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Abstract

The Car�Parrinello �CP� approach to ab initio molecular dynamics serves
as an approximation to time�dependent Born�Oppenheimer �BO� calcula�
tions� It replaces the explicit minimization of the energy functional by a
�ctitious Newtonian dynamics and therefore introduces an arti�cial mass
parameter � which controls the electronic motion� A recent theoretical in�
vestigation shows that the CP�error� i�e�� the deviation of the CP�solution
from the BO�solution decreases like ���� asymptotically� Since the compu�
tational e	ort increases like ������ the choice of � has to �nd a compromise
between e
ciency and accuracy� The asymptotical result is used in this
paper to construct an easily implemented algorithm which automatically
controls �� the parameter � is repeatedly adapted during the simulation
by choosing � as large as possible while pushing an error measure below
a user�given tolerance� The performance and reliability of the algorithm is
illustrated by a typical example�

Keywords� Born�Oppenheimer approximation� Car�Parrinello method� ac�
curacy control�



Introduction

The study of the full quantum dynamics of a molecular system including
many electrons and ions is beyond computational possibilities� for now and
the next decades� For this reason� computer simulations for realistic systems
require some approximations which simplify the full quantum model�

The most prominent approach to approximative ab�initio molecular dy�
namic calculations is based on the quantum adiabatic approximation� also
called the time�dependent Born�Oppenheimer approximation ��� 	
� Here�
one exploits the large mass ratio between ions and electrons� The approxima�
tion is valid if the time scales of the fast electronic and slow ionic movement
are always well separated� Adiabaticity means� that averaging the electronic
movement with respect to the slow ionic time scale relaxes the electrons to
their energetic ground state� The equation governing the ionic movement is
obtained by a semiclassical limit� i�e�� becomes a classical Newtonian equa�
tion of motion� The electronic con�guration is given by the ground state of
the corresponding energy functional� The commonly used methods for such
a ground state computation� i�e�� the Hartree�Fock approximation and den�
sity functional theory with the Kohn�Sham scheme� replace the many�body
ground state by a set of one�particle wave functions which are computed by
a self�consistent eigenstate problem�

Thus� a straightforward numerical simulation of the adiabatic approach
requires the solution of a self�consistent electronic structure problem at each

time step of the simulation� As noted in ��
� even for very small realistic
time steps� state�of�the�art minimization algorithms often require an order
of ten iterations to converge which prevents even this approach from being
feasible for more complicated systems�

In �
�	� Car and Parrinello ��
 presented their method which largely
extended the set of treatable systems� They replaced this adiabatic motion
by a �ctitious classical Newtonian dynamics which oscillates around the
energy minimum� However� in most of the interesting cases that turns out
to be much more feasible to compute�

The CP�approach contains an arti�cial� but free parameter � the �cti�
tious �electronic mass� �� In an interesting paper ��
� Pastore� Smargiassi�
and Buda illustrated that � constitutes a kind of control parameter� the
smaller � is chosen� the smaller the deviation of the CP solution from the
solution of the adiabatic model will be� On the other hand � introduces
a time scale of order ���� thus forcing the discrete time steps in numerical
simulations of the CP�model to be proportional to ����� The user has to �nd
a compromise between the computational cost �the number of time steps�
and accuracy �the deviation from the adiabatic solution��

In ��
� the authors studied the in�uence of � on the accuracy of the
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method quantitatively� In this paper we show� that the obtained result allows
the construction of an algorithm which chooses � automatically� The value of
� is repeatedly changed during the simulation� following the philosophy that
it should always be adapted to the actual properties of the molecular system�
The algorithm tries to adjust � to the value which actually is optimal� i�e��
as large as possible with respect to the accuracy required�

However� it is not the major priority of this algorithmic approach to in�
crease the e�ciency of CP�simulations� Rather� we provide the user an e��
cient tool for more reliable calculations which control the accuracy through�
out�

� Theoretical Background

The Lagrangian of the quantum adiabatic motion is given by an expression
of the form

LBO �
�

�

X
I

MI �q
�
I � U�q��

where q � �q�� � � � � qn� denotes the ionic positions and the potential U is
given by minimizing the electronic energy potential E�

U�q� � min
�

E��� q��

The minimum is taken over all orthonormal m�tuple � � ���� � � � � �m�� The
energy functional is given for instance by the Kohn�Sham scheme ��
 in the
context of density functional theory� The resulting second order equation of
motion reads

M �qBO �
�U�q�

�q

����
q�qBO

� �� ���

Its solution will always be denoted qBO and the corresponding electronic
ground state as �BO and� in particular� the initial state �BO�t � �� as
��� It is well known that this quantum adiabatic model serves as a good
approximation for the full quantum dynamics as long as the ground state
�BO of E��� qBO� is nondegenerate �for details see �	
��

The �ctitious Newtonian dynamics introduced by the alternative CP�
approach is given by the Lagrangian

LCP �
�

�

mX
j��

h ��j � ��ji�
�

�

X
I

MI �q
�
I �E��� q� �

mX
j�k��

�jk �h�j � �ki � �jk� �

where h�� �i denotes the integral scalar product� the wave functions �j are
regarded as classical �elds� MI are the ionic masses and � is the named
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masslike parameter introduced by the method� The Lagrange parameters
�jk ensure the orthonormality of the wave functions� The total energy of
the CP�method contains an �unphysical� part� the so called �fake� kinetic
energy

Kf �

mX
j��

�

�
h ��j � ��ji�

The second order equations of motion belonging to LCP are

M �q� �
�E���� q�

�q

����
q�q�

� ��

� ���j �
�E��� q��

���

����
����

�
mP
k��

�jk�
�
k � j � �� � � � �m�

h��j � �
�
k i � �jk� j� k � �� � � � �m

where ����� denotes the functional derivative of E with respect to the state
� and the superscript the explicit dependence on the �control parameter�
��

To construct an automatic scheme for the appropriate choice of � we
must gain a more quantitative understanding of the in�uence of � on the
accuracy of the method� Herein� the accuracy is de�ned via the deviation
of the Car�Parrinello solution �q�� ��� for given � from that of the quantum
adiabatic model �qBO� �BO��

�� � jq��t�� qBO�t�j� j���t�� �BO�t�j�

Let T� be the maximal time for which the ground state of E��� qBO� is
still nondegenerate� Before T� is reached� the quantitative in�uence of � on
the accuracy is described by the following convergence result which holds
under the condition that the evolution starts in the initial ground state with
vanishing velocity� i�e�� ����� � �� and ������ � ��

For every time T with � � T � T�� there is a �� 	 � and a constant

C 	 � so that

�� � C���� � � t � T

and the fake kinetic energy satis�es

K�
f �

�

�
j ����t�j� � C� � � t � T ���

for all values of the parameter � satisfying � � � � ���
For the case of the Kohn�Sham functional E � EKS� a rigorous mathe�

matical proof of this assertion is given in the work ��
 of the authors�
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According to this result� the error can be pushed below any tolerance
desired via an appropriately small choice of �� It should be remembered that
we have to �nd a compromise between the computational cost �the number
of time steps� increasing with ������ and the accuracy �which decreases with
������ However� we can bound the error �� via controlling the increase in
fake energyKf � Exactly this is the basic idea on which the automatic control
scheme proposed in the next section is based� Try to �nd the maximal �
which allows to push the fake energy under a prede�ned tolerance�

The reader should note� that the convergence results are only valid for
times T � T�� i�e�� before the �rst degeneracy of the electronic ground state
may occur� After T� the state �

� can largely deviate from the ground state
for all choices of � 	 �� Then� the validity of the Car�Parrinello approach
and the quantum adiabatic approach itself are at least questionable ��� �
�

Moreover� the results do in general not hold if the CP�system is coupled
to a heat bath for simulating canonical ensembles with de�ned temperature
�for those temperature control methods see �

�� This signi�cantly alters
the oscillatory behaviour of the system and forces the solution to the BO�
dynamics� The herein presented algorithm is designed for simulations of the
original closed system without those external interactions� i�e�� for micro�

canonical calculations�

� The Automatic Control Scheme

In some cases� CP�simulations with �xed � develop large deviations from
the BO�dynamics even if initially � is small enough� The fake energy K�

f
and with it the error �� accumulatively increase after some time� an e ect
which may lead to an explosion of K�

f and� thus� may destroy any reliable
information� Obviously� this can happen if the ground state gets degenerate�
But it can also be observed if the energy gap between the ground state
and the �rst excited state of the electronic con�guration gets too small in
the course of the evolution of the system �cf� ��
 and the next section� in
particular Figure 	�� Here� �too small� means �too small in comparison with
the ��value chosen�� because� according to the theoretical statement from
above� we can avoid the error increase and bound K�

f and �� by choosing
� small enough� In this section a ��controlling algorithm will be explained
which is designed to avoid model instabilities away from true ground state
degeneracies�

The algorithm is based on the following idea� Compute an appropri�
ate choice � by limiting the maximal value of the fake energy Kf in the
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simulation interval I � �t�� t�
� i�e�� choose � so that

K�
f �I� � max

t�I

�

�
�j ���t�j� � TOL� ���

where the tolerance TOL is prede�ned by the user� The fake energy can
easily be computed during the simulation and can be used as a monitor for
the error ��� The construction of a scheme which automatically realizes ���
exploits the theoretical result ���� It is similar to the schemes designed for
controlling the stepsize in the numerical integration of ordinary di erential
equations �cf� �!� "
��

Let the initial electronic state for a CP�simulation on the time interval I
be the initial ground state and let its velocity be zero� Moreover� we assume
for a moment that we still have computed K��

f �I� for a �� � �� with ��
from the statement above� Then� according to ����

� �
TOL

K��
f �I�

�� �!�

will be near the optimal choice for realizing ��� on I� Now� let the total time
interval of interest� Itot� be decomposed in several subintervals I�� � � � � IN
without overlap� The algorithm works successively on all subintervals Ij by
exploiting �!� in two di erent situations�

�� Step rejection� If a CP�simulation on Ij using �� has the result
K��
f �Ij� 	 TOL� we have to reject this attempt� Then� a new ��proposal is

computed using �!� and the simulation on Ij is repeated� The results of the
previous simulation are neglected�

�� ��choice for the next step� Assume that the simulation on Ij using
�j has been successful� i�e�� K

�j
f �Ij� � TOL� Via �!�� we could compute

another ��proposal �� which then is expected to be optimal on Ij � Instead
of repeating the successful calculation on Ij� we switch to the next step�
hope that the situation does not change too much� and use �� as the initial
��value for the simulation on Ij��� Because �!� leads to �� � �j and a large
increase in � may be dangerous� this increase is limited� i�e�� �!� is replaced
by� e�g��

� � min

�
��

TOL

K
�j
f �Ij�

�
� �j�

The algorithm resulting from these ideas is collected in Figure ��
Note� that it contains an explicit minimization of E��� q� after each

subinterval Ij � �tj � tj � �T 
 �step ��� in Figure ��� Theoretically this is
necessary� because the construction of the algorithm depends on the as�
sumption that the initial electronic state for the simulation on Ij�� is the
momentary ground state� But if the tolerance TOL is small enough� the

	



Prede�ned�

Initial values� q�� �q�� �� � min
�

E��� q��

User� T � TOL� 
T � ��

Initialization�

k � �� t� � �� � � ��

Loop�

while tk � T

repeat

�q� �� �q� ��� � CP� �tk� tk �
t� qk� �k� �qk� ��

Kf � max
tk�t�tk��T

�

�
�j ���t�j�

if Kf � TOL f step rejectiong
then � �� ��� � TOL

Kf
� f��reduction g

until Kf � TOL

qk�� � q� �qk�� � �q

��� �k�� � min
�

E��� qk��� f compute ground stateg

� �� min
�
�� TOL

Kf

�
� � f��choice for next step g

tk�� � tk �
T

k �� k � �

end f of while g

Figure �� Scheme of the ��controlling algorithm� CP��t� t �
t� q� �� �q� ��� denotes the
subroutine which numerically solves the CP�equations in the interval �t� t�
t� using the
initial values �q� �� �q� ��� and �xing the free parameter � and which returns the solution at
time t � 
T � It should use appropriate numerical techniques like those proposed in ����
The minimization step ��� may be skipped if the tolerance TOL is small enough� cf� p� ��

deviation of the �nal state ��tj � �T � at the end of the simulation on Ij
from the corresponding ground state is also small and the minimization may
be omitted�

After each subinterval the accumulated fake energy is skipped by starting
at the next subinterval with the velocity �� � �� This leads to a small loss of
total energy� which is of no importance as long as TOL is small enough and
there are not too many subintervals� If this is not the case� the skipped fake
energy can be added to the kinetic energy of the ions by slightly increasing
their momenta�

In some sense the algorithm replaces the choice of the model parameter
� by the choice of a control parameter TOL� But the interpretation of TOL
as an upper bound for the fake energy gives much more physical insight and
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serves as a reliable monitor for the error ���
The performance of this algorithm will be illustrated in the next section

using a simple but appropriate example� Therein� it will be demonstrated
that neither step rejections and nor minimization steps destroy the e�ciency
of this ��control�

� Illustrative Examples

In ��
� Pastore� Smargiassi� and Buda constructed a simple linear two�level
model which cum grano salis contains all important features of the Car�
Parrinello method� In this model� � is a simple two�dimensional one�electron
state� i�e�� it is m � �� and the electronic energy functional is quadratic�

E��� q� � h��A�q��i�

with a � � ��matrix A� The time�dependence of the two eigenvalues 
� �

��q� and 
� � 
��q� of A along the solution q � q�t� is essential for the
evolution� As long as 
� � 
� the ground state ���q� of E��� q� is nonde�

generate� Thus� quantum adiabatic and CP�simulations do only make sense
as long as the energy gap �
 � 
� � 
� remains positive�

In this simple case the Car�Parrinello equations of motion can explicitly
be transformed into a system without constraints �cf� ��
 p� "�!! and be
aware of some typos��

��� � �G� g sin�� � ���

M�
��� � G� g sin�� � ���� ���M���

Mg�g � G� cos�� � ���� ���MgG
�
� �g � ���

where the angle � represents the state � via the parametrization � �
�cos ���� sin ����T � and g and �� mimic the ionic motions� While g directly
gives us the gap via

�
�t� �
g�t�

g���
�
����

the angle �� represents the ground state �� � �cos ����� sin �����
T of E�

Thus� the di erence � � �� measures the deviation of � from the ground
state ���

As a rule of thumb one can state that� if the error �� should remain
small� the parameter � must decrease with the minimal gap size� For study�
ing the e ects of a changing gap� Pastore� Smargiassi� and Buda constructed
two illustrative examples� one with a slowly decreasing gap leading to a level
crossing ��crossing example��� and another with an periodically closing� but
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Figure �� Time�dependence of the gap 
� in the two test cases� On top� Decreasing
gap with a level crossing near t������ Bottom� Oscillating gap with a minimal gap size
near ��

always positive gap ��oscillating gap example��� cf� Figure �� The parame�
ters of these cases are given in Table �� In both examples all initial velocities
are zero and ���� � ����� � �� All magnitudes are given in atomic units �cf�
��
�� For both examples� Pastore� Smargiassi� and Buda proposed � � ���

Table �� Parameters and initial values for the two test examples

example M� Mg �� �� G� g���

crossing � � ��� ��� � ��� ����� � ���� ��� � ���� � � ���� ���
osc� gap � � ��� ��� � ��� ���� � ���� ��� � ���� ���� � ���� �

for the test simulations and observed that �� and the corresponding fake
energy strongly increase in both examples� This problem is automatically
avoided by using the proposed control algorithm�

The collision example� With � � ��� �xed� �� and Kf slowly increase
with decreasing gap �cf� Figure �� sub�gure on top�� In contrast to this� the
fake energy remains bounded below the chosen tolerance TOL � � � ����

if the control algorithm of the preceding section is used� The ��value is
slowly decreased in accordance with the closing gap� This requires some
step rejections in order to readjust �� which consumes about �	 percent of
the computational e ort� If the level crossing is reached �at t � !���� the
algorithm automatically reports that no appropriate ��choice is possible�
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This performance does not change signi�cantly if the minimization step ���
�cf� Figure �� is omitted� only the decrease in � is stronger�
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Figure �� Crossing example� On top� Fake energies of a computation using � � ���
�dashed line� and of the controlled simulation with TOL � ���	 �solid line� versus time�
Below� The di	erent values of � chosen by the algorithm�

The oscillating gap example� With � � ��� �xed� �� and Kf explode
after some oscillations of the gap �cf� Figures ! and 	� sub�gures on top�
respectively�� These �gures also present the performance of the control
algorithm with tolerance TOL � � ������ The fake energy remains bounded
below TOL and the error � � �� does not show any accumulative increase�
too� The ��value is slowly pushed to a low value which then remains nearly
constant and which �ts to the minimal gap size� The same well�behavior is
observed in long term simulations which proves the stability of the control
scheme� Only about � percent of the computational e ort are used for step
rejections� If the explicit minimization step ��� is included the algorithm
needs about �� percent of the minimization steps which would be necessary
in a full quantum adiabatic simulation� If ��� is totally avoided a simulation
using TOL � � � ���� produces about 	� percent smaller �#s but the fake
energy and � � �� behave similar to those shown in Figures 	 and !� If
the tolerance is reduced the ��choices with and without ��� tend to become
identical�
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Figure !� Oscillating gap example� On top� Fake energy versus time for a computation
using � � ��� �exploding after t � ������� Below� Fake energy of the controlled simulation
with tol��e��� Bottom� The di	erent values of � chosen by the algorithm�
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Figure 	� Oscillating gap example� On top� Increasing error 	 � 	� of the computation
using � � ��� versus time� Below� The error of the controlled simulation remains bounded�
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Conclusion

� The examples demonstrate that the application of a ��control is ap�
propriate in order to avoid some fundamental di�culties of the CP�
approach with � �xed� The proposed algorithm reliably adjusts � to
the momentary gap size� avoids the error increase e ected by nearly
closing gaps� and automatically detects the presence of level crossings�

� The ��controlling algorithm needs much less explicit ground state com�
putations than a quantum adiabatic simulation with comparable accu�
racy and they can totally be omitted if the tolerance is small enough�

� The computational e ort of the necessary step rejections is far from
dominating the total e ort produced by the simulations�

� All this is done via monitoring of the fake energy� i�e�� by exploiting
information which is easily accessible in the simulation�
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