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Abstract

This paper investigates the solution of the linear programming (LP) relaxation of the multicommodity
flow formulation of the multiple-depot vehicle scheduling problems arising in public mass transit. We
develop a column generation technique that makes it possible to solve the huge linear programs that
come up there. The technique, which we call Lagrangean pricing, is based on two different Lagrangean
relaxations.

We describe in detail the basic ingredients of our approach and give computational results for large-
scale test data (with up to 70 million variables) from three German public transportation companies.
Because of these results, we propose Lagrangean pricing as one of the basic ingredients of an effective
method to solve multiple-depot vehicle scheduling problems to proven optimality.

Mathematics Subject Classification (1991): 90B06, 90B10, 90C05, 90C06.

1 Introduction

The multiple-depot vehicle scheduling problem comes up as one step of a hierarchical planning
process in public transit consisting of line planning, timetabling, vehicle scheduling, and crew
scheduling and rostering. Each of these individual subproblems is itself hard and of large scale.
The economic significance of these problems requires their solution to optimality. For a survey
on optimization in public transit see, e. g., Daduna, Branco, and Paixao [1995] and the references
therein.

This paper deals with solving large-scale multiple-depot vehicle scheduling problems in public
transit (MDVSP). The literature on this topic discusses a large number of possible approaches,
both heuristic and exact, see, e.g., Daduna and Paixao [1995] for an overview.

The most successful solution approaches are based on network flow models and their integer
programming analogues. In the literature, there are two basic mathematical models of this
type for the MDVSP. First, a direct arc oriented model leading to a multicommodity flow
problem and, second, a path oriented model leading to a set partitioning problem. The latter
can also be derived by a Dantzig-Wolfe decomposition applied to the first. Both approaches
lead to large-scale integer programs, and column generation techniques are required to solve
their LP relaxations. For the direct methods, column generation can be seen as an implicit
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pricing technique, see Schrijver [1989]: one works on restricted subsets of active arcs, which
are generated and eliminated in a dynamic process. For the Dantzig-Wolfe decomposition,
column generation usually leads to pricing problems in the form of constraint shortest path
problems. Many researchers automatically associate the term “column generation” with the
solution process used in a Dantzig-Wolfe decomposition, e. g., see Soumis [1997]. To distinguish
this use of the term “column generation” from those as a general LP pricing technique in the
sense of Schrijver, Dantzig-Wolfe column generation is also called delayed column generation as
proposed in Chvétal [1980]. To avoid misunderstandings, we will use in this paper the term
“column generation” as a general LP pricing technique in the sense of Schrijver.

Dantzig- Wolfe decomposition models are needed for problems that involve path constraints.
They apply not only to vehicle scheduling problems, but also to applications of similar flavour,
e.g., to crew and airline scheduling. For a survey on set partitioning approaches to such prob-
lems, we refer the reader to Desrosiers, Dumas, Solomon, and Soumis [1995], Barnhart, Hane,
and Vance [1996], Barnhart, Johnson, Nemhauser, and Vance [1997], and Soumis [1997].

Direct approaches to the multicommodity flow formulation can be used if all side constraints
can be formulated solely in terms of the arcs of the network. This is the case for the MDVSP
considered here. Techniques of this kind have been discussed in various articles. For instance,
Carpaneto, Dell’Amico, Fischetti, and Toth [1989] describe a certain integer LP (ILP) formula-
tion based on an assignment formulation with additional path oriented flow conservation con-
straints. They apply a so-called “additive lower bounding” procedure to obtain a lower bound
for their ILP formulation. Ribeiro and Soumis [1994] show that this additive lower bounding
is a special case of Lagrangean relaxation and its corresponding subgradient method. Forbes,
Holt, and Watts [1994] solve the integer linear programming formulation of the multicommodity
flow model by branch-and-bound. The sizes of the problems that have been solved to optimality
in these publications are relatively small involving up to 600 timetabled trips and 3 depots.

We investigate in this paper the solution of the LP relaxation of the multicommodity flow
formulation by means of column generation techniques. The standard column generation ap-
proach in the literature is based on generating and eliminating columns based on the reduced
cost criterion. We propose here a new technique that is based on Lagrangean relaxations of
the multicommodity flow model. The method, which we call Lagrangean pricing, activates the
arcs of complete paths and not only individual arcs. In particular, it is not only possible, but
essential that columns with positive reduced costs are generated. Lagrangean pricing has been
developed independently at the same time by Fischetti and Toth [1996] and Fischetti and Vigo
[1996] for solving the Asymmetric Traveling Salesman Problem and the Resource-Constrained
Arborescence Problem, respectively.

Solving an MDVSP instance to optimality using LP based approaches requires to solve the
LP relaxation to optimality. With Lagrangean pricing, it becomes possible to solve the huge
linear programs that come up here. Therefore, we propose Lagrangean pricing as one of the
basic ingredients of an effective method to solve this kind of problems to proven optimality, see
also Lobel [1997] for a comprehensive discussion of this method.

Our computational investigations were performed on large-scale data from the German public
transportation companies Berliner Verkehrsbetriebe (BVG), Hamburger Hochbahn AG, and
Verkehrsbetriebe Hamburg-Holstein AG. These instances involve problems with up to 49 depots,
about 25 thousand timetabled trips, and about 70 million unloaded trips. The results show that
our method is capable of solving problems of this size — orders of magnitude larger than the
instances successfully solved with other approaches, as far as we know.



In the recent years, considerable research has gone into the design of pseudo-polynomial
time approximation algorithms for multicommodity flow feasibility problems, e. g., see Leighton,
Makedon, Plotkin, Stein, Tardos, and Tragoudas [1991], Plotkin, Shmoys, and Tardos [1991],
and Klein, Plotkin, Stein, and Tardos [1994]. We have investigated these approaches and did
not see how they could substantially help solving the optimization problems that we investigate
here. In particular, the results reported in Leong, Shor, and Stein [1993] and Borger, Kang, and
Klein [1993] on rather small problem instances do not look encouraging from a computational
point of view.

In the following, we assume the reader to be familiar with integer linear programming and
network flows, e. g., see Schrijver [1989] and Ahuja, Magnanti, and Orlin [1993].

2 The Multiple-Depot Vehicle Scheduling Problem

The following section refers to some basic terminology for MDVSPs that we quickly resume here.
For more details see Lobel [1997] or Grotschel, Lobel, and Volker [1997].

The fleet of a public transportation company is subdivided into depots. The set of depots is
denoted by D. With each depot d € D we associate a start point d* and an end point d~ where
its vehicles start and terminate their daily duty. Let DT := {d*|d € D} and D~ :={d | d € D}.
The number of available vehicles, the depot capacity, of each depot d is denoted by 4. A given
timetable defines a set of timetabled trips, denoted by 7, that are used to carry passengers.
We associate with each ¢t € T a first stop ¢, a last stop ¢t 1, a departure time s;, an arrival time e;,
and a depot-group G(t) C D. Each G(t) includes those depots whose vehicles are allowed and
able to service trip t. Let T~ :={t"|teT}HL Tt:={t"|te T} and Ty:={t € T| d € G(¢)}.

There are further types of trips, all running without passengers: A pull-out trip connecting
some start point d* with some first stop ¢, a pull-in trip connecting some last stop ¢t* with
some end point d~, and a dead-head trip connecting some last stop t™ with some succeeding
first stop ¢~ . For notational simplicity, we call all these trips unloaded trips. Let A; denote
the duration of the dead-head trip from ¢* to ¢~ including some layover time. Whenever
et + Ay < sy, we call the corresponding dead-head trip compatible.

A vehicle schedule or (duty) is a chain of trips such that the first trip is a pull-out trip, the
last trip is a pull-in trip, and the trips and unloaded trips occur alternately. A vehicle schedule
is called valid if all its trips belong to the same depot.

We denote the disjoint union by U. We introduce the following sets of trips for each depot
deD: AP = {(t~,t1)| t € Ta} and

Ag-trip = {(d+’ t_)’ (t+a d_)| t € 72} U U compatible dead-head {(p+1 q_)}

trips of depot d
connecting p with ¢

With each unloaded trip a € Ag’trip, we associate a weight ¢ € Q representing its operational
costs. In addition, we add to the weight of each pull-out trip a sufficiently large big M stand-
ing for the capital costs and being larger than the operational costs of any feasible solution.
The minimization of this “two-stage” objective function first minimizes the fleet size and, sub-
ordinate, the operational costs among all fleet minimal solutions. With this terminology, the
MDVSP is to find a weight minimal set of feasible vehicle schedules such that each timetabled
trip is covered by exactly one vehicle schedule.

The MDVSP can be stated as an integer multicommodity flow problem as follows. For each
depot d € D, let (d~,d") denote an additional backward arc. (on which depot capacities are



controlled) and let A, := Ag’trip U Ag’mp U{(d~,d")}. Let D = (V, A) be a digraph with node
set V:=DTUD UT UTT and arc set A :=|J epAq- Figure 1 gives an illustration of D for
a small example with D = {r,g}, T = {a,b,c,d,e}, Tr = {a,c,d}, and Tg = {a,b,c,e}.

Figure 1: Digraphs (V, A), (Vr, Ar), and (Vg, Ag).

We introduce an integer variable z¢ for each arc a € A4 and each depot d € D. z? denotes a
decision variable indicating whether a vehicle of depot d runs trip a or not, unless a denotes
the backward arc of some depot d. In this case, z¢ counts all employed vehicles of the depot
d. The variables z¢ are combined to vectors z¢ = (1%)4ca . € R4 d € D, and these are
combined into a vector z := (2%)gep € R?A. Given a node v € V, let 61 (v) denote all arcs
of A with tail v and, accordingly, 6 (v) denote all arcs with head v. For a given set A C A,
we define z%(A) := ZaeAnAd:vg and z(4) = Zdepxd(ﬁ). The (self-suggesting) integer linear
programming (ILP) formulation of the MDVSP reads:

(1a) minz Z cd zd

deD aeA;—trip

subject to

(1b) ZdEG(t)xt(it7 ,t+) = 1, V t e T,

(1c) 24 (0T () —2¢(6~(v)) = 0, YoeTau{dt,d} YdeD,
(le) ol < VteT VdeD

(1f) 2 > 0, VaecAg VdeD,

(1g) x integral.

Constraints (1b), the flow conditions, ensure that each timetabled trip is serviced exactly once.
Constraints (1c), the flow conservations, guarantee that the total flow value of each depot d
entering some node v € V also leaves it.



The ILP (1) includes many redundant constraints that can be eliminated by performing
some preprocessing steps as shown in Lobel [1997]. The main idea is to shrink both nodes ¢~
and tT to one node t, for all t € 7, and to shrink both nodes d~ and d* to one node d, for all
d € D. This corresponds to an elimination of each arc not belonging to some unloaded tripand
leads to the following equivalent ILP:

(2a) minz Z cd zd

subject to

(2b) (6T (th)) 1, VteT,

(2¢) —z(6 (¢7) = -1, VteT,

(2d) (0T (th) 246 (t7) = O, VteTy VdeD,
(2e) 24 (6T(dT)) < ka VdeD,

(2f) 2 > 0, VaeAY"™ vdenD,
(2g) z integral.

Note that equations (2c) are a linear combination of (2b) and (2d), but helpful for one of the
following relaxations.

Relaxations.

The natural relaxation of (2) is of course the LP relaxation. We also give two well known
Lagrangean relaxations, which are the basis of our new Lagrangean pricing. For notational
simplification, we use the same symbols for the dual variables of the LP relaxation and for the
multipliers of the Lagrangean relaxations.

The LP relaxation of (2) is simply

(3) min Z Z chg

 satisfying )
(2b), 2d), (2e), dED aeAs-mp
and (2 f)

Let v € R7, 7 := (7% € R74)4¢p, and 0 < v € RP denote the dual multipliers for (2b), (2d),
and (2e), respectively.

Let 7 := (7% € R7)4ep and 0 < 7 := (7%)agep € RP denote the Lagrangean multipliers according
to the flow conservations (2d) and the depot capacities (2e). Relaxing (2d) and (2e), we obtain
a Lagrangean dual LRy with respect to the flow conservations reading max.,>o Lics (7, y) with
inner minimization problem

@) Datrn)m min Y X ebaf - D at(et(6700) -6 (1)

= satisfying .
@b), (2¢), (21), 4€D gAY ™P teTq
and (2g)

_ ,),d (Fad _ md(5+(d+))))

The subscript “fcs” of L¢s and LRg. stands for Flow-ConServation. Note, for fixed arguments,
Li.s is a minimum-cost flow problem.



The second Lagrangean relaxation is based on the ILP (1). Let v := (v4)ier € R7 denote the
Lagrangean multipliers for to the flow conditions (1b). Relaxing (1b), we obtain a Lagrangean
dual LRgq4 with respect to the flow conditions reading max, Lgq(r) with inner minimization
problem

(5) Lieq(v) := min (Z Z chg — Zyt( Z x?t—,tﬂ — 1))
)

x satisfying

(te)-(1g)  dED geAy™P teT  deG(t

The subscript “fcd” of Li.q and LRgq stands for Flow-ConDition. Note that L¢.q decomposes
into a constant part ™1 and into |D| independently solvable minimum-cost flow problems.

3 Implementation Details

The instances of the MDVSP we encountered in practice have up to 70 million variables and
125 thousand equations. Ignoring the integrality stipulation, we obtain linear programs, which
are way out of reach for even the best LP codes currently available.

We will show in this section how the LP relaxation (3) can be solved to optimality using
Lagrangean pricing techniques. In particular, our implementation combines robust LP software,
a minimum-cost flow code, and parts of Lagrangean relaxations codes for the MDVSP. In our
case, we use the CPLEX Callable Library (CPLEX [1997]), the network simplex code MCF
(Lobel [1997al), and parts of the Lagrangean relaxation code presented in Kokott and Lobel
[1996].

In a first try, we have tried to apply a standard column generation and elimination technique
based on the reduced cost criterion, see Sect. 3.1. With such a standard approach, however, only
rather small instances have been solved successfully. Stalling in the objective value occurred for
larger instances. Within the column generation process, many new columns have been generated,
but none of them could help to improve the objective value. Moreover, almost all active columns
have reduced costs near to zero and, therefore, none of them could be eliminated resulting in
too large RLPs.

The new Lagrangean pricing techniques can help to improve the column generation pro-
cess. We will describe Lagrangean pricing in Sect. 3.2. The right composition of all employed
ingredients is given in Sect. 3.3.

3.1 Column Generation

The basic idea of a column generation is to provide only a relatively small subset of the columns,
which includes some optimal basis, and to ignore all the other ones. One starts with a subset of
columns that, in addition, includes at least some primal feasible basis. The reduced LP, defined
by this subset of columns, is called restricted LP (RLP). It is the task to solve a sequence of
RLPs until it is proved that the last RLP contains the columns of some basis, which is optimal
for the complete LP. The global optimality condition of an RLP is described below.

An exact description of the column generation is as follows. Assume that we have already
determined a subset A C A such that A includes some (primal) feasible solution. Consider the
RLP including only the columns according to this subset A. In addition, assume that a primal
feasible starting basis is determined. In general, the RLP is resolved to optimality, but it is
sufficient to perform only some (primal) simplex iterations. Let &, 7, and 4 denote the value of
the dual multipliers associated with the last basis of the current RLP. For notational simplicity,



let 7z := 0 and frg := 0, for all d € D, denote artificial variables. We compute for each variable
the reduced costs

(6) < ::cgj—ai—ﬁg+ﬁg+{$ } V (i,§) € A such that i {i} D.
d

Note that ¢, > 0 for all active columns a € A if the last RLP was solved to optimality. If ¢, > 0
for all a € A, the global optimality of the current basis is proved and we can stop. Otherwise,
we search for some (inactive) variables a € A\ A and generate their corresponding columns.

Standard column generation schemes generate only those columns that violate the reduced
cost criterion ¢ > 0, i.e., variables with negative reduced costs. But, as we will see below,
it turned out that adding also columns with nonnegative reduced costs may be advantageous.
Having selected the variables that become active, A and the corresponding RLP are redefined
appropriately. The enlarged LP is reoptimized or a limited number of simplex iterations is
performed, and we iterate until we prove optimality, i.e., ¢ > 0.

Obviously, to achieve any progress, at least one variable having negative reduced cost must
be activated between two consecutive RLPs. Tests in practice have shown that it is impossible to
generate all inactive columns with negative reduced costs since the next RLP gets far too large
and cannot be handled at all. Therefore, we restrict the number of new arcs to some parameter
controlled limit. This limit ranges from 200 to 3000 variables for each depot, depending on the
problem size.

For the standard column generation scheme, we use Dantzig’s pricing rule. We select the
variables with most invalid reduced costs as candidates to become activated. With this approach,
it is also possible to prove the global optimality of some RLP, provided that the last RLP
has been solved to optimality and includes some optimal basis. We have also tried to use
more advanced pricing rules such as Devex or steepest-edge pricing. Similar to Dantzig’s rule,
these rules generate only columns with negative reduced costs, but we could not observe better
computational results. Therefore, we have rejected those advanced pricing rules and apply only
Dantzig’s rule. Lagrangean pricing.

To avoid that the RLPs become too large, we must also remove obsolete columns in each iter-
ation of the column generation process. All columns whose reduced costs exceed some predefined
parameter controlled positive threshold are therefore eliminated.

3.2 Lagrangean pricing

In a first version, we have tried to solve large MDVSP instances using only standard column
generation and elimination schemes. But this approach failed. One main obstacle is the com-
pletely degenerate LP relaxation. A second reason for the difficulties is as follows: The standard
column generation scheme activates only variables with negative reduced cost. These variables
can locally promise some progress in the objective value, but it is not clear whether they may
have any influence on the solution and the objective value without an interaction with some
other related nonactive variables. Therefore, we came up with the idea that the nonactive vari-
ables should be not only evaluated alone by its reduced costs, but also in interaction with all the
other active and inactive variables. However, how can this be done efficiently? We have to find
a method that determines good (nonactive) variables that may give progress in the objective
value as best as possible. To use the information already compiled within the previous RLPs,
this method should also use dual information as pricing methods do. It may also be a good idea



to invoke also Lagrangean relaxation techniques that turned out to give good approximations
of our hard solvable LP relaxations.

The answer to all these questions is Lagrangean pricing: The inner minimization problems
Lis (4) and Lgq (5) of the presented Lagrangean relaxations LRgg and LRgq4 can be solved
efficiently — even for the complete variable set — and give excellent approximations of the LP
relaxation. So, we evaluate for LRgs and LRgeq the linear programs Lgs(7,7) and Lgq(7). Re-
member, 7, 7, and 7 denote the value of the dual multipliers associated with the flow conditions
(2b), the flow conservations (2d), and the depot capacities (2e) of the last basis of the current
RLP.

Obviously, both relaxations approximate the LP relaxation with all active and inactive vari-
ables, use dual information given by the last RLP, are based on good relaxations of the LP
relaxation, and can be evaluated efficiently. We still have to show how good nonactive variables
can be determined. The solution of each inner minimization problem can be interpreted as a
set of vehicle schedules that seem to be advantageous for the given shadow prices of the current
RLP relaxation. In the case of the Lagrangean relaxation Lgq, these vehicle schedules may
include unloaded trips of different depots. Consider all the vehicle schedules defined by the
optimal solutions attaining the values of L¢(7,%) and L¢q(2). Each still nonactive variable
according to some unloaded trip of some of these vehicle schedules determines a candidate to
become active.

3.3 The Basic Ingredients

We have made many computational experiments to find out the right mixture of the techniques
presented above. The basic ingredients, each being indispensable to solve large-scale instances
at all, are as follows:

Initial RLP relaxation: The initial RLP should contain at least some primal feasible solution
yielding a value as close to the LP optimum as possible. A very efficient way to heuristically
determine some solution is a schedule — cluster — reschedule heuristic (SCR). Heuristics of this
kind are described, e. g., in Grotschel, Lobel, and Vélker [1997], Dell’ Amico, Fischetti, and Toth
[1993], and Daduna and Mojsilovic [1988]. A faster method is a nearest depot heuristic (ND),
which assigns each timetabled trip to some depot with the smallest sum of the pull-out and
pull-in costs. This kind of opening heuristic, however, yields rather poor starting points, see
Lobel [1997].

As soon as each timetabled trip is assigned to some depot, the problem decomposes into
|D| independently solvable single-depot subproblems. We solve for each depot its single-depot
instances according to all its heuristically assigned timetabled trips. Each unloaded trip that
corresponds to some basic variable becomes active and its column is generated for the initial RLP.
Thus, the first RLP includes at least the feasible solution defined by the union of the solutions
of all subproblems together. A further idea is to use the union of all columns generated by any
primal (opening heuristic) and dual (Lagrangean relaxation) method. Unfortunately, we have
not tested such a combination of different heuristics.

The Workhorses: Minimum-Cost Flow and LP: Solving the LP relaxation with our
approach exactly, requires at several steps the efficient solution of minimum-cost flow problems
and linear programs: The minimum-cost flow problems stem from the Lagrangean relaxations,
the LPs are RLPs. All minimum-cost flow problems have been solved with MCF. This is an



implementation in C of the primal and the dual network simplex algorithm and is available
for academic use free of charge via WWW at URL http://www.zib.de/Optimization, see Lobel
[1997a]. The linear programs have been solved with the primal as well as the dual simplex solver
of the CPLEX Callable Library, version 4.0.9. CPLEX turned out to be a reliable and robust
method for our degenerate (R)LP problems.

For our computations, an important feature of CPLEX 4.0 is the new and more gentle
perturbation method. In previous version of CPLEX, the bounds of all variables have been
relaxed when perturbing a problem. This perturbation approach led often to numerical problems
when we have solved our test instances. With the current version of CPLEX, only all basic
variables are perturbed whenever the perturbation starts. As soon as some nonbasic variable
has been selected to become basic it will also be perturbed if not already done in some previous
iteration. This simple alteration of the perturbation strategy has significantly improved the
efficiency of our implementation for large MDVSPs.

The column generation is divided into two phases: First, a Lagrangean phase where we apply
standard and Lagrangean pricing, and, second, a standard phase in which we apply only the
standard column generation approach.

Lagrangean phase: This phase precedes always the standard phase and is applied as
long as the objective value declines between two consecutive RLPs at least by some predefined
parameter controlled threshold (10.0 is used as default). The last basis of the last RLP is always
neglected, and each RLP is reduced by LP preprocessing. The columns of each RLP obtained
in this phase are, at least for large MDVSPs, far too many for the primal simplex solver. We
use here the dual simplex solver. We have also tried to use CPLEX’s primal-dual logarithmic
barrier solver. It turned out, however, that numerical problems often prevent the barrier solver
from proceeding.

As long as there is a sufficiently large gap between the optimal LP value and the value of
the current RLP, the Lagrangean phase works well. However, stalling occurs when the current
RLP value approaches the LP optimum. This phase is unable to converge to an optimal variable
set: Although the objective has been become almost optimal, the standard column generation
between two consecutive RLPs finds always thousands up to millions of unloaded trips that do
not satisfy the reduced cost criterion. This effect is maybe a result of neglecting always the
last basis (i.e., all dual information) of the previous RLP, but we cannot provide any other
reasonable explanation.

Thus, we came up with the idea to use at this point only the standard column generation
scheme: We switch to the standard phase when the objective progress becomes too small and,
therefore, some “approximation of optimality” has been reached.

Standard phase: When we start this phase, we believe that our current RLP contains
some almost optimal basis of the complete LP relaxation. The occurring RLPs are now solved
with the primal simplex solver and each RLP starts with the last basis of the preceding RLP.
This approach iterates until the (global) optimality of some RLP can be proved with the reduced
cost criterion.

4 Test Data

Our computational investigations are based on real-world data from the city of Berlin (BVG), the
city of Hamburg (HHA), and the region around Hamburg (VHH). Different parameter settings



and optimization aspects yielded in the test instances that are displayed in Tab. 1. The term
@G =) .7 G(t)/|T| denotes the average depot-group size. Note that the number of equations
of (3) is equal to the number of flow conditions and flow conservations.

Test Sets o | 71 | 1411,000 | 2G| 2rember of
equations

Berlin 1 44 | 24,906 69,700 | 4.03 125,255
Berlin 2 49 24,906 13,200 | 1.56 63,641
Berlin 3 3 1,313 2,300 | 2.33 4,370
Berlin-Spandau 1 9 2,424 3,700 | 4.94 14,418
Berlin-Spandau 2 9 3,308 8,800 | 5.49 21,470
Berlin-Spandau 3 13 2,424 590 | 1.92 7,103
Berlin-Spandau 4 13 3,308 1,630 | 2.25 10,753
Berlin-Spandau 5 13 3,331 1,650 | 2.25 10,834
Berlin-Spandau 6 13 1,998 380 | 1.90 5,798
Berlin-Spandau 7 7 2,424 3,300 | 4.16 12,506
Berlin-Spandau 8 7 3,308 7,800 | 5.02 18,376
Hamburg 1 12 8,563 10,900 | 2.23 27,696
Hamburg 2 9 1,834 1,000 | 2.02 5,549
Hamburg 3 2 791 200 | 1.32 1,835
Hamburg 4 2 238 23| 1.04 487
Hamburg 5 2 1,461 580 | 1.31 3,379
Hamburg 6 2 2,283 1,600 | 1.33 5,323
Hamburg 7 2 341 34| 1.32 795
Hamburg-Holstein 1 4 3,413 4,000 | 1.68 9,167
Hamburg-Holstein 2 19 5,447 9,400 | 3.65 25,334

“Compared to the problems presented in Grétschel, Lobel, and Valker [1997], the
number of timetabled and unloaded trips and the weights for some unloaded trips have
been changed for some instances due to slightly different rules for the depot generation
and compatibility of dead-head trips.

Table 1: Real-world test sets.

Currently, BVG maintains 9 garages and runs 10 different vehicle types resulting in 44
depots. For a normal weekday, about 28,000 timetabled trips have to be serviced. Since BVG
outsources some trips to third-party companies, this number reduces to 24,906. Using all degrees
of freedom, these 25 thousands trips can be linked with about 70 million unloaded trips.
Berlin 1: This is the complete BVG problem with all possible degrees of freedom.

Berlin 2: This problem is based on the timetabled trip set of Berlin 1, but the depots and the
dead-head trips are generated with different rules resulting in fewer degrees of freedom.
Berlin 3: This is a relatively small test instance including 9 lines from the south of Berlin and
3 depots from one single garage.

Berlin-Spandau 1 — 8: All the test sets denoted by Berlin-Spandau are defined on the data
of the district of Spandau for different weekdays and different depot generation rules.

HHA together with some other transportation companies maintain 14 garages with 9 different
vehicle types resulting in 40 depots. More than 16,000 daily timetabled trips must be scheduled

10



with about 15.1 million unloaded trips. This problem decomposes into a 12-depot problem, a
9-depot problem, five smaller 2-depot problems, and nine small 1-depot problems.

Hamburg 1 — 7: Here we consider the multiple-depot subproblems of HHA.
Hamburg-Holstein 1: This is a subset of VHH containing not all its depots and trips.

VHH currently plans 10 garages with 9 different vehicle types. The garage-vehicle combina-
tions define 19 depots. The 5,447 timetabled trips of VHH can be linked with about 10 million
unloaded trips.

Hamburg-Holstein 2: This test set is based on the complete data of VHH.

5 Computational Results

All presented computational tests have been performed on a SUN Model 170 UltraSPARC with
512 MByte main memory and 1.7 MByte virtual memory. We have been the only user during
all our test runs.

In Tab. 2 we summarize the objective values (fleet size and operational weight) of the lower
bounds obtained with L¢(0,0) and the LP relaxation, the integer optimum (or best known
integer value), and the upper bounds obtained with the SCR and ND heuristics (taken from
Lobel [1997]). Note that evaluating L at zero is equivalent to neglect all flow conservation
constraints (2d) and all depot capacities (2e).

L¢e5(0,0) LP relax. Optimum or Heuristics
Test Sets . . best int. solution SCR ND

Fleet | Weight | Fleet | Weight Fleet | Weight [| Fleet | Weight | Fleet | Weight
Berlin 1 1323 | 715714 1323 | 759162.0' || 1329 850680 || 1347 | 1317379 | 1575 | 3279774
Berlin 2 1350 | 715623 || 1353.7| 797918.8 || 1354 777823 || 1366 | 1318085 | 1655 | 3900191
Berlin 3 69 14043 69 14119 69 14119 69 14122 70 14366
B-Spandau 1 125 | 65585 125 65610.5| 125 65611 125 | 125786 | 139 70092
B-Spandau 2 184 | 78947 || 184.5 79110.0|| 185 79052 || 185 | 289262 | 207| 213333
B-Spandau 3 || 127| 90514 127 93745 127 93745 127 | 152109| 135| 149629

B-Spandau 4 191 | 195844 191 230846 191 230846 192 | 395891 | 222| 475552
B-Spandau 5 || 191 | 191141 191 227580 || 191 227580 || 194 | 393922 | 220 | 487944

B-Spandau 6 98 | 91109 98 101075 98 101075 98 | 132650| 109| 139593
B-Spandau 7 125 | 65585 125 65610.5 125 65611 125 | 105853 | 139 70092
B-Spandau 8 184 | 78947 | 184.5 79110.0 185 79093 185 | 259406| 207 | 213333
Hamburg 1 432] 66874 432] 71068.3]] 432 71069 || 446 70291 489] 76054
Hamburg 2 103 | 15356 103 16070 | 103 16070 || 104| 16792 114| 15849
Hamburg 3 39| 5557 39 5860 39 5860 39 6298 | 41 5429
Hamburg 4 6| 1358 6 1358 6 1358 6 1358 6 1358
Hamburg 5 62| 12092 62 12502 62 12502 62 13535 65 12101
Hamburg 6 111| 15705 111 15791 || 111 15791| 111| 16588| 111| 15791
Hamburg 7 15 2832 15 2961 15 2961 16 2836 16 2836
H-Holstein 1 || 201]| 28697 201 29027 [ 201 29027 || 201 30497 213] 32132

H-Holstein 2 360 | 51084 362 | 52787.7| 362 52788 || 363 | 72700| 393| 62598

Table 2: Vehicle demand and operational weights (optimal integer values are in bold face).

The quality of the lower bounds obtained by L¢(0,0) and the LP relaxation are quite good.
First, let us consider the fleet size values: On the average, Lgs(0,0) approximates the integer
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optimal fleet sizes (or best known integer upper bounds) by a factor of 0.9988 with a standard
deviation of 0.0021. The LP relaxation gives for the fleet size an approximation of 0.9995 with
a standard deviation of 0.0012. If we ignore the test set Berlin 1, which is currently the only
instance that we could not solve optimally, and round up each fractional fleet size value, the
LP relaxation approximates the optimal integer fleet size exactly for all the other test instances.
Let us now consider the operational weights. Obviously, we can estimate the quality of a given
lower bound for the operational weight only if the lower bound for the fleet size is exact. For
all those test instances, L¢(0,0) approximates, on the average, the optimal operational weights
by a factor of 0.9534 with a standard deviation of 0.0505. The LP relaxation produces always
the optimal integer value whenever the lower bound for the fleet size was tight. The opening
heuristics SCR and ND approximate, on the average, the integer optimal fleet size (or best known
integer lower bound) by a factor of 1.0080 and 1.0962 with a standard deviation of 0.0158 and
0.0580, respectively. These results support the following conclusions:

e The LP relaxations yield quite tight lower bounds. It is often the case that rounding
up the LP value to the next integer value yields already the integer optimum. A similar
phenomenon is observed by Forbes, Holt, and Watts [1994]: 22 of their 30 test instances
have integral LP solutions, and the largest gap between the LP value and the integral
optimum is at most 0.003 % for the remaining problems. So, this observation does not
seem to be a small scale phenomenon.

e The values obtained by Lg(0,0) are close to the optimal LP values. Let v and v~
denote the dual variables associated with the flow conditions (2b) and (2¢) in L¢s(0, 0).
We have shown in Lobel [1997] that Lgq(v™ — v ) and Lg(0,0) yield the same optimal
value. Moreover, these lower bounds can be improved if we apply a subgradient method,
see Kokott and Lobel [1996]. Thus, LR and LRgq4 give an excellent approximation of
the LP relaxation.

e The SCR heuristic produces (significantly) better solutions than the ND heuristic. From
this point of view, SCR would be the better opening heuristic. But surprisingly, we can
observe from Tab. 3 that starting with the columns provided by ND needs less running
time for about 60 % of our test instances. So, it is an open question whether it might
be advantageous to initialize the column generation with the columns provided by both
heuristics.

If we are only interested in obtaining tight lower bounds quickly, we would only evaluate
L¢(0,0). Simply neglecting all flow conservation constraints provides, for our largest instance
Berlin 1, a lower bound within 15 minutes running time. This lower bound provides the same fleet
size lower bound as the LP relaxation does, and the operational weight gap between Li(0,0)
and the best known LP value is only about 6 %. Our LP method needs about 200 hours cpu
time to find a fleet minimal value for Berlin 1, see Tab. 3.

In the following, we report on some specific observations we made in solving the LP relax-
ation. Table 4 shows, for each test instance and for each opening heuristic, the number of RLPs
that have been solved until optimality has been proved, the total number of CPLEX iterations
that have been performed, and the number of columns that have been generated and eliminated
within the column generation process. We shall describe some features of our column generation

12



LP relax.
Test Sets Lic5(0) SCR ND

Init. | Total | Init. | Total
Berlin 1 916 || 12386 — | 171 —
Berlin 2 229 3810 | 34795 79 | 32767
Berlin 3 17 25 431 7 311
B-Spandau 1 27 343 | 43777 15 | 66501
B-Spandau 2 93 1939 | 112337 39 | 165048
B-Spandau 3 9 42 975 7 739
B-Spandau 4 25 334 6014 14 4384
B-Spandau 5 31 354 5264 15 5618
B-Spandau 6 17 7 162 6 227
B-Spandau 7 23 259 | 24717 14 | 46597
B-Spandau 8 67 1238 | 82284 36 | 62041
Hamburg 1 185 2868 —° 29 | 50246
Hamburg 2 12 103 875 7 685
Hamburg 3 4 16 35 2 31
Hamburg 4 2 1 3 1 3
Hamburg 5 10 86 258 5 155
Hamburg 6 18 30 148 11 84
Hamburg 7 2 2 8 1 9
H-Holstein 1 40 199 2619 18 2087
H-Holstein 2 101 1696 | 46673 40 | 64489

“After 32 hours, we have stopped the run since stalling of the objec-
tive progress occurs; the last objective value in the standard phase was
432.25 vehicles with a weight of 71169.125. The Lagrangean phase alone
takes more than 63000 seconds, which is more than the total running
time of ND!

Table 3: Running times in seconds on a SUN Model 170 UltraSPARC with 512 MByte main

memory.

method with the example of Hamburg 1 starting with ND. The behaviour of our implementation
starting with SF-CS or ND is similar for all the other problems.

We have observed the following: The dominating part of the objective value, the fleet sizes,
converge quickly to the minimum value. At the crossover from the standard to the Lagrangean
phase, the objective values are almost optimal. For our test set, neither the standard nor the
Lagrangean phase dominates the total running time. Figure 2 shows a typical development of
the fleet size values (left picture) and their operational weights (right picture) in respect to the
running time.

The number of generated and eliminated columns are almost always about the same for
each iteration of the column generation process, see the left picture of Fig. 3. Therefore, the LP
sizes are relatively constant during the solution process. The right picture in this figure shows a
typical development of the number of rows, columns, and nonzero elements of the £*" RLP and of
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Starting with SCR Starting with ND
Test Sets RLPs CPLEX Col. gen. RLP’s CPLEX Col. gen.
Number of Tterations / 1000 || Cols. / 1000 Number of Tterations / 1000 || Cols. / 1000
| Lgr. [ Stn. | Lgr. [ Stn. || gen. | elim. | Lgr. [ Stn. | Lgr. [Stn. || gen. | elim.
Berlin 1 T 24] —| —6333] — (960 ]@30) | —] — — —1 —] —I —] —
Berlin 2 97| 25| 72 501 | 307| 194 691| 6341|106 27| 79 561 | 371 | 190 | 716 658
Berlin 3 24 2 22 24 1 23 41 36 23 ) 18 18 6 12 55 50
B-Spandau 1 ({23 12| 11 881 | 615 | 266 250 | 227 30| 16| 14| 1.399|1.091 | 308 | 293 274
B-Spandau 2 || 26 15 11| 1.260 628 | 632 458 430 28 14 14 || 1.762 890 | 872 || 453 412
B-Spandau 3 || 34 13 21 70 57 13 211 202 || 30 11 19 61 49 12 || 186 177
B-Spandau 4 || 40 17 23 230 188 42 348 335 || 46 17 29 178 130 48 || 336 324
B-Spandau 5 || 47 14 33 191 135 56 323 310 || 49 17 32 223 161 62 || 349 337
B-Spandau 6 || 20 4 16 13 5 8 70 63 25 7 18 21 15 6 99 92
B-Spandau 7 || 34| 12| 22 594 | 403 | 191 207 | 190 30| 16| 14| 1.069| 869 | 200 | 247 227
B-Spandau 8 || 28 | 13| 15|/ 1.073| 512 561 378 | 350 26| 15| 11 966 | 575 391 279 248
Hamburg 1 —| 38| — — | 1.167 | — |/ (296) | (273) || 98| 24| T4 873 | 656 | 217 | 478 451
Hamburg 2 26 9 17 38 21 17 128 122 20 8 12 35 21 14 || 113 107
Hamburg 3 13 2 11 1 1 0 19 171 23 2 21 1 0 1 19 17
Hamburg 4 3 2 1 0 0 0 1 0 3 2 1 0 0 0 1 0
Hamburg 5 25 6 19 7 4 3 71 67 || 44 2 42 11 1 10 || 126 212
Hamburg 6 12 2 10 4 1 3 37 32 2 2 0 1 1 0 12 9
Hamburg 7 13 3 10 1 0 1 9 8 21 3 18 1 0 1 13 12
|H-Holstein [J20] 13] 7] 97| 79| 18] 190] 177] 16] 8] 8] 79| 63] 16] 125] 111]
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Figure 2: Typical development of the fleet size values (left picture) and their operational weights
(right picture) in respect to the running time.

the k** RLP in the Lagrangean phase after LP preprocessing. We can observe from this picture
the importance of LP preprocessing within the Lagrangean phase: Without this preprocessing,
neither the primal nor the dual simplex solver would not be applicable here because of intolerable
long running times. But preprocessing reduces the sizes of these RLPs significantly such that it
becomes possible to solve the occurring RLPs within acceptable running times.
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Figure 3: Typical number of generated, eliminated, and active LP columns (left picture), number
of LP columns, rows, and nonzero elements per iteration (right picture).

6 Conclusions

We have presented a column generation method to solve the LP relaxation of the multicom-
modity flow formulation of the MDVSP. The key ingredients here are Lagrangean pricing and
the right combination of available LP and minimum-cost flow codes as, e. g., CPLEX and MCF.
With this new technique, it becomes possible, for the first time, to solve not only the LP re-
laxations, but the ILP formulation of MDVSP instances with up to 8,563 timetabled trips to
proven optimality and instances with up to 24,906 timetabled trips almost optimal with a gap
of less than 0.5 %. Therefore, we propose Lagrangean pricing as one of the basic ingredients of
an effective method to solve multiple-depot vehicle scheduling problems.

From our computational results on Lagrangean pricing for large-scale real-world instances,
we draw the following conclusions: First, our method can solve degenerate LP relaxations of
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large-scale problems from practice to optimality or, at least, with an acceptable small gap.
Fleet minimal LP solutions that do not necessarily yield minimum operational weights can be
generated quite fast. Without Lagrangean pricing, it is not possible to solve even smaller test
instances. Second, if the column generation process is combined with some heuristic(s) exploiting
the solutions of the solved restricted LPs, it is possible to compute a feasible solution yielding
the minimum fleet size and a relatively small gap for the operational costs for almost all of our
test problems within few iterations and few hours of running time, see Lobel [1997]. Third,
LP methods are not the right tools to produce lower bounds quickly for this kind of problems;
Lagrangean relaxations and subgradient methods, as presented for instance in Kokott and Lobel
[1996], are the right methods.
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