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Abstract

The finite element setting for nonlinear elliptic PDEs directly leads to the minimization of convex
functionals. Uniform ellipticity of the underlying PDE shows up as strict convexity of the arising
nonlinear functional. The paper analyzes computational variants of Newton’s method for convex
optimization in an affine conjugate setting, which reflects the appropriate affine transformation
behavior for this class of problems. First, an affine conjugate Newton–Mysovskikh type theorem
on the local quadratic convergence of the exact Newton method in Hilbert spaces is given. It can
be easily extended to inexact Newton methods, where the inner iteration is only approximately
solved. For fixed finite dimension, a special implementation of a Newton–PCG algorithm is
worked out. In this case, the suggested monitor for the inner iteration guarantees quadratic
convergence of the outer iteration. In infinite dimensional problems, the PCG method may be
just formally replaced by any Galerkin method such as FEM for linear elliptic problems. Instead
of the algebraic inner iteration errors we now have to control the FE discretization errors, which
is a standard task performed within any adaptive multilevel method. A careful study of the
information gain per computational effort leads to the result that the quadratic convergence
mode of the Newton–Galerkin algorithm is the best mode for the fixed dimensional case, whereas
for an adaptive variable dimensional code a special linear convergence mode of the algorithm is
definitely preferable. The theoretical results are then illustrated by numerical experiments with
a NEWTON–KASKADE algorithm.



       

1 Introduction

The present paper deals with the multilevel solution of elliptic partial differential equations
(PDEs), which come up in a variety of scientific and engineering applications. In a finite element
setting (see e.g. the recent testbook of Braess [4]), such problems arise as convex minimization
problems – a formulation, which directly reflects the fundamental variational principle underlying
the associated physical problem. Uniform ellipticity of the underlying PDE shows up as strict
convexity of the nonlinear functional in question. Among the multilevel methods, there are two
basic lines: a) the nonlinear multigrid method or the full approximation scheme (FAS) (compare
the classical textbooks [11, 13]), or the recent publication by Hackbusch and Reusken [12],
where nonlinear residuals are evaluated within the multigrid cycles, and b) the Newton multigrid
method (compare e.g. Bank and Rose [1]), where a linear multigrid method is applied for the
computation of the Newton corrections so that linear residuals are evaluated within the multigrid
cycles. In the second approach, the basic question of algorithmic interest is the accuracy matching
between the outer (Newton) and the inner (linear) iteration. The present paper follows this second
line, but in a way different from the known ones both in the underlying theoretical analysis and
in the suggested algorithm. In order to concentrate the presentation, we only treat local Newton
methods here and postpone the associated globalization to a forthcoming paper (cf. [9]).

In Section 2, the ordinary Newton method for convex optimization in Hilbert spaces is analyzed
within an affine conjugate setting, which reflects the behavior of such problems under arbitrary
affine transformation. This approach is a follow–up of two earlier affine invariant approaches:
(I) the affine covariant approach (earlier called affine invariant) advocated by Deuflhard and
Heindl [6] or, in the multilevel context of PDEs, by Deuflhard and Potra [8], and (II) the
affine contravariant approach due to Hohmann [14], who had worked out an adaptive multilevel
collocation method for general nonlinear ODE boundary value problems. An affine conjugate
Newton–Mysovskikh theorem for the exact Newton method in Hilbert spaces is given, wherein
the term “exact” indicates that we do not take any discretization errors into account. In Section
3.1 this local convergence theorem is extended to inexact Newton methods, where the inner
iteration is only approximately solved. For fixed finite dimension, an affine conjugate convergence
analysis and, on this basis, an implementation of a Newton–PCG algorithm are given so that
quadratic convergence of the outer iteration is guaranteed. For infinite dimensional problems,
any Galerkin method such as FEM for linear elliptic problems may stand for the inner iteration.
A careful study of the information gain per computational effort (Section 3.2) shows that the
quadratic convergence mode of the Newton–Galerkin algorithms agrees with the fixed finite
dimensional case, whereas a special linear convergence mode of the algorithm nicely goes with
adaptive multilevel FEM. Finally, in Section 4, the obtained theoretical results are illustrated by
numerical experiments with a NEWTON–KASKADE code.

2 An affine conjugate Newton–Mysovskikh theorem

Consider the minimization problem
f(x) = min ,

wherein f : D ⊂ H → R is assumed to be a strictly convex C2− functional defined in a convex
neighborhood D of the minimum point x∗. Then finding the minimum point is equivalent to
finding the solution point of the nonlinear elliptic problem

F (x) = grad f(x) = f ′(x)∗ = 0 , x ∈ D . (2.1)

For such a gradient mapping F the Frechet–derivative F ′(x) = f ′′(x) is selfadjoint; for strictly
convex f we even have that F ′ is a strictly positive definite operator so that F ′(x)1/2 can be
defined. As for the involved Hilbert space H, let it be endowed with an inner product 〈·, ·〉 that
induces a norm ‖ · ‖. In addition, we will be interested in local energy products defined for each
x ∈ D to be symmetric bilinear forms of the kind 〈·, F ′(x)·〉. Since F ′(x), x ∈ D is positive
definite, these energy products also induce local energy norms of the kind ‖F ′(x)1/2 · ‖. The
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ordinary Newton method for the mapping F has the form

F ′(xk)Δxk = −F (xk) xk+1 = xk + Δxk. (2.2)

In finite dimensional problems, this is a symmetric positive definite linear system, which can be
solved directly, as long as the size of the system is moderate; it will have to be solved iteratively,
whenever the problem is sufficiently large scale, which then implies that inner iteration errors
have to be regarded as well. In infinite dimensional problems, discretization errors must be
additionally taken into account. The latter two cases will be treated in the subsequent Section
3, whereas here we first analyze the exact Newton method in the absence of any approximation
errors.

Before starting, however, we want to study the associated affine invariance property. For that
purpose, let B denote an arbitrary bounded linear bijective operator that transforms H onto some
K. Then we arrive at the transformed convex minimization problem

g(y) = f(By) = min , x = By ,

the transformed gradient mapping

G(y) = BTF (By) = 0 ,

and the transformed Fréchet–derivative

G′(y) = BTF ′(x)B , x = By .

The derivative transformation is conjugate, which motivates the name affine conjugacy for this
special affine invariance class. It is clear that all G′(·) are selfadjoint positive definite operators.
Newton’s method applied to the transformed gradient mapping reads

G′(yk)Δyk = −G(yk) ⇐⇒ BTF ′(xk)BΔyk = −BTF (xk) ,

which shows that Δxk = BΔyk, i.e. the iterates transform exactly as the whole domain space of
the mapping F , once the initial guess is also transformed accordingly. It is therefore only natural
to require affine conjugacy throughout any theoretical convergence analysis of the ordinary New-
ton method. Such convergence theorems should then only use theoretical quantities like iterative
functional values f(xk) or local energy products of quantities in domain space such as iterative
corrections Δxk and errors xk − x∗. As a first step, a Newton–Mysovskikh type theorem, which
meets this strict affine conjugacy requirement, is given.

Theorem 2.1 Let f : D → R be a strictly convex C2–functional to be minimized over some open
and convex domain D ⊂ H. Let F (x) = f ′(x)∗ and F ′(x) = f ′′(x), which is then selfadjoint
positive definite. In the notation just introduced in this section, assume the following affine
conjugate Lipschitz condition:∥∥F ′(z)−1/2

(
F ′(y) − F ′(x)

)
(y − x)

∥∥ ≤ ω‖F ′(x)1/2(y − x)‖2 (2.3)

for collinear x, y, z ∈ D with some 0 ≤ ω < ∞. For well-defined iterates xk ∈ D, let εk :=
‖F ′(xk)1/2Δxk‖2 and hk := ω‖F ′(xk)1/2Δxk‖. For the initial guess x0 assume that

h0 := ω‖F ′(x0)1/2Δx0‖ < 2 (2.4)

and that the level set L0 := {x ∈ D | f(x) ≤ f(x0)} is compact. Then the ordinary Newton
iterates remain in L0 and converge to the minimum point x∗ at a rate estimated in terms of local
energy norms by

‖F ′(xk+1)1/2Δxk+1‖ ≤ ω

2
‖F ′(xk)1/2Δxk‖2 ⇐⇒ hk+1 ≤ 1

2
h2
k (2.5)

or in terms of the functional by

−1

6
hkεk ≤ f(xk) − f(xk+1) − 1

2
εk ≤ 1

6
hkεk. (2.6)

The initial distance to the minimum can be bounded as

f(x0) − f(x∗) ≤ 5

6

ε0
1 − h0/2

. (2.7)
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Proof. For the purpose of repeated induction, let Lk denote the level set defined in analogy
to L0 and let Lk ⊂ D. First, in order to show that xk+1 ∈ Lk, we start from the identity
(λ ∈ [0, 1])

f(xk + λΔxk) − f(xk) +

(
λ− λ2

2

)
‖F ′(xk)1/2Δxk‖2

=

λ∫
s=0

s

1∫
t=0

〈
Δxk,

(
F ′(xk + stΔxk) − F ′(xk)

)
Δxk

〉
dtds.

(*)

By means of the Cauchy–Schwarz inequality and of the Lipschitz condition (2.3) with x = z = xk,
y = xk + stΔxk, the above inner product can be bounded as

〈Δxk , · 〉 ≤ |〈F ′(xk)1/2Δxk , F ′(xk)−1/2· 〉|

≤ ‖F ′(xk)1/2Δxk‖ · ωst‖F ′(xk)1/2Δxk‖2 = sthkεk

For the purpose of repeated induction, let hk < 2, which then implies that

f(xk + λΔxk) ≤ f(xk) +

(
λ3

3
+

λ2

2
− λ

)
εk ≤ f(xk) − 1

6
εk < f(xk) for λ ∈ [0, 1] . (2.8)

This is the left hand side of (2.6). Therefore, the assumption xk + λΔxk /∈ Lk would lead to a
contradiction for all λ ∈ [0, 1]. Hence, xk+1 ∈ Lk ⊂ D. By repeated induction and D compact,
the iterates are then seen to converge to x∗. (Note that x∗ is anyway unique in D under the
assumptions made.) Application of the Lipschitz condition (2.3) for z = xk+1, y = xk + tΔxk,
x = xk, then confirms the quadratic convergence result (2.5), which requires the assumption (2.4)
to assure that hk+1 < hk.

In order to obtain the right hand side of (2.6), we revisit the identity (*) again for λ = 1, but
this time apply the Cauchy–Schwarz inequality in the other direction to obtain:

0 ≤ f(xk) − f(xk+1) ≤
(

1

2
+

1

6
hk

)
‖F ′(xk)1/2Δxk‖2 <

5

6
εk .

Summing over all k = 0, 1, . . . we get

0 ≤ ω2
(
f(x0) − f(x∗)

)
≤

∞∑
k=0

(
1

2
h2
k +

1

6
h3
k

)
<

5

6

∞∑
k=0

h2
k .

Upon inserting the successive bounds

1

2
hk+1 ≤

(
1

2
hk

)2

≤ 1

2
hk < 1,

the right hand upper bound can be further treated to yield

ω2
(
f(x0) − f(x∗)

)
<

5

6

h2
0

1 − h0/2
,

which completes the proof.

We now study any possible consequences of the above local convergence theorem for actual
implementation. Let the computable quantity Θk be defined as

Θk =
hk+1

hk
=
(
εk+1

εk

)1/2

=
( 〈F (xk+1),Δxk+1〉

〈F (xk),Δxk〉

)1/2

.

As the main consequence of the above convergence theorem we have the condition

Θk ≤ 1

2
hk < 1 ,
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which leads to the monotonicity criterion

Θk < 1 .

In particular, whenever
Θ0 ≥ 1

then x0 is definitely not within the local convergence domain as stated by the theorem.

From (2.6) we may alternatively terminate the iteration as divergent whenever

f(xk+1) − f(xk) > − εk
6

.

Convergence may be understood to occur whenever

εk ≤ ETOL

with ETOL a user prescribed local energy error tolerance or whenever

|f(xk+1) − f(xk)| ≤ ETOL/2

recalling that asymptotically

f(xk+1) − f(xk)
.
= −1

2
εk .

3 Inexact Newton–Galerkin methods

We keep the notation and assumptions of the preceding section, but now study inexact Newton
methods

F ′(xk) δxk = −F (xk) + rk , xk+1 = xk + δxk , (3.1)

wherein inexact Newton corrections δxk instead of exact Newton corrections Δxk arise, since the
above linear equation is only solved up to an inner residual rk. Among the inner iterations we
focus our attention on those, which satisfy the Galerkin condition

〈δxk, F ′(xk)(δxk − Δxk)〉 = 0 (3.2)

or, equivalently, the condition

‖F ′(xk)1/2(δxk − Δxk)‖2 + ‖F ′(xk)1/2δxk‖2 = ‖F ′(xk)1/2Δxk‖2. (3.3)

Examples of such inner iterations are:

• for H = Rn and 〈u, v〉 = uT v the Euclidean inner product any preconditioned conjugate
gradient (PCG) method,

• for H = H1 and 〈u, v〉 the L2−product any finite element method (FEM).

In any case, affine conjugacy will play a central role both in our theoretical characterization (as
opposed to the analysis in [15]) and in the algorithmic realization to be suggested.

3.1 Theoretical convergence results

First, we want to extend the preceding Theorem 2.1 in an affine conjugate way from the exact to
the inexact Newton iteration. Special care will be taken in designing an appropriate theoretical
accuracy matching between inner and outer iteration, which will then, second, be discussed and
worked out as an algorithm in the subsequent Section 3.2.
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Theorem 3.1 Keep the notation hk := ω‖F ′(xk)1/2δxk‖, εk := ‖F ′(xk)1/2δxk‖2 and the as-
sumptions of the preceding Theorem 2.1, but slightly extend (2.3) to the more general affine
conjugate Lipschitz condition:∥∥F ′(z)−1/2

(
F ′(y) − F ′(x)

)
v
∥∥ ≤ ω

∥∥F ′(x)1/2(y − x)
∥∥ · ‖F ′(x)1/2v‖

for collinear x, y, z ∈ D and some 0 ≤ ω ≤ ∞. Consider an inexact Newton–Galerkin iteration
(3.1) satisfying (3.2). At any well–defined iterate xk, let

‖F ′(xk)1/2(δxk − Δxk)‖
‖F ′(xk)1/2δxk‖ ≤ δk < 1 . (3.4)

For a given initial guess x0 ∈ D assume that the level set L0 := {x ∈ D | f(x) ≤ f(x0)} is
compact. Then the following results hold:

I. If the initial iterate x0 satisfies
h0 < 2 (3.5)

and if, for some prescribed Θ varying in the range
h0

2
< Θ < 1, the inner iteration is controlled

such that

δk ≤ 2Θ − hk

hk +
√

4 + h2
k

, (3.6)

then the inexact Newton iterates xk remain in L0 and converge at least linearly to the minimum
point x∗ ∈ L0 such that

‖F ′(xk+1)1/2δxk+1‖ ≤ Θ‖F ′(xk)1/2δxk‖ ⇐⇒ hk+1 ≤ Θ hk . (3.7)

II. If, for some ρ > 0, the initial iterate x0 satisfies

h0 <
2

1 + ρ
(3.8)

and the inner iteration is controlled such that

δk ≤ ρhk

hk +
√

4 + h2
k

, (3.9)

then the inexact Newton iterates xk remain in L0 and converge quadratically to the minimum
point x∗ ∈ L0 such that

‖F ′(xk+1)1/2δxk+1‖ ≤ (1 + ρ)
ω

2
‖F ′(xk)1/2δx‖2 ⇐⇒ hk+1 ≤ 1 + ρ

2
h2
k . (3.10)

III. The convergence in terms of the functional can be estimated by

−1

6
hkεk ≤ f(xk) − f(xk+1) − 1

2
εk ≤ 1

6
hkεk . (3.11)

Proof We adopt the notation of the proof of the preceding Theorem 2.1. For the purpose of
repeated induction, let xk ∈ Lk ⊂ D. As before, we start from the identity

f(xk+1) − f(xk) +
1

2
εk

=
1∫

s=0

s
1∫

t=0

〈
δxk ,

(
F ′(xk + stδxk) − F ′(xk)

)
δxk

〉
dtds + 〈δxk , rk〉 .

The second term vanishes due to (3.2), since

〈δxk, rk〉 = 〈δxk, F ′(xk)(δxk − Δxk)〉 = 0 .
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Upon treating the integrand within the first term by the Cauchy–Schwarz inequality and the
Lipschitz condition with z = x = xk, y − x = stδxk in both directions, the result (3.11) is
confirmed – just as in the proof for the exact Newton method. This result, however, is not yet
applicable for any convergence statement, since the behavior of the Kantorovitch type quantities
hk still needs to be studied. For this purpose, we start by observing that (3.3) implies

‖F ′(xk+1)1/2δxk+1‖ ≤ ‖F ′(xk+1)1/2Δxk+1‖.
We therefore estimate the local energy norms as

‖F ′(xk+1)1/2δxk+1‖ ≤
∥∥∥∥F ′(xk+1)−1/2

(
1∫

t=0

(
F ′(xk + tdxk) − F ′(xk)

)
δxkdt + rk

)∥∥∥∥
≤ ω

2

∥∥F ′(xk)1/2δxk‖2 + ‖F ′(xk+1)−1/2rk‖ .

For further treatment of the second term, we define

z := F ′(xk)1/2(δxk − Δxk) , w := F ′(xk+1)−1/2F ′(xk)1/2z

and estimate

‖w‖2 =
〈
z , F ′(xk)1/2F ′(xk+1)−1F ′(xk)1/2z

〉
≤ ‖z‖2 +

∣∣〈w , F ′(xk+1)−1/2
(
F ′(xk+1) − F ′(xk)

)
F ′(xk)−1/2z

〉∣∣
≤ ‖z‖2 + hk‖w‖ · ‖z‖ .

This quadratic inequality can be solved to yield

‖w‖ ≤ 1

2

(
hk +

√
4 + h2

k

)
‖z‖ .

Collecting all estimates then confirms the linear convergence result

Θk :=
‖F (xk+1)1/2δxk+1‖
‖F ′(xk)1/2δxk‖ ≤ 1

2

(
hk +

(
hk +

√
4 + h2

k

)
δk

)
. (3.12)

If we assume (3.6), then the condition (3.5) is necessary to obtain

Θk ≤ Θ < 1,

which is just the result (3.7). Consequently, by an argument elaborated in detail in the proof of
Theorem 2.1, we have xk+1 ∈ Lk ⊂ D. With D compact and repeated induction using the upper
bound from (3.11), we arrive at the statement that the iterates xk remain in L0 and converge to
x∗.

As for quadratic convergence, we just impose in (3.12) that the second right hand term, which
represents the perturbation by the inner iteration, should be somehow matched with the first
term, which represents the quadratic convergence pattern of the exact Newton iteration. This
is condition (3.9), which is constructed such that the convergence relations (3.10) are obtained.
Finally, in order to assure that hk+1 < hk, we need the initial assumption (3.8), which completes
the proof.

In passing, we note that the above result (3.11) permits the same estimate of the functional
distance to the minimum f(x∗) as in Theorem 2.1.

Remark. Without proof we state that similar, but less favorable results can be obtained, when
the inner iteration is not required to satisfy a Galerkin condition. In particular, equation (3.12)
must then be replaced by

Θk ≤ 1

2(1 − δk+1)

(
hk +

(
hk +

√
4 + h2

k

)
δk

)
,

which additionally imposes a condition such as

δk+1 ≤ δk < 1
2

to allow for Θk < 1. Such conditions will play a role e.g. when Gauss–Seidel or Gauss-Jacobi
iterations are selected as inner iterations.
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3.2 Accuracy matching

We now want to exploit the above local convergence theorem for actual computation. For the
outer iteration, the algorithmic techniques are essentially the same as in the exact Newton method
– see the end of Section 2. As a slight generalization of the situation of Theorem 3.1 we set certain
default parameters Θk < 1 and require the inexact monotonicity criterion

Θk =
(
εk+1

εk

)1/2

=
( 〈F (xk+1) , δxk+1〉

〈F (xk) , δxk〉

)1/2

≤ Θk < 1 . (3.13)

We will regard the outer iteration as divergent, whenever Θk > Θk holds. Note that Θk mono-
tonely increases in the course of the inner iteration for any Galerkin type method such as the
Newton-PCG or the Newton-FEM. It is therefore sufficient to concentrate here on the question
of how to match inner and outer iterations.

In view of actual computation, a key property of any inexact Newton–Galerkin method shows up
in the estimate (3.11), which does not contain any pollution effect from the inner iteration, but
only depends on the unknown Kantorovitch quantities hk. That is why this relation is perfectly
suited for the construction of a cheap computational estimate

[hk] :=
6

εk
|f(xk+1) − f(xk) + 1

2
εk| ≤ hk, (3.14)

which is a guaranteed lower bound of the associated quantity within the brackets [·]. (Note that
this nice feature strictly depends on the Galerkin property of the inner iteration – as can be seen
from the proof above.) For k = 0 and given x0, we cannot but choose any (sufficiently small)
δ0 < Θ0 ad hoc and run the inner iteration until the threshold condition (3.4) is passed. Then we
may evaluate [h0] from (3.14). Whenever [h0] ≥ 2Θ0, we terminate the iteration as divergent in
accordance with (3.5) and (3.8). Otherwise, we continue with either the linear or the quadratic
convergence mode indicated in Theorem 3.1.

Linear convergence mode. For k ≥ 0, we now assume that [hk] < 2Θk < 2. As for the
termination of the inner iteration, we would like to assure the condition

δk ≤ 2Θk − hk

hk +
√

4 + h2
k

The main feature of this upper bound is that δk → Θk → 1 is permitted when k → ∞. In
words: the closer the iterates come to the solution point, the less work is necessary within the
inner iteration to assure linear convergence of the outer iteration. Since the above upper bound
is unavailable, we will replace it by the computationally available estimate

[δk] :=
2Θk − [hk]

[hk] +
√

4 + [hk]2
≥ 2Θk − hk

hk +
√

4 + h2
k

. (3.15)

Obviously, this estimate may be “too large”, since the above right hand side is a monotone
decrasing function of hk and [hk] ≤ hk. Fortunately, as described above, the difference between
computational estimate and theoretical quantity can be ignored asymptotically. For k = 0, we
evaluate (3.15) with [h0] inserted from (3.14). For k > 0, we suggest to evaluate (3.15) with
[hk] := Θk−1[hk−1] and [hk−1] from (3.14). In any case, we require the monotonicity (3.13) and
run the inner iteration at each step k until either the actual value of δk obtained in the course of
the inner iteration – see (3.4) – is less than the associated estimate above or divergence occurs
with Θk > Θk. Ideas for a choice of the parameters Θk may come from the context of the
problem to be solved. If nothing specific is known, a common value will be set throughout. On
the other hand, with these parameters at our disposal, not only linear convergence is covered
by this algorithmic mode – so that the clumsy name at least linear convergence mode would be
appropriate.
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Quadratic convergence mode. For k ≥ 0, we again assume that [hk] < 2. As for the
termination of the inner iteration, we now want to obey the condition

δk ≤ ρ
hk

hk +
√

4 + h2
k

, ρ > 0 .

In contrast to the linear convergence mode, the main feature of the upper bound here is that
δk → 0 is forced when k → ∞. In words: the closer the iterates come to the solution point,
the more work needs to be done in the inner iteration to assure quadratic convergence of the
outer iteration. As before, we will replace the unavailable upper bound by the computationally
available estimate

[δk] :=
ρ [hk]

[hk] +
√

4 + [hk]2
. (3.16)

in terms of computational estimates [hk]. Since the above right hand side is a monotone increasing
function of [hk], the relation [hk] ≤ hk here implies that

[δk] ≤ ρ
hk

hk +
√

4 + h2
k

.

This means that we are really able to assure the above theoretical condition by our computational
strategy! As for the computational estimates to be inserted above, we may well use formula (3.14)
based on functional evaluations. In this mode, however, we have a further simple possibility to
construct cheap computational estimates. Recalling (3.10), we may also define

[hk] :=
2Θk

1 + ρ
≤ hk. (3.17)

If we compute both estimates, then the maximum of the two lower bounds will be preferable. For
k > 0, the “more advanced” estimate [hk] := Θk−1[hk−1] will be preferably inserted into formula
(3.16). For k = 0, the two estimates [h0] may be formally identified to determine the matching
parameter ρ via

1 + ρ =
Θ0ε0

3|f(x1) − f(x0) + 1
2
ε0|

Whenever [h0] is “too close” to 2, then the matching factor ρ will be “too small”, which involves
“too much” work in the inner iteration. In this context we may note that reversing formula
(3.17) leads to

Θk =
1 + ρ

2
[hk].

If we set the default parameters Θk in the linear convergence mode such that the same relation as
above holds for the next iterative step (inserting the “more advanced” estimate), then we would
end up with

Θk+1 =
1 + ρ

2
[hk+1] = Θ2

k.

With this (slightly strict) specification and exclusive use of the functional based estimates (3.14)
we are able to realize the quadratic convergence mode within the framework of the “at least
linear” convergence mode without considering the safety factor ρ at all. Still, the problem with
“too small” ρ-values is hidden implicitly. That is why the relaxed specification

Θk+1 = 2Θ2
k, Θ0 ≈ 1

2
(3.18)

is recommended instead. Remember, however, that the choice of Θ0 (just as the choice of ρ)
governs the size of the accepted local convergence domain – as can be seen in Theorem 3.1,
inequality (3.8).
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Computational complexity. After the above derivation of the inexact Newton–Galerkin
method in the linear and the quadratic mode, we are left with the question of when to use which
of the two modes. In a first step, we might just look at the iterative contraction factors Θk and
the associated information gain at iteration step k:

Ik = log
1

Θk
= | log Θk|

Maximization of Ik will directly lead us to the quadratic convergence mode only. However, as
will be worked out now, the amount of computational work Ak involved to to realize the above
information gain must be taken into account as well. We therefore will rather have to look at
the information gain per unit work and solve the problem

ik =
Ik
Ak

=
1

Ak
log

1

Θk
= max . (3.19)

In what follows, we will give computational complexity models for two typical Newton–Galerkin
methods to exmplify the procedure how to design an efficient mode of the algorithm.

Finite dimensional problems: Newton – PCG. Consider a nonlinear elliptic problem
with fixed finite dimension such as a discretized nonlinear elliptic PDE, which has been treated
by a grid generator before starting the solution process. Hence, we have the “simple” case
H = RN , which might not be too simple, in fact, when the fixed dimension N is large. For the
inner iteration we assume that some preconditioned conjugate gradient (PCG) method has been
selected without further specification of the preconditioner. It may be worth noting that this
Newton–PCG may also be interpreted as some nonlinear cg method (compare Glowinski [10])
with rare Jacobian updates. At iteration step k, the computational work involved is

• evaluation of the Jacobian matrix F ′(xk), which is typically sparse in the case of a dis-
cretized PDE so that a computational amount ∼ N needs to be counted

• work per PCG iteration: O(N),

number of PCG iterations ∼
√
κ log

1

δk
with κ the condition number of the preconditioned matrix.

Summing up, the total amount of work can be roughly estimated as

Ak ∼
(
c1 + c2 log

1

δk

)
N ∼ const + log

1

δk
.

From this, we obtain the information gain per unit work as

ik ∼

∣∣∣log( 1
2

(
hk + δk(hk +

√
4 + h2

k )
))∣∣∣

const + | log δk|
.

Asymptotically, for hk → 0, we obtain the simplification

ik ∼ | log(δk)|
const + | log δk|

.

Since const > 0, the right hand side is a monotone decreasing function of δk, which implies
that the minimum among any reasonable δk will maximize ik. Therefore we are clearly led to
the quadratic convergence mode of the algorithm, when the iterates are sufficiently close to the
solution point – with the tacit hope that the asymptotic analysis carries over to the whole local
convergence domain (a hope, which depends on the above constant).

Remark. It may be worth noting that the above analysis would lead to the same decision, if
PCG were replaced by some linear multigrid method.
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Infinite dimensional problems: adaptive Newton–FEM. Consider a nonlinear el-
liptic PDE problem in finite element formulation, which is a strictly convex minimization problem
over some infinite dimensional space H. For the inner iteration we assume an adaptive multilevel
FEM such as KASKADE [2, 3, 7]. Let d denote the underlying spatial dimension. At iteration
step k on discretization level j let N j

k be the number of nodes and εjk the local energy. With
l = lk we mean that discretization level, at which we achieve the prescribed tolerance δk. The
important difference to the fixed dimension case now is that within an adaptive multilevel method
the approximating dimension of the problem depends on the required accuracy. In the linear el-
liptic case we have the rough relation for the relative discretization error (on energy equilibrated
meshes)

(
N0

k

N l
k

)2

d ∼ ε∞k − εik
ε∞k

≤ δ2
k

With a suitable preconditioner such as BPX [16, 5] the number of PCG iterations inside KASKADE
is essentially independent of the number of nodes. Therefore the amount of work involved within
one linear FEM call can be estimated as

Ak ∼ N i
k ∼ N0

k

δdk
.

From this we end up with the following estimate for the information gain per unit work

ik ∼ δdk

∣∣∣log( 1
2

(
hk + δk(hk +

√
4 + h2

k)
))∣∣∣ .

In the asymptotic case hk → 0 we arrive at

ik ∼ δdk log
1

δk
.

This simple function has its maximum at

δopt = e−1/d.

Even if we have to take the above rough complexity model cum grano salis, the message of this
analysis is nevertheless clear: in the adaptive multilevel FEM, the linear convergence mode of the
associated Newton–FEM is preferable. As a rough orientation, the above model suggests to set

the default parameters Θk = Θ
d

with(
Θ

1
,Θ

2
,Θ

3
)
>
(
e−1, e−1/2, e−1/3

)
≈ (0.37, 0.61, 0.72). (3.20)

On the other hand, the adaptive refinement process anyway leads to natural values of the con-
traction factors Θk depending on the order of the applied finite elements: for linear FE we expect
Θk ≈ 0.5. Upon taking possible variations into account that may come from the discretization er-
ror estimates, we have chosen the standard value Θ = 0.7 throughout the numerical experiments
presented in the next section.

4 Numerical experiments with NEWTON–KASKADE

In this section, we want to demonstrate properties of the above derived adaptive Newton–
multilevel FEM. For the inner iteration we pick the linear elliptic FEM code KASKADE [2]
with linear finite elements specified throughout. Of course, any other adaptive linear multigrid
method could equally well be used. As an illustrative example, we select

f(u) =

∫
Ω

(
1 + |∇u|2

)p − gu dx , p ≥ 1

2
, x ∈ Ω ⊂ Rd .
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This gives rise to the weak formulations

〈
F (u), v

〉
=

1∫
0

(
2p(1 + |∇u|2)p−1〈∇u,∇v〉 − gv

)
dx ,

〈
w,F ′(u)v

〉
=

1∫
0

2p
(
2(p− 1)(1 + |∇u|2)p−2〈∇w,∇u〉〈∇u,∇v〉 + (1 + |∇u|2)p−1〈∇w,∇v〉

)
dx

Obviously, with 〈·, ·〉 the Euclidean inner product in Rd, the term
〈
v, F ′(u)v

〉
is strictly positive

so that our theoretical assumptions hold. As for the computational cost, the evaluation of f is
cheap, the evaluation of F is expensive and comparable to the evaluation of F ′.

Linear versus quadratic convergence mode (1D). We set Ω = [0, 1], p = 2, g ≡ 16
and Dirichlet boundary conditions. For a starting guess u0 we choose the piecewise linear finite
element function on three nodes with u0(0) = 0, u0(0.5) = 0.5 and u0(1) = 0. In Table 1, com-
putational results for the quadratic convergence mode are given, which nicely show the quadratic
convergence performance of our computational strategy (3.18). Associated graphical information
is represented in Fig. 1. In Table 2, comparative results for the linear convergence mode are

k ‖F ′(uk)1/2δuk‖ Θk # nodes
0 1.23491 0.394465 5
1 0.487128 0.264594 33
2 0.128891 0.0791279 513
3 0.0101989 ≤ 0.00626 32769
4 ≤ 6.38e-05 > 131073

Table 1: Quadratic convergence history (d = 1). To be compared with Table 2.

k ‖F ′(uk)1/2δuk‖ Θk # nodes
0 1.23491 0.367242 5
1 0.453511 0.43875 9
2 0.198978 0.452755 17
3 0.0900881 0.491008 33
4 0.044234 0.499634 65
5 0.0221008 0.499936 129

Table 2: Linear convergence history (d = 1). To be compared with Table 1.

k ‖F ′(uk)1/2δuk‖ Θk # nodes
0 0.440166 0.327883 205
1 0.144323 0.401937 684
2 0.0580088 0.506047 2242
3 0.0293552 0.467398 9106
4 0.0137205 ≤ 0.60 35716

Table 3: Linear convergence history (d = 2).

listed. The better efficiency compared with the quadratic mode is striking – in agreement with
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our computational complexity analysis (Section 3.2). Graphical information is represented in
Fig. 2. The comparison with Fig. 1 shows that the iterates u2 and u3 respectively are quite
close, whereas the corrections δu2 and δu3 (on a smaller scale than u2, u3, of course) differ visi-
bly. In both modes of NEWTON–KASKADE nearly uniform grids appeared, reflecting the overall
smoothness of the solution.

Figure 1: u0, δu0 and u2, δu2 obtained in the quadratic convergence mode (d = 1). To
be compared with Fig. 2. (δu2–scale reduction ∼ 1 : 25)

Figure 2: u3, δu3 obtained in the linear convergence mode (d = 1). To be compared with
Fig. 1. (δu3–scale reduction ∼ 1 : 100)
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Linear convergence mode (2D). In order to give some more insight into NEWTON–
KASKADE, we also solved the above test problem for a not too simple Ω ⊂ R2 with p = 0.7,
g ≡ 0, and a mixture of Dirichlet and Neumann boundary conditions. In Fig. 3 (top) the
coarse mesh obtained after some initialization step is documented together with u0. Further
iterates in Fig. 3 and the convergence history in Table 3 are given to illustrate the performance
of NEWTON–KASKADE in the (standard) linear convergence mode.

Figure 3: u0, u2, u3 obtained in the linear convergence mode (d = 2). Dirichlet boundary
conditions: black lines, Neumann boundary conditions: grey lines. Refinement levels
j = 1, 10, 14.

Conclusion

In this paper, local inexact Newton–Galerkin algorithms have been designed on an affine conju-
gate theoretical basis. The algorithms permit a firm grip on both the inner and outer iterations.
Within an adaptive multilevel setting, the computational costs are dominated by the last iterate,
which requires the finest grid — a feature of this algorithm shared with adaptive nested nonlinear
multigrid methods.
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