this section, we want to demonstrate properties of the above derived global adaptive
Newton–multilevel FEM. For convenience, we pick the linear elliptic FEM code KASKADE
[2] with linear finite elements for the inner iteration. Of course, any other adaptive linear
multigrid method could equally well be selected.

Illustrative example (see also [13, 8]). Consider the functional to be minimized

f(u) =

∫
Ω

((
1 + |∇u|2

)p − gu
)
dx , p >

1

2
, x ∈ Ω ⊂ Rd , u ∈ W 1,2p(Ω) .

The functional gives rise to the derived expressions〈
F (u), v

〉
=

∫
Ω

(
2p(1 + |∇u|2)p−1〈∇u,∇v〉 − gv

)
dx ,

〈
w,F ′(u)v

〉
=

∫
Ω

2p
(
2(p− 1)(1 + |∇u|2)p−2〈∇w,∇u〉〈∇u,∇v〉 + (1 + |∇u|2)p−1〈∇w,∇v〉

)
dx

With 〈·, ·〉 the Euclidean inner product in Rd, the term
〈
v, F ′(u)v

〉
is strictly positive for

p ≥ 1
2 . The computational costs roughly line up as

cost(f) < cost(F ) ≈ cost(F ′) .

Good coarse grid Bad coarse grid

Figure 2: Good and bad coarse grid.

For p = 1
2 , which characterizes the (parametric) minimal surface problem, the Banach

space W 1,1 is no longer reflexive. Nevertheless, for special boundary conditions and
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inhomogeneities g, a solution exists even in C0,1 (see [15]). In order to test our algorithm
in the extreme critical case, we select just this value and

Ω =
[
−π

2
, 0
]
×
[
−π

2
,
π

2

]
, u|∂Ω = s cosx cos y , g ≡ 0 .

Taking the Z2–symmetry along the x–axis into account, we halve Ω and impose homoge-
neous Neumann boundary conditions at y = 0. The parameter s is set to s = 3.5. As the
initial guess we take the values on the boundary as prescribed and inside just zero. The
initial grid is selected to take care of the expected boundary layer at x = 0 — see “good”
coarse grid in Fig. 2.

In a first numerical experiment, we compared three options of the mesh refinement strategy
within the inner iteration:

(I) standard mesh option (δk = 1 for all k) as advocated in Section 3.2 above,

(II) sequential mesh option as used in several Newton–multigrid implementations (cf.
[12]): in this option, each mesh refinement level is kept fixed until the associated
discrete nonlinear system on that level has been solved to sufficient prescribed ac-
curacy,

(III) finer mesh option (δk = 0.25 for all k) to illustrate the effect of finer than necessary
grids in the inexact Newton process.

In Fig. 3, the automatically obtained damping factors [λk] are repesented.

std.
sequential

finer

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

Figure 3: Iterative damping factors [λk] for three mesh refinement options.

In Fig. 4, the estimated iterative energy norms of the (exact) corrections Δxk are arranged
using

‖F ′(xk)1/2Δxk‖ =
‖F ′(xk)1/2δxk‖√

1 + δ2
k

.

The number Nk of nodes varies from about 10 up to 105, when the iterates approach
the solution point. Clearly, the finer mesh option just requires more work to achieve
comparable accuracies. Our standard option (kfin = 11) essentially envelopes the more
traditional sequential option (kfin = 13), which performs few unnecessary Newton itera-
tions. Asymptotically, only one Newton iteration per refinement level appears — which
dominates the computational work.
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finer

standard

sequential

0.01

0.1

1

10 100 1000 10000 100000

Figure 4: Iterative (exact) energy error norms ε
1/2
k versus number of nodes Nk for three

mesh refinement options.

In a second numerical experiment we tested our quite sophisticated coarse grid versus
some “unaware” coarse grid (see, once again, Fig. 2). The results are shown in Fig. 5.
Obviously the bad coarse grid requires many more iterations to catch the nonlinearity —
an effect that is well–known from experience reported in the engineering literature.

good grid

bad grid

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16

Figure 5: Iterative damping factors [λk] for “good” and “bad” initial coarse grids (standard
mesh refinement option).
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In a third numerical experiment, we deliberately chose a domain Ω such that for p = 1/2
no solution exists. For this problem, we compared the performance of our standard option
with the sequential option that has been traditionally implemented in Newton–multigrid
methods. The results are shown in Fig. 6 in terms of the automatically obtained damping
factors. As can be seen, the sequential option repeatedly produces factors λ approaching
1 — thus wrongly indicating solvability of the problem (though only on a finite grid).
The standard option, however, which is closer related to our convergence theory, gives a
much clearer overall indication that a solution cannot be found (λ < 0.01) — after 20
Newton iterations as opposed to more than 60 iterations in the sequential option, where
the algorithm has been stopped.

standard

sequential

0.01

0.1

1

0 10 20 30 40 50 60

Figure 6: Standard versus sequential mesh refinement option in terms of damping fac-
tors λ.

Conclusion

The paper presents a rather simple affine conjugate global convergence theory for adap-
tive Newton–multilevel methods applied to the solution of nonlinear elliptic PDEs. The
characterizing theoretical quantities can be cheaply estimated in the course of the com-
putation — thus leading to a theoretically backed damping strategy and an easily imple-
mentable accuracy matching.
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of the manuscript.
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