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Abstract

We consider backward error analysis of numerical approximations to ordinary diffe-
rential equations, i.e., the numerical solution is formally interpreted as the exact solution
of a modified differential equation. A simple recursive definition of the modified equation
is stated. This recursion is used to give a new proof of the exponentially closeness of
the numerical solutions and the solutions to an appropriate truncation of the modified
equation. We also discuss qualitative properties of the modified equation and apply
these results to the symplectic variable step-size integration of Hamiltonian systems,
the conservation of adiabatic invariants, and numerical chaos associated to homoclinic
orbits.
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1 Introduction

In this paper, we consider the relationship between solutions to a given system of ordinary
equations

d

dt
x = Z(x) ,

numerical approximations

xn+1 = GΔt (xn) (1)

to them, and solutions to associated modified equations

d

dt
x = Xi (x) (i ≥ 1) .

The vector fields Xi are chosen such that the numerical solution can formally be interpreted,
with increasing index i, as the more and more accurate solution of the modified equation. Pre-
vious papers on backward error analysis for differential equations include those by Warming
& Hyett [31], Griffiths & Sanz-Serna [7], Feng [12], Fiedler & Scheurle [13], and Sanz-Serna
[27].

More recently, formulas for the computation of the modified vector fieldsXi have been derived
by Hairer [14], Calvo, Murua & Sanz-Serna [4], Benettin & Giorgilli [3], and Reich [24]. In
papers by Neishtadt [23], Benettin & Giorgilli [3], and Hairer & Lubich [16], the question
of closeness of the numerical approximations and the solutions of the modified equations
has been addressed. It has also been shown by Neishtadt [23], Hairer [14], Calvo, Murua,
Sanz-Serna [4], Reich [24], and Benettin & Giorgilli [3] that for symplectic discretizations, the
modified vector fields Xi are Hamiltonian.

Our approach to backward error analysis is based on a simple recursive formulation of the
modified vector fields [24]. This allows us to simplify/generalize some of the proofs/results in
earlier papers. In particular, in Section 2, we consider general diffeomorphisms that are close
to the identity on a compact subset of phase space. We show that, restricted to this compact
subset, our recursion yields a vector field with its flow-one-map exponentially close to the
given diffeomorphism. Although this result is not new, our proof is different from the ones in
[3],[16] and, hopefully, provides new insight. Section 3 is devoted to backward error analysis
of general constant step-size one-step methods while, in Section 4, we discuss the question of
conservative schemes and its backward error analysis in a general Lie algebraic setting. Finally,
in Section 5, we discuss three applications for Hamiltonian equations of motion; namely: the
conservation of adiabatic invariants, symplectic variable step-size integration, and numerical
chaos associated to homoclinic orbits. We like to point out that, following [25], the results of
this paper can be generalized to vector fields Z : M ⊂ IRn → IRn on submanifolds M of IRn.
As shown by Hairer & Stoffer [18], backward error analysis can also be extended to variable
step-size methods.
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2 Approximation of mappings near the identity

Numerical discretization of a differential equation by a one step method (1) yields a mapping
GΔt, Δt > 0, that is close to the identity map id for sufficiently small step-sizes Δt. Hence,
in this section, we address the approximation of mappings near the identity by flows of vector
fields from a rather general point of view. In the following section, we will then come back to
the special case of mappings corresponding to numerical discretization of differential equati-
ons.

Let G : U ⊂ IRn → IRn be an analytic map on an open subset U of IRn. We assume that

||G(x)− x || < εM (2)

for all x ∈ K, K ⊂ U a compact subset of U ; || . || the l∞-norm on IRn. Here ε > 0 is a small
number and M > 0 is a constant of order one with respect to ε. In other words, G is an
analytic map ε close to the identity map on K ⊂ U . Our aim is to find an analytic vector
field X : V ⊂ IRn → IRn on an appropriate open subset V of IRn such that the corresponding
flow map exp (X) : V → IRn satisfies

exp (X) (x) ≈ G(x)

for all x ∈ K. For that reason, let us consider the recursion

ΔXi+1 := G− exp (Xi) , (3)

Xi+1 := Xi +ΔXi+1 (4)

with X0 = 0 and i = 0, 1, . . . , s.

Remark. Note that (3)-(4) can be considered as a simplified Newton method applied to the
“nonlinear equation”

0 = G− exp (X) (5)

in the “unknown” X. The exact Newton method would lead to the equation

G(x0)− exp (Xi) (x0) =
∫ 1

0
W (s, x0)ΔXi+1 (x(s)) ds , (x0 ∈ U) . (6)

Here x(t) denotes the solution of the differential equation

d

dt
x = Xi (x)

with initial value x(0) = x0 and W (t, x0) is the Wronskian matrix of the variational equation

d

dt
u =

[
d

dx
Xi (x(t))

]
u .
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Note that (6) is, in general, not solvable for ΔXi+1 [19]. However, it would be certainly
of interest to identify cases for which (6) is invertible and (5) has a solution. In fact, this
question is closely related to Kolmogorov’s method of proving KAM theory [5] (see Appendix
B). In any case, one has

∫ 1

o
W (s, x0)ΔXi+1 (x(s)) ds = ΔXi+1 (x0) +O(ε)

which leads to the simplified Newton iteration (3)-(4).

In the sequel, we will implicitly use the representation of the vector field

Y := G− id ,

||Y (x)|| < εM for x ∈ K, as

Y = ε Y0 , Y0 := (G− id)/ε ,

||Y0(x)|| < M on K. This allows us to formally consider the vector fields Xi and ΔXi, i, . . . , s,
as functions of ε. Obviously, we have

ΔX1 = Y (7)

and, using Lie series representation [8],[30] of the exponential function exp(X1), i.e.,

exp (X1) = id +
∞∑
i=1

1

i!
(LX1)

i−1X1 = id +
∞∑
i=1

εi

i!
(LY0)

i−1 Y0 ,

we obtain

ΔX2 = −ε
2

2
LY0 Y0 +O(ε3) = −1

2
LY Y +O(ε3) . (8)

Here LY Y denotes the Lie derivative of Y with respect to Y and the (LY )
i Y are recursively

defined through [8],[30]

(LY )
i Y =

[
∂

∂x
(LY )

i−1 Y

]
Y .

Continuing this process, we obtain

Lemma 1. The vector fields Xi, i = 1, 2, . . . , s, satisfy

G− exp (Xi) = O(εi+1) .

Proof. We have to show that, if

G− exp (Xi) = O(εi+1) ,
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then

G− exp (Xi+1) = O(εi+2) .

Now, with ΔXi+1 = O(εi+1),

exp (Xi+1) = exp (Xi +ΔXi+1)

= (id + ΔXi+1) ◦ exp (Xi) +O(εi+2)

and

G− exp (Xi+1) = G− (id + ΔXi+1) ◦ exp (Xi) +O(εi+2)

= (ΔXi+1 −ΔXi+1) +O(εi+2)

= O(εi+2) .

�

From Lemma 1 it follows that

ΔXi = −ε
i

i!

[
∂i

∂εi
exp (Xi−1)ε=0

]
+O(εi+1) .

From now on we will drop the higher order ε terms in ΔXi and simply use

ΔXi := −ε
i

i!

[
∂i

∂εi
exp (Xi−1)ε=0

]

instead of (3).

The sequence {ΔXi} does not, in general, converge to zero. Thus we are looking for the
integer i∗ such that

||G− exp (Xi�) ||∞ = Min!

where || . ||∞ denotes the maximum norm on K, i.e.,

||G− exp (Xi) ||∞ := max
x∈K

||G (x)− exp (Xi(x)) ||

and

Xi =
i∑

j=1

ΔXj .

Let BR(x0) ⊂ ICn denote the complex ball of radius R > 0 around x0 ∈ IRn and define

|| z || := max
i=1,...,n

|zi | , (z ∈ ICn) .
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Under the assumption that the real analytic vector field Y is bounded byM > 0 on a complex
ball of radius R > 0 around each x0 ∈ K ⊂ IRn, i.e.,

||Y ||R = max
x∈BR(x0)

||Y (x) || ≤ M , (x0 ∈ K) ,

one can prove the following result (the proof can be found in Appendix A; see also [3],[20]):

Theorem 1. Let G : U ⊂ IRn → IRn be an analytic map ε close to the identity on a compact
set K ⊂ U , i.e.,

||G(x)− x || < εM , (x ∈ K) .

Then there exists a vector field X : V ⊂ IRn → IRn such that

||G(x)− exp (X) (x) || ≤ εM e−c/ε , (x ∈ K) , (9)

with c ≤ R/(8Me) and R > 0 such that, for all x0 ∈ K,

||G (x) − x || ≤ εM

on the complex ball of radius R around x0.

3 Perturbed vector fields for numerical integration

Let us now consider a smooth vector field

d

dt
x = Z (x) , (10)

Z : U ⊂ IRn → IRn and its discretization by a one step method

xn+1 = GΔt (xn) = xn +Δt ψ(xn,Δt) . (11)

We assume that GΔt : U ⊂ IRn → IRn is a method of order p ≥ 1, i.e.

|| exp (Δt Z)−GΔt || = O(Δtp+1) .

As in Section 2, we look for a vector field X such that

exp (X) ≈ GΔt

and consider the recursion

ΔXi+1 := GΔt − exp (Xi) ,

Xi+1 = Xi +ΔXi+1 ,

i = 0, . . . , s, which, upon replacing GΔt by G, is equivalent to (3)-(4).
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There are two obvious choices for the initial vector field X0. Following the discussion of the
previous section, one could take X0 = 0 or, taking into account that GΔt is a discretization
of (10), one could define X0 = Δt Z. While X0 = Δt Z immediately yields ΔX1 = O(Δtp+1),
the choice X0 = 0 requires p iterations to obtain an O(Δtp+1) approximation to the modified
vector field X. However, X0 = 0 allows us to apply Theorem 1 with G = GΔt and ε = Δt.
Specifically:

Corollary 1. Let GΔt : U ⊂ IRn → IRn be a real analytic map close to the identity on a
compact set K ⊂ U , i.e.,

||GΔt(x)− x || < ΔtM (x ∈ K) .

Then there exists a vector field X : V ⊂ IRn → IRn such that

||GΔt(x)− exp (X) (x) || ≤ ΔtM e−c/Δt , (x ∈ K) ,

with c ≤ R/(8Me) and R > 0 such that, for all x0 ∈ K,

||GΔt(x)− x || ≤ ΔtM (12)

on the complex ball of radius R around x0 ∈ K.

Remark. If, instead of (12), only a corresponding estimate ||Z(x)|| < m for the vector field Z
in (10) is available, then any consistent one step method GΔt certainly satisfies the condition
(12) with M = 2m.

Remark. If, instead of (12), only a corresponding estimate ||Z(x)|| < m for the vector field
Z in (10) is available, then any consistent one step method GΔt will certainly satisfy the
condition (12) with M = 2m.

Remark. The discrete evolution (11) can now be considered as the discretization of the
modified vector field X (as long as the numerical solution does not leave the compact set K).
According to Corollary 1 and standard results in numerical analysis, the global error

en (x) := exp (nX) (x) − [GΔt ]
n (x)

after n steps with step-size Δt is bounded by

|| en (x) || ≤ M

L̃

(
enΔt L̃ − 1

)
e−c/Δt

where L = ΔtL̃ ≥ 0 is the Lipschitz constant of the modified vector field X on K. Thus the
global error en remains exponentially small over a time interval T = nΔt < c/(2ΔtL̃).

Remark. In [13], Fiedler & Scheurle showed that GΔt is equivalent to the time-Δt-flow of a
non-autonomous differential equation

d

dt
x = Z(x) + F (x, t,Δt)
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with F a vector field Δt-periodic in t,

||F (x, t,Δt) || = O(Δtp) ,

and p ≥ 1 the order of GΔt. In view of Corollary 1, we can use the same construction to show
that GΔt is equivalent to the time-Δt-flow of the non-autonomous differential equation

d

dt
x =

1

Δt
X (x) + F (x, t,Δt)

where X is the modified vector field of Corollary 1 and F is a vector field Δt-periodic in t.
Furthermore, because of Corollary 1,

||F (x, t,Δt) || = O(e−c/Δt)

for x ∈ K and t ∈ [0,Δt].

Let us now discuss the Taylor series expansion of the modified vector field X in terms of
Δt in more detail. This will be useful in Section 4 when we consider geometric properties
of X. In this context it is more appropriate to use X0 = Δt Z which immediately implies
ΔX1 = O(Δtp+1). It follows from Lemma 1 with ε = Δt that, for X0 = Δt Z, we have

ΔXi+1 (Δt) = Δti+p+1ΔX̂i+1 +O(Δti+p+2) , (i ≥ 0) ,

where ΔX̂i+1 is an appropriate vector field. Thus we consider the limit

lim
t→0

1

ti+p+1
ti+p+1ΔX̂i+1 = lim

t→0

Gt − exp (Xi(t))

ti+p+1

where

Xi(t) = Xi(Δt = t)

and

Gt (x) := x+ t ψ(x, t) .

This yields

ΔX̂i+1 := lim
t→0

Gt − exp (Xi(t))

ti+p+1

=
1

(i+ p + 1)!

[
∂i+p+1

∂ti+p+1
Gt − ∂i+p+1

∂ti+p+1
exp (Xi(t))

]
t=0

which leads us to the modified recursion

ΔXi+1 := Δti+p+1 lim
t→0

Gt − exp (Xi(t))

ti+p+1
, (13)

Xi+1 := Xi +ΔXi+1 (14)
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with X0 = Δt Z.

Remark. The approach of Section 2 is recovered from the iteration (13)-(14) by using

Gt (x) := x+ t ψ (x,Δt) ,

p = 0, and X0 = 0, i.e., the vector field Y0 of Section 2 is now given by Y0 = ψ(x,Δt). Let
us denote the corresponding vector fields Xi by X

a
i and those corresponding to the iteration

(13)-(14) with Gt(x) = x+ tψ(x, t) and X0 = Δt Z by Xb
i . Then

||G(x)− exp (Xa
i+p) (x) || = O(Δti+p+1)

and

||G(x)− exp (Xb
i ) (x) || = O(Δti+p+1) .

From Lemma 4 in Appendix A we have

||G(x) − exp (Xa
i+p) (x) || ≤ ΔtM

(
8 (i+ p)ΔtM

R

)i+p

for ε ≤ R/(4(i + p)M), x ∈ K, and, since the leading O(Δti+p+1) term must be the same in
both cases, we certainly also have

||G(x) − exp (Xb
i ) (x) || ≤ ΔtM

(
8 (i+ p)ΔtM

R

)i+p

for ε ≤ R/(4(i + p)M . Thus the vector field X = Xa
∗ in Corollary 1 (with i∗ appropriately

chosen) can be replaced by X = Xb
i�−p.

4 Geometric properties of backward error analysis

In this section, we consider differential equations (10) whose corresponding vector field Z
belongs to a certain Lie subalgebra g of the infinite dimensional Lie algebra of smooth vector
fields on IRn [19],[1]. Let us assume that there is a corresponding subgroup G of the group of
diffeomorphisms on IRn such that

g = TidG .

(Note that G is a Frechet manifold but that G is, in general, not a Lie group [19].) For
the Lie algebra of Hamiltonian vector fields this is, for example, the subgroup of canonical
transformations. An important aspect of those differential equations is that the corresponding
flow map exp(tZ) forms a one-parametric subgroup in G [19],[1]. Especially in the context of
long term integration, it is desirable to discretize differential equations of this type in such a
way that the corresponding iteration map GΔt belongs to the same subgroup G as exp(tZ).
We will call those integrators Lie-algebraic integrators.
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The following result concerning the backward error analysis of Lie-algebraic integrators can
be derived [24]:

Theorem 2. Let us assume that the vector field Z in

d

dt
x = Z(x)

belongs to a Lie subalgebra g of the Lie algebra of all smooth vector fields on IRn. Let us
assume furthermore that

xn+1 = GΔt (xn) = xn +Δt ψ(xn,Δt)

is a Lie-algebraic integrator for this subalgebra g, i.e., GΔt ∈ G for all Δt ≥ 0 sufficiently
small. Then the perturbed vector fields Xi, i = 1, . . . , s, defined through the recursion (13)-
(14) satisfy

Xi ∈ g

and the vector field X in Corollary 1 can be chosen such that X ∈ g.

Proof. The statement is certainly true for X1 = Δt Z. Let us assume that it also holds for
Xi, i.e., Xi(Δt) ∈ g for all Δt ≥ 0 sufficiently small. Since

Gt (x) = x+ t ψ(x, t) ∈ G

and

exp (Xi(t)) ∈ G ,

as well as

Gt=0 = exp(Xi(t))t=0 = id,

we have

ΔXi+1 = Δti+p+1 lim
t→0

Gt − exp (Xi(t))

ti+p+1
∈ TidG .

and ΔXi+1(Δt) ∈ g for all Δt ≥ 0 sufficiently small. This implies Xi+1(Δt) ∈ g as required.
�

Let us discuss two examples:

Example. Consider the Lie subalgebra of all vector fields that preserve a particular first
integral F : IRn → IR. If GΔt satisfies

F (GΔt(x) ) = F (x)
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for all x ∈ IRn, then the modified vector fields Xi possess F as a first integral as well. The
same result was recently derived by Gonzales & Stuart [9] by a contradiction argument.

Example. Let {., .} denote the Poisson bracket of a (linear) Poisson manifold V = IRn. Then
the Lie algebra of Hamiltonian vector fields on V is given by

d

dt
x = { id, H } (x)

where H : V → IR is an arbitrary smooth function. The corresponding group G is given
by the set of smooth diffeomorphisms on V that preserve the Poisson bracket {., .}. If the
discrete evolution (11) satisfies GΔt ∈ G for all Δt > 0, then the modified vector fields Xi

are Hamiltonian vector fields on V . If we assume furthermore, that the Hamiltonian H is
analytic and the discrete evolution GΔt satisfies the conditions of Corollary 1, then one has

| H̃([GΔt]
n(x))− H̃(x) | = O(Δtp+1) , (15)

H̃ the Hamiltonian of the modified vector field, i.e., X = {id, H̃}, as well as
|H([GΔt]

n(x))−H(x) | = O(Δtp)

over time intervals

T = Δt n = O(Δtp+1 ec/Δt) .

Note that the Hamiltonian H̃ of the modified vector field X satisfies

H̃(x)−ΔtH(x) = O(Δtp+1) , (x ∈ K) ,

with p ≥ 1 the order of the discretization (11). The estimate (15) follows from the fact that
the global error in H̃(xn), xn = [GΔt]

n(x0), grows only linearly with n ≥ 1 [3],[16] and that
after one step

H̃(GΔt(x))− H̃(x) = O(Δt e−c/Δt) .

Remark. Note that time-reversible differential equations, i.e., differential equations (10) with

Z (R (x)) = −RZ (x)

where R is an invertible linear transformation with RR = I , do not form a Lie algebra. Also
time-reversible maps G, i.e., maps G satisfying

RG (x) = [G]−1 (R (x)) ,

do not form a group. Hence Theorem 2 cannot be applied to this class of problems. However,
time-reversible vector fields form a linear subspace in the Lie algebra of vector fields and
the derivative of any one-parametric family Gt of time-reversible maps with Gt=0 = id with
respect to t at t = 0 is an element of this subspace, i.e., is a time-reversible vector field.
Thus the proof of Theorem 2 can be generalized to time-reversible integration. For details
see Hairer & Stoffer [18].
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5 Applications

5.1 Adiabatic invariants

Let us consider a time-dependent Hamiltonian system on IR2 with Hamiltonian H(q, p, t),
q, p ∈ IR. Using the extended Hamiltonian

E(q, p, s, e) := H(q, p, s)− e ,

the corresponding equations of motion

d

dt
q = +∇pE(q, p, s, e) = +∇qH(q, p, s) ,

d

dt
p = −∇q E(q, p, s, e) = −∇pH(q, p, s) ,

d

dt
e = +∇sE(q, p, s, e) = +∇sH(, q, p, s) ,

d

dt
s = −∇eE(q, p, s, e) = 1

are Hamiltonian in the extended phase space IR4. We assume that the Hamiltonian H is of
the form

H(q, p, s) =
1

2
p2 + V (q, s) .

For example,

V (q, s) =
1

2
ω(s)2 q2 . (16)

Then the equations of motion can be discretized by the well-known Verlet method, i.e.,

qn+1 = qn +Δt pn+1/2 ,

pn+1/2 = pn − Δt

2
∇q V (qn, sn) ,

pn+1 = pn+1/2 − Δt

2
∇q V (qn+1, sn+1) ,

en+1 = en +
Δt

2
[∇s V (qn, sn) +∇s V (qn+1, sn+1)] ,

sn+1 = sn +Δt .

This discretization is symplectic and, therefore, according to Theorem 2, there exists a mo-
dified Hamiltonian vector field X with modified Hamiltonian Ẽ such that its time one flow
is exponentially close to the discrete evolution GΔt given by the Verlet discretization. Fur-
thermore, because the equation of motion in the variable s is integrated exactly, the modified
Hamiltonian Ẽ is again of the form

Ẽ(q, p, s, e) = H̃(q, p, s) + e ,
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H̃(q, p, t) an appropriate function. Let us assume now that, for fixed t, the Hamiltonian
H(q, p, t) has periodic solutions and that H(t) varies very slowly in time compared to the
periodic motion in (q, p), i.e.,

| ∂
∂t
H(q, p, t) | ≤ δ

for all t and δ > 0 sufficiently small. Then the corresponding equations of motion possess an
adiabatic invariant

J =
1

2π

∫
◦ p dq

which remains almost constant over an exponentially long period of time [23], i.e.,

| J(t)− J(0) | ≤ δ , t = O(ec/δ) .

For the time-dependent potential energy function (16), the adiabatic invariant is J(t) =
E(t)/ω(t). Now, for fixed t, the perturbed Hamiltonian H̃(q, p, t) will also possess periodic
solutions and the derivative of H̃ with respect to t will be small, i.e.,

| ∂
∂t
H̃(q, p, t) | ≤ δ̃

with δ̃ = δ+O(Δt2) since the Verlet method is second order. Thus the perturbed Hamiltonian
equations of motion also have

J =
1

2π

∫
◦ p dq

as an adiabatic invariant. Let us write x = (q, p) and xj = [GΔt]
j(x0). Then

| J(xn)− J(x0) | = |
n−1∑
j=0

J(xj+1)− J(xj) |

= |
n−1∑
j=0

J(GΔt(xj))− J(exp(X)(xj)) + J(exp(X)(xj))− J(xj) |

≤
n−1∑
j=0

| J(GΔt(xj))− J(exp(X)(xj)) |+
n−1∑
j=0

| J(exp(X)(xj))− J(xj) |

≤ n
[
λ c1 e

−c2/Δt + c3 e
−c4/δ̃

]

with ci > 0, i = 1, . . . , 4, appropriate constants and λ > 0 the Lipschitz constant of J . Thus
one can conclude that symplectic integrators do not only approximately conserve total energy
over exponentially long periods of time but adiabatic invariants are approximately conserved
over exponentially long periods of time as well. This has been confirmed by numerical ex-
periments conducted by Shimada & Yoshida [28]. An interesting application of this result is
related to Hamiltonian systems containing a strong convex potential [26]. Here the highly os-
cillatory motion about the minima of the strong potential gives rise to an adiabatic invariant
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that should also be preserved under numerical discretization. We will discuss this in more
detail in a forthcoming publication.

Numerical example. Let us consider a one-dimensional harmonic oscillator with a slowly
varying frequency. The Hamiltonian is

H(q, p, εt) =
1

2
p2 +

1

2
ω(εt)2 q2

where

ω (εt) = 2π (1 + δ sin (2πεt))

with δ = 0.1 and ε = 0.001 [28]. The adiabatic invariant is

J =
1

2π

∫
◦ p dq =

H (εt)

ω (εt)
.

We integrated the corresponding equations of motion by the symplectic implicit midpoint
rule with step-sizes Δt = 1.0 and Δt = 10.0. Note that the period of the “fast” oscillations
in (q, p) is T = 1. Thus, for step-sizes Δt > 0.2, those oscillations are non longer correctly
reproduced. However, the implicit midpoint rule is stable for arbitrary step-sizes when applied
to an unperturbed harmonic oscillator and one could expect that one can also use larger step-
sizes for the harmonic oscillator with slowly varying frequency. However, as our numerical
results indicate, one has to be very cautious with this statement (see Fig. 1). This can be
explained as follows: For larger step-sizes, the implicit midpoint rule is equivalent to the exact
solution of a harmonic oscillator with lower frequency ω̃ < ω. Thus, for very large step-sizes,
the adiabatic invariance condition [28]

2π | d
dt
ω̃ | 1

ω̃2

 1

is not necessarily satisfied anymore and the quantity J(t) can start to drift arbitrarily.

5.2 Symplectic variable step-size integration

According to a result by Stoffer & Nipp [29], classical variable step-size methods asymptoti-
cally reduce to a sequence of mappings

xn+1 = GΔt(xn) (xn) , (17)

tn+1 = tn +Δt (xn) (18)

with Δt(x) an appropriate function determined by the step-size selection criteria. Typically,
we have

Δt (x) = δ s(x, δ)
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Figure 1: Numerical values of the adiabatic invariant J(t) for step-sizes Δt = 1.0 (a) and
Δt = 10.0 (b).

with δ = TOL1/p, TOL 
 1 a given parameter and p the order of the method GΔt. Let us
now take a different point of view: The variable step-size method (17)-(18) can be viewed as
a constant step-size discretization with step-size δ applied to the scaled differential equation

d

dτ
x = ρ(x)Z(x) , (19)

ρ(x) ≈ s(x, δ). As advocated by Huang & Leimkuhler [20] in the context of time-reversible
integration, one could, in fact, take (19) as the starting point, i.e., define an appropriate
scaling function ρ(x) and discretize the scaled differential equation by, for example, a time-
reversible method. That this can lead to highly efficient methods has been demonstrated in
[20] for time-reversible Hamiltonian systems of the form

d

dt
q = p ,

d

dt
p = −∇q V (q) ,

q, p ∈ IRn, with Hamiltonian

H(q, p) =
pT p

2
+ V (q) .

As suggested in [20], the scaling function is defined by

ρ (q, p) =
1√

pT p+ (∇qV (q))T∇qV (q)
. (20)

Note that this choice makes a lot of sense in the context of Corollary 1: The constantM there
is proportional to the maximum over ||Z(x)||, x ∈ K, || . || the Euclidian norm in IRn. Using
(19) with the scaling function (20), which corresponds to ρ(x) = 1/||Z(x)||, yields that the
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constant M for the scaled differential equation (19) is close to one uniformly on the compact
set K.

It has not been shown yet that reversible (non-symplectic) methods show the same excellent
long-term behavior as symplectic methods do; namely: conservation of energy over exponen-
tially long periods of time. Thus it seems reasonable to look for a symplectic discretization
of th e scaled Hamiltonian equations of motion: First we introduce the modified Hamiltonian
function

E (q, p, t, e) := ρ(q, p) (H(q, p)− e)

with corresponding equations of motion

d

dτ
q = ρ(q, p) p + (H(q, p)− e)∇p ρ(q, p) ,

d

dτ
p = −ρ(q, p)∇q V (q)− (H(q, p)− e)∇q ρ(q, p) ,

d

dτ
t = ρ(q, p) ,

d

dτ
e = 0

in extended phase space IR2n × IR2. In particular, let us consider the case e = H(q(0), p(0))
and ρ only a function of q. Then

d

dτ
q = ρ(q) p ,

d

dτ
p = −ρ(q)∇q V (q)− (H(q, p)− e)∇q ρ(q) = −ρ(q)∇q V (q) ,

d

dτ
t = ρ (q) ,

d

dτ
e = 0

which is just our scaled Hamiltonian vector field and can be discretized by the symplectic
Euler method, i.e.

qn+1 = qn +Δτ ρ(qn) pn+1 ,

pn+1 = pn −Δτ ρ(qn)∇q V (qn)−Δτ (H(qn, pn+1)− e)∇q ρ(qn) ,

tn+1 = tn +Δτ ρ (qn) .

Note that, for symplecticity, one has to keep the term (H(qn, pn+1)− e)∇q ρ(qn). Let us now
define our scaling function ρ. According to (20), we obtain

ρ (q) =
1√

pT p + (∇qV (q))T∇qV (q)

=
1√

2(e− V (q)) + (∇qV (q))T∇qV (q)
. (21)
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The method is explicit in the variable q. Unfortunately this implies that the method is
only first order in Δt. However, the method is symplectic and, therefore, the Hamiltonian
E = (H(q, p) − e)ρ(q) is conserved to O(Δt) over exponentially long periods of time. This
implies

H(qn, pn)− e = O(Δτ )

over exponentially long periods of time. Thus the proposed method seem suitable for long
term, relatively low precision, variable step-size simulations as they occur, for example, in
molecular dynamics. A second-order symplectic discretization could be obtained by using the
second-order Lobatto IIIa-b partitioned Runge-Kutta formula [6]. The resulting scheme is
implicit in ρ(q). However, in many cases the scaling function ρ(x) can be greatly simplified
and its evaluation is cheap compared to the evaluation of the force field F (q) = −∇qV (q).
Independently of us, the same approach to symplectic variable step-size integration has been
formulated by Hairer [15].

Numerical example. As a numerical example, we look at the following modified Kepler
problem:

d

dt
q = p ,

d

dt
p = −∇qV (q) ,

q, p ∈ IR2, and

V (qx, qy) = − 1√
(qx/10)2 + (qy)2

.

The problem is non-integrable and, in fact, the dynamics is chaotic, i.e., can be reduced to
the Bernoulli shift [21]. We chose initial values q = (0, 1) and p = (1, 0). The equations of
motion are integrated using the “variable” step-size symplectic Euler method with scaling
function (21) and Δτ = 0.05. The error in energy

ΔH = |H(q, p)− e |

and the variation in the actual step-size Δt = ρ(q)Δτ can be found in Fig. 2.

5.3 Homoclinic orbits and numerical chaos

In [11], Herbst and Ablowitz considered symplectic discretization of Duffing’s equation

d

dt
q = p ,

d

dt
p = −q + 2q3 .
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Figure 2: Error in energy (a) and actual step-size Δt (b) as a function of time.

It was noted that the homoclinic orbit associated with the hyperbolic fixed point (q, p) = (0, 0)
can lead to numerical chaos whenever the discretization is not integrable [11],[13]. It was also
shown in [11] that the associated Mel’nikov function is exponentially small which implies that
the “chaotic layer” around the homoclinic orbit at the origin decreases at an exponential rate
as Δt → 0 for any symplectic discretization of Duffing’s equation. Here we give a different
proof of the exponentially smallness of the associated Mel’nikov function: We assume that
Duffing’s equation is discretized by a symplectic method. Let H̃(q, p) denote the Hamiltonian
corresponding to the modified vector field X of Corollary 1. For convenience, we scale the
Hamiltonian H̃ by 1/Δt, i.e., H̃ := H̃/Δt. In general, the fixed point (q, p) = (0, 0) will also
be a fixed point of GΔt. Since the phase space of Duffing’s equation is two-dimensional, i.e.,
q, p ∈ IR, and (q, p) = (0, 0) is a hyperbolic fixed point, the modified vector field X will also
possess a homoclinic orbit at the origin (for Δt sufficiently small). Furthermore, it follows
from [13] (see also the corresponding remark in Section 3) that there exists a time-dependent
Hamiltonian Ĥ(q, p, t), Δt-periodic in t, such that the time-Δt-flow of the Hamiltonian system

d

dt
q = +∇pH̃(q, p,Δt) + Δt∇pĤ(q, p, t,Δt) ,

d

dt
p = −∇qH̃(q, p,Δt)−Δt∇qĤ(q, p, t,Δt)

is equivalent to GΔt. Furthermore, it follows from Corollary 1 that ||∇Ĥ(q, p, t)|| is exponen-
tially small, i.e., there exists a constant c > 0 such that

||∇Ĥ(q(t), p(t), t,Δt) || = O(e−c/Δt) (22)

along solution curves (q(t), p(t)) of

d

dt
q = +∇pH̃(q, p,Δt) , (23)

d

dt
p = −∇qH̃(q, p,Δt) . (24)
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The Mel’nikov function M(τ ) [5] corresponding to the homoclinic orbit z(t) = (q(t), p(t)) of
(23)-(24) is given by

M (τ,Δt) =
∫ +∞

−∞
{H̃, Ĥ} (zτ(t)) dt

with zτ(t) = z(t+ τ ), τ ∈ [0,Δt]. Thus, because of (22),

|M (τ,Δt) | = O(e−c/Δt)

as claimed. (Note that, according to (22), higher order terms in the expansion of the split-
ting distance between the stable and unstable manifolds of (q, p) = (0, 0) will be bounded by
O(Δt e−c/Δt) [10].) For further results on the discretization of homoclinic orbits see Fiedler
& Scheurle [13].

Acknowledgement. We like to thank Ernst Hairer for the encouragement to write this
paper and Christian Lubich as well as Claudia Wulff for comments on an earlier draft.

Appendix A

Proof of Theorem 1. Let us introduce some notations: (i) Let f be a real analytic function
on a complex ball of radius r > 0 around 0 ∈ IR. Cauchy’s inequality yields then, under the
assumption that

| f(y) | ≤ m

for all |y| ≤ r, the estimate

| f (j)(0) | ≤ j!mr−j .

for the jth derivative of f at y = 0. (ii) Let X be a real analytic mapping on a complex ball
of radius r > 0 around a point x0 ∈ IRn. Then one denotes

||X ||r = max
x∈Br(x0)

||X(x) ||

where Br(x0) ⊂ ICn is the complex ball of radius r around xo ∈ IRn and

|| z || = max
i=1,...,n

| zi | , (z ∈ ICn) .

Let the real analytic vector field

Y := G− id

satisfy

||Y ||R ≤ εM (25)
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with R > 0 appropriately chosen and x0 ∈ K. We also write Y = εY0 which allows us to
formally consider the vector fields Xi and ΔXi, i = 1, . . . , s, as functions of ε.

Lemma 2. The Lie derivatives (LY )Y , i ≥ 0, satisfy the estimate

1

(i+ 1)!
|| (LY )

i Y ||R/2 ≤ εM
(
2 εM

R

)i

.

Proof. Since

|| exp (t Y )(x)− x || ≤
∫ |t|

0
||Y (exp (τ Y )(x)) || |dτ | ,

the map exp(tY ) certainly satisfies

exp (t Y )(x)− x ∈ BR (x0)

for all |t| ≤ R/(2εM) and all x ∈ BR/2(x0). For x ∈ BR/2(x0), define

f (t) := exp (t Y ) (x)− x .

Since

|| f (t) || = || exp (t Y ) (x)− x || ≤ R

2

for |t| ≤ R/(2εM) and x ∈ BR/2(x0) as well as

(LY )
i Y (x) =

∂i+1

∂ti+1
exp (t Y )t=0 (x) = f (i+1) (t = 0) ,

it follows from Cauchy’s estimate that

|| (LY )
i Y (x) || ≤ (i+ 1)! εM

(
2 εM

R

)i

for all x ∈ BR/2(x0). �

Next we have to derive an estimate for ||ΔXi||, i = 1, . . . , s. According to (7), (8), and Lemma
2, we have

||ΔX1 ||R/2 ≤ εM

and

||ΔX2 ||R/2 ≤ εM
(
2 εM

R

)
.
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Lemma 3. The vector fields ΔXi satisfy

||ΔXi ||R/2 ≤ (i− 1) εM

(
2 (i− 1) εM

R

)i−1

(26)

for i > 1.

Proof. The statement is true for i = 2. We know that ΔXi and Xi, i = 1, . . . , s, are analytic
functions of ε. To not confuse the argument ε with the constant ε in (2), we write ΔXi(ξ),
Xi(ξ) instead of ΔXi(ε), Xi(ε). Let us assume that (26) holds for i = 1, . . . , j. Then

||Xj (ξ) ||R/2 ≤
j∑

i=1

||ΔXi (ξ) ||R/2

≤ ξ M

⎡
⎣1 + j∑

i=2

(i− 1)

(
2 (i− 1) ξ M

R

)i−1
⎤
⎦

which implies

||Xj (ξ) ||R/2 ≤ j ξ M (27)

for

ξ ≤ R

2 j M

where we have used that

1 +
j∑

i=1

(i− 1)

(
i− 1

j

)i−1

≤ j

for j ≥ 2. Let us now consider the vector-valued function

f (ξ) := exp (Xj (ξ)) (x0)− x0 .

Since

|| exp (Xj) (x0)− x0 || ≤
∫ 1

0
||Xj (exp (τ Xj)(x0)) || |dτ |

and (27), we have (similar to the proof of Lemma 2)

|| f (ξ) || ≤ R

2

for |ξ| ≤ R/(2jM) which, by Cauchy’s estimate implies

||ΔXj+1(ξ) (x0) || =
ξj+1

(j + 1)!
|| f (j+1) (ξ = 0) ||

≤ j ξ M

(
2 j ξ M

R

)j

. (28)
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To derive this estimate, we have used that ||Y (x̄)|| ≤ ξM on BR/2(x) for each x ∈ BR/2(x0)
(see also the proof of Lemma 2). Now, with this assumption, we get identical Cauchy estimates
for the coefficients of the Taylor series expansion of Y around each x ∈ BR/2(x0) which also
implies identical estimates for ||ΔXj+1(ξ) (x) || if we would explicitly compute ΔXj+1(ξ) (x)
from the Taylor expansion of Y around x ∈ BR/2(x0). Since, for x = x0, this estimate has
to be bounded by the (Cauchy type) estimate (28), the estimate (28) is, in fact, valid for all
x ∈ BR/2(x0), i.e.,

||ΔXj+1 (ξ) ||R/2 ≤ j ξ M

(
2 j ξ M

R

)j

as claimed (see also the remark below). �

Remark. Successive Taylor series expansion of the exponential functions exp(Xi), i =
1, . . . , j, reveals that each exponential function exp(Xi) can be written as an appropriate
linear combination of the elementary differentials fi,j of the vector field Y [14] (G corresponds
to the forward Euler discretization of the vector field Y0 with “step-size” ε and, for fixed i ≥ 1,
the fi,j’s denote the elementary differentials of “order” O(εi)). Since

ΔXi (x) = −ε
i

i!

[
∂i

∂εi
exp (Xi−1)ε=0

]
,

this implies that ΔXi is a linear combination of the elementary differentials of order O(εi),
i.e.,

ΔXi (x) =
1

i!

∑
j

di,j fi,j (x) . (29)

Now, each Lie derivative (LY )
i−1Y is a linear combination (with weights equal or greater than

one) of the elementary differentials fi,j of order O(εi) as well [17], i.e.,

1

i!
(LY )

i−1 Y (x) =
1

i!

∑
j

ai,j fi,j (x) ,

ai,j ≥ 1. By Lemma 2, we know that

1

i!
|| (LY )

i−1 Y ||R/2 ≤ εM
(
2 εM

R

)i−1

and, therefore,

|| fi,j ||R/2 ≤ i! εM
(
2 εM

R

)i−1

for all elementary differentials fi,j of order O(εi). (For a different derivation of this fact see
[20]). Thus there exist appropriate constants bi > 0 such that

||ΔXi ||R/2 ≤ bi εM
(
2 εM

R

)i−1
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and, according to Lemma 3, bi = (i−1)i. Using the recursive formulae for the coefficients di,j
in (29) [14], a similar estimate has been derived in [20].

Next we need an estimate for the difference between G(x0) and the exponential map
exp(Xi) (x0), x0 ∈ K. This is the subject of the following

Lemma 4. Whenever the constant ε in (2) satisfies

ε ≤ R

4 iM
,

then

||G(x0)− exp (Xi) (x0) || ≤ εM
(
8 i εM

R

)i

.

Proof. We know that

||Gε (x0)− exp (Xi(ε)) (x0) || = ||ΔXi+1(ε) (x0) ||+O(εi+2)

=
εi+1

(i+ 1)!
|| f (i+1) (ξ = 0) || +O(εi+2)

with G = Gε = id + εY0 and, as in the proof of Lemma 3,

f (ξ) := exp (Xi(ξ)) (x0)− x0 .

Following standard Taylor series expansion, we have

εi+1

(i+ 1)!
|| f (i+1) (ξ = 0) || +O(εi+2) ≤ εi+1

(i+ 1)!
sup

0≤ξ0≤ε
|| f (i+1) (ξ = ξ0) || .

Similar to the proof of Lemma 3, we obtain that

|| f(ξ) || ≤ R

2

for |ξ0 − ξ| ≤ R/(4iM) and ξ0 ≤ R/(4iM). Thus, Cauchy’s estimate implies

|| f (i+1) (ξ = ξ0) || ≤ (i+ 1)!
R

2

(
4 iM

R

)i+1

≤ (i+ 1)!M
(
8 iM

R

)i

and, for ε ≤ R/(4iM), the desired estimate

||Gε (x0)− exp (Xi(ε)) (x0) || ≤ εM
(
8 i εM

R

)i
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follows. �

Starting with i = 1, Lemma 4 yields now

||G(x0)− exp (Xi) (x0) || ≤ εM
(
8 i εM

R

)i

, (x0 ∈ K) ,

provided ε ≤ R/(4iM) for all i = 1, . . . , s. The expression (8iMε)i/R is a convex function in
i > 0 with its global minimum at

io =
R

8 εM e
.

Let i∗ be the integer closest to io and i∗ ≤ io. Note that this choice of i∗ certainly implies

ε ≤ R

4 i∗M
.

Then, for all x0 ∈ K,

||G(x0)− exp (Xi) (x0) || ≤ εM e−i� ,

≤ εM e−c/ε

where c = i∗ε ≤ R/(8Me). Thus we have proved Theorem 1.

Appendix B

Let us consider a one degree of freedom (analytic) Hamiltonian system

d

dt
q = p ,

d

dt
p = −∇q V (q) ,

q, p ∈ IR, for which the level sets of constant energy are compact submanifolds of IR2 (at
least on an appropriate subdomain of IR2). Let us discretize this system by a time-reversible
and exactly energy-conserving method GΔt. We consider restriction of GΔt to a level set of
constant energy and ask ourselves if, on this level set, GΔt is equivalent to the time-Δt-flow of
a autonomous vector field X. For simplicity, we assume the level set to be a one dimensional
manifold diffeomorph to the unit circle. Thus the restricted GΔt is diffeomorph to a diffeo-
morphism on the unit circle. Let μ ≥ 0 denote the corresponding rotation number [5]. As can
be shown by Kolmogorov’s method [5], the circle map is diffeomorph to a rotation whenever μ
is “sufficiently” irrational [5]. This implies in turn that GΔt restricted to this particular level
set of constant energy is equivalent to the time-Δt-flow of a vector fieldX. In other words, (5)
has a solution on this level set. In terms of our Newton iteration (6), Kolmogorov’s method
can be interpreted as follows: If the rotation number μ is irrational, then the system (6) (or
some nearby system) can be solved for ΔXi+1. However, this system is ill-conditioned due to
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small denominators. The condition of “sufficient irrationality” of μ insures that Newton’s (or
Kolmogorov’s) method converges nevertheless [5]. For the symplectic and/or time-reversible
discretization of the above one degree of freedom Hamiltonian system a similar statement
can be made: For a generic (analytic) Hamiltonian with periodic solutions, most level curves
of constant energy will “survive” under symplectic/time-reversible discretization (although
slightly deformed). These are the level curves for which the period of the motion of the
analytic problem is again “sufficiently” irrational. This is a consequence of KAM theory
for symplectic/time-reversible maps in the plane [2],[22]. On these invariant curves the map
GΔt is diffeomorph to a rotation and, therefore, can be represented as the time-Δt-flow of
a vector field X on the corresponding curve. Furthermore, even if the integration is started
away from an invariant curve, the energy will be (approximately) conserved for all t ≥ 0
and the numerical orbit is stable. This explains, for example, the excellent numerical results
for symplectic/time-reversible integration of Kepler’s equation (in the reduced one degree of
freedom formulation).
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