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Preprocessing in two-stage stochastic programming is considered from the viewpoint
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1 Introduction

Two-stage stochastic programs arise as deterministic equivalents to random optimization prob-

lems that are characterized by a two-stage scheme of alternate decision and observation. First, a

here-and-now decision has to be taken without knowing the outcomes of random problem data.

After realization of the random data, a second-stage (recourse) decision is possible, which is the

solution of a subordinate optimization problem depending on the first-stage solution and the

outcome of the random data. In this paper, we consider problems where the second-stage is a

linear program with possibly integer requirements on the variables. In two-stage stochastic pro-

gramming one encounters an interplay of algebraic and probabilistic difficulties. Preprocessing

in stochastic programming is directed to analyzing the underlying algebraic structures. This

may be helpful for supporting solution procedures or improving structural understanding of the

problem.

In this note, we consider stochastic programs of the following form

min{cTx+ Q(x) : x ∈ C} (1)

where

Q(x) =

∫
IRs

Φ(z − Ax)μ(dz) (2)

and

Φ(t) = min{qTy : Wy ≥ t, y ∈ Y } with Y = IRm
+ or Y = ZZm

+ . (3)

Here, C ⊂ IRn is a non-empty polyhedron and c, q,W are vectors and matrices of proper

dimensions. The above mentioned scheme of alternate decision and observation is reflected by

the first-stage variables x, the random vector z with underlying probability measure μ and the

second-stage variables y. The two-stage stochastic program aims at finding a first-stage decision

x such that the sum of direct costs cTx and expected recourse costs Q(x) is minimal. For further

reading on basics in two-stage stochastic programming we refer to [5, 6]. Let us asssume that

Y = IRm
+ and impose the following assumptions

the matrixW has full rank, (4)

MD = {u ∈ IRs
+ : WTu ≤ q} �= ∅, (5)∫

IRs
‖z‖μ(dz) < +∞. (6)

These assumptions imply that MD has vertices, and according to the decomposition theorem

for polyhedra it admits a representation

MD = conv(V0) + cone(V1) (7)

where V0, V1 are finite sets of vectors in IRs and conv and cone denote the convex and conical

hulls, respectively. Preprocessing, as discussed in this note, concerns the algorithmic transfor-

mation of the representation in (5) into the one of (7). To see that explicit knowledge of V0, V1
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can be beneficial, recall the following identities

cone(V1) = {u ∈ IRs
+ : WTu ≤ 0}

(since cone(V1) is the recession cone of MD)

= {u ∈ IRs : uTwi ≤ 0, i = 1, . . . , m, uT (−ej) ≤ 0, j = 1, . . . , s}
(wi are the columns of W and ej the canonical unit vectors)

= {u ∈ IRs : uT (
∑
i

λiwi +
∑
j

λj(−ej)) ≤ 0 ∀λi ≥ 0, ∀λj ≥ 0}

= {u ∈ IRs : uTw ≤ 0 ∀w ∈ pos(W,−I)}
= (pos(W,−I))∗

where pos denotes the positive span and ∗ indicates the polar cone. Therefore,

the elements of V1 are the coefficients in an inequality description of pos(W,−I).
In computations, the probability measure μ is in general assumed to be discrete,

i. e., with mass points z1, . . . , zL and probabilities p1, . . . , pL. Then, Q(x) is well defined if

zl − Ax ∈ pos(W,−I) for all l = 1, . . . , L. In the literature, the latter are called induced con-

straints. These are implicit conditions that are made explicit if V1 is known. Moreover, for

t ∈ pos(W,−I) it holds that
Φ(t) = max

vi∈V0

vTi t. (8)

such that computation of Φ becomes easy if V0 is known, and the domain of definition of Φ

becomes explicit if V1 is known.

Nevertheless, the above considerations have only limited impact on solution procedures for state-

of-the-art linear recourse problems (i.e., if Y = IRm+ ) , since far too many elements arise in V0

and V1. Methods like L-shaped, regularized or stochastic decomposition [14, 8, 4], for instance,

generate only those elements of V0 and V1 that are relevant for the solution process. On the

other hand, the above transformation may be useful to support solution procedures for smaller

problems of more complicated nature (e.g., if Y = ZZm+ ) or for answering questions in the theory

of stochastic programming (e.g., verifying stability conditions). The emphasis of our paper is on

these two specific issues. A more general view on preprocessing including its impact on modeling

is adopted in [15, 16] and Chapter 5 in [5].

In Section 2, we recall the role of Fourier-Motzkin elimination when transforming an inequality

description of a polyhedron into the representation as Minkowski sum of a convex and a conical

hull. In Section 3, we show how preprocessing via Fourier-Motzkin elimination enters into an

algorithm for integer recourse stochastic programs. Section 4 deals with the verification of sta-

bility conditions for stochastic programs with linear recourse. Here Fourier-Motzkin elimination

can be beneficial in generating information about the polyhedral complex of lineality regions of

the second-stage value function Φ. Finally, we have a conclusions section.
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2 Theoretical Background

In this section we recall the essence of Fourier-Motzkin elimination and put it into the context

of computing extreme points and extreme rays of the polyhedron MD (cf. (5)). Enumeration

of extreme points and extreme rays of a polyhedron is a well studied problem in the literature

(see, e.g., [18] and the references therein). In connection with stochastic programming, an

excellent account is given in [15]. Our intention here is to show the relation to Fourier-Motzkin

elimination, which is interesting from the practical computations point of view, since there exists

a freely available implementation ([2]) of the transformation procedure described below. This

supplements the implementations reported in [15].

For a polyhedron Π = {x ∈ IRn : Ax ≤ b}, Fourier - Motzkin elimination provides an algorithmic

way for projection along the k−th coordinate (1 ≤ k ≤ n), i.e., for eliminating the variable

xk from the system Ax ≤ b. Let ai, bi(i = 1, . . . , l) be the rows of A and components of b,

respectively, and let aik denote the k−th component of ai. We introduce subsets I>, I<, I= of

{1, . . . , l} such that

aik > 0 for all i ∈ I>,

aik < 0 for all i ∈ I<,

aik = 0 for all i ∈ I=.

Simple manipulations then provide for any x ∈ Π

xk ≤ 1

aik
(aikxk − aTi x+ bi) for all i ∈ I>

and

xk ≥ 1

−aik (−aikxk + aTi x− bi) for all i ∈ I<.

The right-hand sides in these inequalities are independent of xk such that we obtain for the

projection Π(k) of Π along the k−th coordinate

Π(k) =
{

x(k) ∈ IR(n−1) :

max
i∈I>

{ 1

−aik (−aikxk + aTi x− bi)} ≤ min
i∈I<

{ 1

aik
(aikxk − aTi x+ bi)},

aTi x ≤ bi for all i ∈ I=
}

The first inequality in the above description of Π(k) can be equivalently expressed by |I>| · |I<|
many linear inequalities, where |.| denotes cardinality. When projecting further down to smaller

dimensions, the above scheme has to be iterated, which in general produces inequality systems of

enormous size. This prevents algorithmic use of the method for large-scale problems. Strategies

going back to Tschernikow ([13], see also [3]) allow to produce a description of Π(k) without

redundant inequalities such that in practical computations intermediate inequality systems can

be kept as small as possible.
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Proposition 2.1 LetMD = {u ∈ IRs
+ : WTu ≤ q} be such that 0 ∈MD, then a representation

MD = conv(V0) + cone(V1) can be computed by using the above elimination procedure.

Proof:

We consider the polar polyhedron M∗
D of MD, which is given as follows

M∗
D = {ξ ∈ IRs : ξTu ≤ 1 ∀u ∈MD}.

Then it holds (cf. [9], Theorem 9.1) that M∗
D is a polyhedron again and that M∗∗

D = MD. Let

MD be written as

MD = {u ∈ IRs
+ : (W,−I)Tu ≤

(
q

0

)
}

where W is scaled in such a way that qi ∈ {0, 1} for all components qi of q, (i = 1, . . . , m). The

latter is possible since 0 ∈MD implies q ≥ 0. Another standard result on polarity (cf. again [9],

Theorem 9.1) now yields that

M∗
D = conv

(
{0} ∪

⋃
qi=1

{wi}
)

+ cone
( ⋃
qi=0

{wi} ∪
m⋃
j=1

{−ej}
)

where wi and ej are as in Section 1. Therefore

M∗
D =

{
u ∈ IRs : ∃λ ∈ IR

|qi=1|
+ ∃μ1 ∈ IR

|qi=0|
+ ∃μ2 ∈ IRm

+

u =
∑
i

λiwi +
∑
k

μ1kwk +
∑
j

μ2j (−ej),
∑
i

λi = 1
}
.

Hence

M∗
D = M∗

D(λ,μ1,μ2)

where

M∗
D =

{
(u, λ, μ1, μ2) : u =

∑
i

λiwi +
∑
k

μ1kwk +
∑
j

μ2j (−ej),
∑
i

λi = 1, λ ≥ 0, μ1 ≥ 0, μ2 ≥ 0
}

and M∗
D(λ,μ1,μ2) denotes the projection of M∗

D along (λ, μ1, μ2). Eliminating the variables

λ, μ1, μ2 from the above system by the Fourier-Motzkin procedure yields an inequality description

M∗
D = {u ∈ IRs : H0u ≤ h, H1u = 0}

which has no redundant rows if we apply the above mentioned Tschernikow rules. Since also

0 ∈M∗
D, we may assume that, after proper scaling, hi ∈ {0, 1} for all components hi of h. Now,

MD = M∗∗
D , and again Theorem 9.1 in [9] implies

MD = (M∗
D)

∗ = conv
(
{0} ∪

⋃
hi=1

{h0i}
)
+ cone

( ⋃
hi=0

{h0i} ∪
⋃
i

{h1i} ∪
⋃
i

{−h1i}
)
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where h0i, h1i are the rows ofH0, H1. This is the desired representation and our proof is complete.

Recall that, due to our basic assumptions (4), (5), the polyhedron MD has vertices. Therefore

H1 in the above proof has to be the zero matrix.

The main algorithmic step in the above proof, the elimination of the variables λ, μ1, μ2 from

the system in (9), is implemented in the code PORTA [2]. As input, the user has to supply an

inequality description of the relevant polyhedron, in our situation (W,−I)Tu ≤ (q
0

)
, u ≥ 0. The

output of PORTA contains the list of vertices and extreme rays, in our situation the row vectors

of H0.

In [15] the authors report on numerical experience with the algorithm support ([17]) that, al-

though different in appearance, follows similar principles as the Fourier-Motzkin procedure. Our

intention with the above proposition is to point out the relation to Fourier-Motzkin elimination

and to give an impression on the key procedure implemented in PORTA.

3 Lower Bounds for Integer Recourse Problems

The present section deals with two-stage stochastic programs where the second stage problem

is an integer linear program. The basic model is again given by (1) - (3) but now Y = ZZm+ . We

also assume that all entries in W are rational numbers, and (3) reads

Φ(t) = min{qTy : Wy ≥ t, y ∈ ZZm
+ }. (9)

This value function Φ is in general non-convex and discontinuous,in fact, lower semicontinuous,

and these properties of Φ, obviously, are transferred to Q. Therefore, algorithms for linear

recourse problems with continuous variables, essentially resting on convexity of Q, break down

for this class of problems. If the underlying probability measure μ is discrete, which we assume

also in the present section, then (1) - (3) may be equivalently rewritten as a large-scale mixed-

integer linear program with dual block angular structure. It is tempting to tackle this problem

by decomposition. This, however, leads to master problems whose objectives are essentially

governed by Φ, and, again, we are facing lower semicontinuous objectives ([1]).

In [12], an algorithm for the above integer recourse stochastic program is proposed that combines

enumeration of Q with an efficient procedure for computing its function values. The latter

employs Gröbner bases methods from computational algebra: Using Buchberger’s algorithm, a

Gröbner basis of a polynomial ideal related to the integer program in (9) is computed. This

basis only depends on the objective and the coefficient matrix of the integer program. For the

various right-hand sides, solution of the integer programs then is accomplished by a scheme of

generalized division of multivariate polynomials. The latter is much faster than solving anew the

integer program with conventional methods each time another right-hand side arises. Computing

the Gröbner basis, however, is the bottleneck of the method such that second-stage problems

with moderate size can be handled only.

As to the enumeration ofQ, bounds restricting the search are most welcome. Here, preprocessing
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does an important job which we will explain now. Consider the continuous relaxation

ΦR(t) = min{qTy : Wy ≥ t, y ∈ IRm
+}

and the corresponding relaxed expected recourse function

QR(x) =
∫
IRs

ΦR(z − Ax)μ(dz).

Of course, QR(x) ≤ Q(x), and therefore any optimal solution to the integer recourse stochastic

program belongs to the level set

{x ∈ C : cTx+QR(x) ≤ cT x̄+ Q(x̄)} (10)

where x̄ ∈ C is an arbitrary feasible point. The enumeration part of the algorithm in [12] rests

on searching the above level sets. Each time a feasible point x̄ with improved objective function

value is found the level set (10) can be shrunk.

In view of the representation (8), the function QR is convex piecewise-linear if the measure μ

is discrete. Therefore, all the level sets in (10) are non-empty polyhedra. If we assume that

pos(W,−I) = IRs then ΦR(t) = maxvi∈V0 v
T
i t where V0 is the vertex set of MD. This leads to

the following lower bound for QR

QR(x) =
L∑
l=1

plΦR(zl − Ax)

≥ ΦR(
L∑
l=1

plzl − Ax)

= max
vi∈V0

vTi (
L∑
l=1

plzl − Ax) =: QRL(x).

Here, the second line is a consequence of Jensen’s inequality. If we replace QR in (10) by

QRL then again any optimal solution to the integer recourse stochastic program belongs to

the respective level set. The advantage over the previous situation is that QRL is explicitly

known via the vertices of MD. If the latter are obtained by the procedure described in the

previous section, then the enumeration part of the algorithm in [12] becomes algorithmically

feasible. The disadvantage that Fourier-Motzkin elimination breaks down at large-scale instances

is not of great significance in this case, since the above mentioned bottleneck in Gröbner basis

computation restricts application of the algorithm in [12] to second-stage problems of moderate

size.

As an example let us consider two-stage investment problems with multi-knapsack second stage.

In contrast to (1) these are maximization problems which can be formalized as follows.

max{cTx+Q(x) : x ∈ C} (11)

where

Q(x) =

∫
IRs

Φ(z − Ax)μ(dz) (12)
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and

Φ(t) = max{qTy : Wy ≤ t, y ∈ {0, 1}m} (13)

with non-negative components in c, q and A,W .

The first-stage investment decision x in (11) - (13) is selected from some feasible set C and

yields an immediate revenue cTx. Further revenue is gained from projects for which investment

is done in the second stage after having observed the random vector z ∈ IRs leading to the

budget z − Ax. Spending money in the first stage decreases possibilities in the second stage.

However, negative entries in x may be permitted leading to the possibility to contract loans in

the first stage to enlarge possibilities in the second stage. The objective in (11) - (13) is to find

a first-stage investment decision x such that the sum of direct revenue from the first stage and

expected revenue from the second stage is maximal.

Computational experience with solving (11) - (13) is reported in [12]. Here, we concentrate on

the preprocessing part, i.e., on finding a representation (7) for the dual polyhedron

MD = {u ∈ IRs+m
+ : (WT , I)u ≥ q}. (14)

Although the assumption that pos(W, I) = IRs is not met here, such that Φ is not defined on the

whole of IRs, vertices ofMD, nevertheless, can be used in the above way to bound enumeration.

As mentioned in Section 2, the bottleneck of Fourier-Motzkin elimination is that, in general,

the size of the iteration system of linear inequalities grows quadratically per elimination of one

variable. Moreover, Fourier-Motzkin elimination is an all-or-nothing procedure. The complete

list of vertices and extreme rays is generated only in the very last step. If the method breaks

down since the iteration system of linear inequalities becomes too big, then no partial list of

vertices and extreme rays is available.

Our experience with PORTA on a SPARCstation 20 Model 61 with 160 MB of main memory

indicates that, within seconds, vertex sets with up to several hundreds of elements can be

enumerated. If there are several hundred thousands of vertices, then there is a pretty high

chance that PORTA breaks down due to excessive size of the iteration system. Vertex sets

with up to one hundred thousand elements have a good chance to be enumerable, although this

might cost several hours of CPU time. To illustrate these statements, we tested PORTA on some

instances of the polyhedron (14). For a matrixW with 2 rows and 29 columns the complete list

of 241 vertices was found after 2 seconds, for a 2× 50 matrix W we ended up with 545 vertices

after 14 seconds and for a 4× 50 matrix W it took 5550 seconds to find all the 37887 vertices.

4 Verification of Stability Conditions

The purpose of this section is to demonstrate how the preprocessing tool from Section 2 can be

used for the verification of assumptions in theoretical considerations on stochastic programs.

In recent years, studies on the stability of the stochastic program (1) - (3) with respect to per-

turbations of the underlying measure μ have attracted some interest. This is mainly motivated
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by the incomplete information on μ that one often faces in applications and by numerical prob-

lems that arise in computations of the integral in (2) if μ is multivariate continuous. A crucial

issue in stability analysis is that sufficient stability conditions are verifiable from the data in the

unperturbed problem, i.e., in our situation, from (1) - (3) with some fixed measure μ. In the

following, we illustrate at a result on the stability of optimal solution sets how preprocessing

can be employed to extend verifiability of stability conditions.

Let Y = IRm
+ and consider problem (1) - (3) as a parametric program in μ

P (μ) min{cTx+ Qμ(x) : x ∈ C} (15)

where

Qμ(x) =

∫
IRs

Φ(z − Ax)μ(dz) (16)

and

Φ(t) = min{qTy : Wy = t, y ∈ IRm
+}. (17)

(The only reason for writing the second-stage linear program in equality form is consistency

with the settings in [7], [10].)

The following proposition was established in [7]. It provides a Lipschitz estimate for the Haus-

dorff distance of optimal solution sets ψ(μ), ψ(ν) to stochastic programs P (μ) and P (ν), respec-

tively. The estimate is in terms of some distance of probability measures d(μ, ν;U) that we will

not explain here. For details we refer to [7] where it is also shown that d(μ, ν;U) can be ma-

jorized by the uniform distance of distribution functions of probability measures closely related

to μ and ν. The function Q̃μ arising in the statement is defined by Q̃μ(χ) =
∫
IRs Φ(z− χ)μ(dz).

Proposition 4.1 Let pos W = IRs,MD �= ∅ and
∫
IRs ‖z‖μ(dz) < +∞. Suppose further that

ψ(μ) is non-empty and bounded. Assume that there exists a convex open subset V of IRs such

that A(ψ(μ)) ⊂ V and the function Q̃μ is strongly convex on V . Let U = cl Uo, where Uo is an

open, convex, bounded set such that ψ(μ) ⊂ Uo and A(U) ⊂ V .

Then there exist constants L > 0, δ > 0 such that

dH(ψ(μ), ψ(ν))≤ L · d(μ, ν;U)

for all probability measures ν such that
∫
IRs ‖z‖ν(dz) < +∞ and d(μ, ν;U)< δ.

As to verification of assumptions, the critical part of the above statement is the strong convexity

of Q̃μ, which means that there exists some κ > 0 such that for all χ, χ′ ∈ V and all λ ∈ [0, 1]

Q̃μ(λχ+ (1− λ)χ′) ≤ λQ̃μ(χ) + (1− λ)Q̃μ(χ
′)− κλ(1− λ)‖χ− χ′‖2.

Strong convexity of Q̃μ can be verified via the following result from [10].

Proposition 4.2 Let pos W = IRs, the interior of MD be non-empty and∫
IRs ‖z‖μ(dz) < +∞. Suppose further that there exist a convex open set V ⊂ IRs, constants

r > 0, ρ > 0 as well as a density θ of μ such that θ(t′) ≥ r for all t′ ∈ Vρ := {t′ ∈ IRs :

dist (t′, V ) ≤ ρ}. Then Q̃μ is strongly convex on V .
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The density assumption in the above proposition restricts application of the result to stochastic

programs (15) - (17) where all components of z are random, i.e., not constant almost surely.

This is quite restrictive in applications, and [11] analyses models where only a part of z ∈ IRs,

say z1 ∈ IRs1 , is random, and the remaining part z2 ∈ IRs2 (s1 + s2 = s) is fixed. Then Qμ

becomes

Qμ(x) =

∫
IRs1

Φo(z1 − A1x, z2 − A2x)μ(dz1)

with

Φo(t1, t2) = min{qTy : W1y = t1,W2y = t2 y ∈ IRm
+}. (18)

Consider

Q̃o
μ(χ1, χ2) =

∫
IRs1

Φo(z1 − χ1, z2 − χ2)μ(dz1)

which, for fixed χ̄2, is studied in [11] as a function of the first argument χ1

Q̃μ(χ1) =
∫
IRs1

Φo(z1 − χ1, z2 − χ̄2)μ(dz1). (19)

The central result in [11] is a counterpart to Proposition 4.2 for the above function Q̃μ. This

leads to a generalization of the Lipschitz estimate in Proposition 4.1 for stochastic programs

with partially random right-hand side (see [11] for details). The counterpart to Proposition 4.2

contains a density assumption for z1 that is more involved than the one for z in Proposition 4.2.

Its verification can be essentially supported by preprocessing. Let us explain this in more detail.

The more complicated assumption, called generalized density assumption in the following, reads:

There exist a convex open set V ⊂ IRs1 , constants r > 0, ρ > 0, points e∗ij ∈ F∗
ij and a density θ

of μ such that θ(t′) ≥ r for all t′ ∈ ∪(i,j){e∗ij + Vρ}.

The sets F∗
ij here denote the unbounded facets arising in the polyhedral complex of lineality

regions of the piecewise linear convex function Φ(t1) = Φo(t1, z2 − χ̄2) with Φo as in (18). In

Proposition 4.2, this complex is especially simple: Lineality regions of Φ coincide with the outer

normal cones to the dual polyhedron MD, which is compact in this case such that the polyhedral

complex is a fan of cones with common vertex zero. Therefore, the points e∗ij can all be selected

as zero and the condition t′ ∈ ∪(i,j){e∗ij + Vρ} turns into t′ ∈ Vρ.

To see how the complex looks like in the more general situation we consider the dual polyhedron

Mo
D = {(u1, u2) ∈ IRs1+s2 : WT

1 u1 +WT
2 u2 ≤ q}. By duality, we obtain (with t̄2 = z2 − χ̄2)

Φ(t1) = max{tT1 u1 + t̄T2 u2 : (u1, u2) ∈Mo
D}. (20)

Suppose that Mo
D has vertices, and let d̃1, . . . , d̃N be the vertices of Mo

D that arise as optimal

ones in (20) when t1 varies in IRs1 . Denoting by d̃i1, d̃i2 (i = 1, . . . , N ) the projections of d̃i on

IRs1 and IRs2 , respectively, we obtain

Φ(t1) = tT1 d̃i1 + t̄T2 d̃i2
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for all t1 ∈ IRs1 such that (t1, t̄2) belongs to the outer normal cone Ki to M
o
D at the vertex d̃i.

The lineality regions K∗
i of Φ then are given by

K∗
i = π1(Ki ∩ {IRs1 × {t̄2}}), i ∈ {1, . . . , N} (21)

where π1 denotes the projection from IRs to IRs1 . They form a polyhedral complex that arises

by intersecting the fan of outer normal

cones to Mo
D with the affine subspace IRs1 × {t̄2}. The sets F∗

ij are the unbounded facets

((s1 − 1)−dimensional faces) in this complex.

Some insight into the polyhedral complex in (21) can be gained by preprocessing. Let us illustrate

this at the following example treated in more detail in [11].

Example: In (18), (19) we put

qT = (21, 21, 21, 21, 7, 7, 3, 3, 1, 0) ∈ IR10,

W1 =

⎛
⎝ −3 −3 −3 3 −1 1 0 0 0 0

−5 1 2 −2 −2 2 −1 1 0 0

⎞
⎠ ∈ L(IR10, IR2),

W2 =
(

12 12 9 9 3 3 0 0 1 −1
)
∈ L(IR10, IR1),

z2 = 1, χ̄2 = 0.

Using PORTA [2], we computed the vertices of Mo
D together with a vertex-inequality incidence

table displaying the binding inequalities for each vertex. Gradients of the binding (linear)

inequalities then generate the respective outer normal cones:

d̃1 = (−7, 0, 0),

K1 = cone {(0, 0,−1), (−1,−2, 3), (−3, 2, 9), (−3, 1, 12), (−3,−5, 12)},

d̃2 = (−1,−3, 0),

K2 = cone {(0, 0,−1), (0,−1, 0), (−1,−2, 3)},

d̃3 = (5,−3, 0),

K3 = cone {(0, 0,−1), (0,−1, 0), (3,−2, 9)},

d̃4 = (7, 0, 0),

K4 = cone {(0, 0,−1), (1, 2, 3), (3,−2, 9)},

d̃5 = (1, 3, 0),

K5 = cone {(0, 0,−1), (1, 2, 3), (0, 1, 0)},

d̃6 = (−5, 3, 0),

K6 = cone {(0, 0,−1), (0, 1, 0), (−3, 2, 9)},
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d̃7 = (−3, 0, 1),

K7 = cone {(0, 0, 1), (−3, 1, 12), (−3,−5, 12)},

d̃8 = (2,−3, 1),

K8 = cone {(0, 0, 1), (0,−1, 0), (−1,−2, 3), (3,−2, 9), (−3,−5, 12)},

d̃9 = (4, 0, 1),

K9 = cone {(0, 0, 1), (1, 2, 3), (3,−2, 9)},

d̃10 = (−2, 3, 1),

K10 = cone {(0, 0, 1), (1, 2, 3), (0, 1, 0), (−3, 2, 9), (−3, 1, 12)}.

One possibility to fulfill the generalized density assumption is to select e∗ij as vertices of un-

bounded facets F∗
ij. Here, the above list of generators can be helpful since it allows to compute

all vertices in the complex (21). Indeed, each intersection of a positive multiple of some gener-

ator with the affine subspace IR2 × {1} yields a vertex and each vertex has to arise as such an

intersection. Hence, there is a one-to-one correspondence between the vertices and the gener-

ators with positive third component. In this way, we obtain a list of 7 vertices of which 3 do

not belong to unbounded facets. For more complicated examples, the latter extraction may be

non-trivial. In such cases the generalized density assumption can be fulfilled by using all vertices

of (21) instead of the points e∗ij.
Another possibility to fulfill the generalized density assumption is to claim that θ(t′) ≥ r for

all t′ ∈ B + Vρ where B is a bounded set containing all the vertices from (21). To this end, we

compute an upper bound for the norm of these vertices. Again preprocessing is helpful. The

outer normal cone Ki to M
o
D at d̃i can be written as

Ki = {u ∈ IRs : u = W (i)v, v ≥ 0}

where W (i) ∈ L(IRmi , IRs) is given by the generators of Ki computed above. Then it holds that

K∗
i = {u1 ∈ IRs1 : u1 = W (i)1v, t̄2 = W (i)2v, v ≥ 0}

= W (i)1({v ∈ IRmi : W (i)2v = t̄2, v ≥ 0}).

hence, the vertices of K∗
i are among the W (i)1−images of the vertices v(i)j (j = 1, . . . , Ji) of

{v ∈ IRmi : W (i)2v = t̄2, v ≥ 0}. The latter can be computed using PORTA [2]. For the desired

upper bound all possible basis submatrices of all W (i)2 have to be extracted which, together

with t̄2 and submatrices of the W (i)1, yields representations for the vertices of K∗
i . These are

bounded above by the usual estimates using matrix norms (see [11] for details).

It is evident that the procedures discussed in this section are not suitable for large-scale problems.

However, they can serve well for improving our theoretical understanding for problems with

moderate size.
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5 Conclusions

Fourier-Motzkin elimination provides an elegant way to look at preprocessing in stochastic pro-

gramming. Moreover there is a well tested code, PORTA [2], that is based on Fourier-Motzkin

elimination, such that, in addition to the codes reported in [15], [16], another convenient com-

puter tool for preprocessing in stochastic programming is available. It is well known that Fourier-

Motzkin elimination is of exponential complexity such that application of the method has to be

restricted to problems of moderate size. In the present paper we discussed two applications with

natural size limitation. For stochastic programs with integer recourse, preprocessing is help-

ful for restricting the search in enumeration algorithms. In the stability analysis of stochastic

programs, preprocessing tools can be used to widen the class of problems for which sufficient

stability conditions can be verified.
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North Holland, Elsevier Science, Amsterdam, 427–432.

[18] Ziegler, G.M.: Lectures on Polytopes, Springer - Verlag, New York, 1995.

14


