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Abstract

The Car�Parrinello method for ab�initio molecular dynamics avoids the
explicit minimization of energy functionals given by functional density the�
ory in the context of the quantum adiabatic approximation �time�dependent
Born�Oppenheimer approximation�� Instead� it introduces a �ctitious clas�
sical dynamics for the electronic orbitals� For many realistic systems this
concept allowed �rst�principle computer simulations for the �rst time� In
this paper we study the quantitative in�uence of the involved parameter ��
the �ctitious electronic mass of the method� In particular� we prove by use of
a carefully chosen two�time�scale asymptotics that the deviation of the Car�
Parrinello method from the adiabatic model is of order O������ 	 provided
one starts in the ground state of the electronic system and the electronic
excitation spectrum satis�es a certain non�degeneracy condition� Analyzing
a two�level model problem we prove that our result cannot be improved in
general� Finally� we show how to use the gained quantitative insight for an
automatic control of the unphysical 
fake� kinetic energy of the method�
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Introduction

A typical molecular system consists of two essentially di�erent parts� the
electronic con�guration and the remaining ionic con�guration� The study of
the full quantum dynamics of an polyatomic system is beyond computational
possibilities � for now and the next decades� For this reason� computer
simulations for realistic systems require some simpli�cations of the model�
mathematically speaking a kind of approximation within a certain range of
applicability�

Until recently the most commonly used simpli�cations modeled the ionic
dynamics by classical dynamics using empirical potentials for the ionic in�
teraction� Unfortunately� this is bound to special systems and inappropriate
in many interesting situations� Moreover� the lack of systematic techniques
for deriving such potentials has caused continuous research in the direction
of a true 	�rst�principles
 approach�

Such an approach can be based on the quantum adiabatic approximation�
also called the time�dependent Born�Oppenheimer approximation� Here� one
exploits the large mass ratio between ions and electrons� The approximation
is valid if the time scales of the fast electronic and slow ionic movement are al�
ways well separated� Adiabaticity now means� that averaging the electronic
movement with respect to the slow ionic time scale relaxes the electrons to
their energetic ground state� The equation governing the ionic movement is
obtained by a semiclassical limit� i�e�� becomes a classical Newtonian equa�
tion of motion� This approach can rigorously be justi�ed on mathematical
grounds ��� 
�� provided the electronic excitation spectrum ful�lls certain
non�resonance conditions� The adiabatic approach formally ends up with
an e�ective Hamiltonian function for the �now classically modeled� ionic
positions q and momenta p�

HI � H�
I �q� p� � U�q� � T �

I �p� � U�
I �q� � U�q��

Here� H�
I contains the ionic kinetic energy T �

I and the bare ion�ion interac�
tion potential U�

I whereas U�q� denotes the ground state energy of the elec�
tronic con�guration in the presence of the ions �xed at positions q� However�
an evaluation of U�q� requires a many�body ground state computation�

The most prominent methods for quantum many�body ground state com�
putations� i�e�� the Hartree�Fock approximation and the density functional
theory �DFT� of Hohenberg and Kohn ���� approximate the many�body
ground state by a set of one�particle wave functions� Because of its �ex�
ibility we concentrate on the density functional theory approach here� A
detailed account can be found in ����






In essence� the Hohenberg�Kohn theorem ��� �� states that the ground
state energy can be obtained exactly by minimizing the energy expressed
as a functional of the number density� However� in general such a den�
sity functional expression of the energy is not known and one has to rely
on various approximations� Using the Kohn�Sham scheme ��� 
�� for the
electronic density functional one ends up with a total energy functional
EKS���� � � � � �m� q�� where the �j describe one�particle wave functions be�
longing to the di�erent occupied electronic orbitals� They build an L��
orthonormal system� As an important feature the one�particle wave func�
tions �j enter the potential energy part of EKS only via their density

n�x� �

mX
j��

fjj�j�x�j��

Here� fj � � denotes the occupation number of the jth orbital� Now� one
replaces the ground state energy U�q� of the electronic con�guration by the
potential

UKS�q� � min
�

EKS��� q�� �
�

where the minimum is taken over all orthonormal m�tuple � � ���� � � � � �m��
One observes that the functional derivative of the energy functional with
respect to � can be expressed in the form

�EKS��� q�

���j
� fj �HKS��� q��j � j � 
� � � � �m ���

which de�nes for �xed electronic states � and ionic positions q the Kohn�

Sham Hamiltonian operator HKS��� q�� i�e�� a linear selfadjoint operator
operating on one�particle wave functions� The time�dependent wave func�
tions �j which realize the energy minimization of �
� along the ionic motion
q are in fact eigenstates of the Kohn�Sham Hamiltonian�

HKS���t�� q�t���j �t� � �j�t��j�t�� j � 
� � � � �m� ���

Since the operator HKS depends on these eigenstates itself� one speaks of a
self�consistent solution of the �nonlinear� eigenvalue problem�

Summarizing� the density functional approach replaced the linear eigen�
value problem for the m�particle ground state by a nonlinear eigenvalue
problem involving a set of m corresponding one�particle states� This pro�
vides a dramatic reduction of the dimensional complexity of the problem��

�Application of the Hartree�Fock approximation instead of density functional theory
results in the same formal situation as given in equations ��� and ����
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Figure 
� Logic of the Car�Parrinello method

However� a straightforward numerical simulation of the adiabatic approach
using the potential UKS would require the solution of a self�consistent elec�
tronic structure problem at each of the typical 
�� � 
�� time steps� As noted
in �
��� even for very small realistic time steps� state�of�the�art minimization
algorithms require an order of ten iterations to converge which prevents even
this approach from being feasible for more complicated polyatomic systems�

In 
���� Car and Parrinello ��� presented a method which largely ex�
tended the set of treatable systems� Their main idea was to circumvent
the explicit minimization by partly undoing the adiabatic approach� Re�
member that the quantum adiabatic approach replaced the fast quantum�
dynamically oscillatory behavior of the electronic wave functions �extremely
di�cult to compute� by the average of their motion around the minimum
of the potential energy surface �still expensive to compute�� Now� Car and
Parrinello replaced this adiabatic motion by a �ctitious classical Newtonian
dynamics which oscillates around the energy minimum again� However� in
most of the interesting cases that turns out to be much more feasible to com�
pute� The logic of the idea can be visualized by the diagram given in Fig� 
�
In detail� the �ctitious Newtonian dynamics is given by the Lagrangian

LCP �
�

�

mX
j��

h ��j � ��ji�



�

X
I

MI �q�I �EKS��� q� �

mX
j�k��

�jk �h�j � �ki � �jk� �

where h�� �i denotes the integral scalar product� the wave functions �j are
regarded as classical �elds� MI are the ionic masses and � is a masslike
parameter introduced by the method� The Lagrange parameters �jk ensure
the orthonormality of the wave functions�

�



Compared to the widespread computational use� of this method little
attention has been paid to developing the underlying theory� According
to the extremely well written paper �
�� by Pastore� Smargiassi� and Buda
there have even 	been some misunderstandings about the justi�cation of the
method�
 After a particular clear presentation of the method� they analyze
the method in the framework of classical mechanics and argue that the
method works due to classical adiabatic e�ects� Moreover� they indicate that
this classical adiabaticity is given essentially under the same condition on the
electronic excitation spectrum which allows to use the quantum adiabatic
approximation� condition A for short� This coincidence of the underlying
conditions shows how well a chosen model the Car�Parrinello method is� It is�
however� de�nitely not obvious since that would essentially mean to take for
granted an intrinsic link between the quantum mechanical nature of the real
system and the purely classical nature of the �ctitious Newtonian system �
which provides one instance of the mentioned misunderstandings� Pastore�
Smargiassi� and Buda support their analysis by a number of carefully chosen
numerical experiments for the Car�Parrinello method� In particular� they
compare the behavior for physical meaningful systems� where one has some
understanding of the underlying quantum mechanics� with the behavior of
some model problems� where one has some understanding of the underlying
classical mechanics�

Their study shows that the �ctitious 	electronic mass
 � constitutes a
kind of control parameter� the smaller � is chosen� the smaller the deviation
of the Car�Parrinello method from the adiabatic model will be� On the
other hand � introduces a time scale of order ���� thus forcing the discrete
time steps in numerical simulations to be proportional to ����� The user has
to �nd a compromise between the computational cost �the number of time
steps� and accuracy� In order to do that one should gain a more quantitative
understanding of the in�uence of � on the accuracy of the method� This
paper is essentially devoted to that question�

Moreover� we intend to put the analysis of Pastore� Smargiassi� and
Buda on a rigorous mathematical base� As they realize already� their use
of dynamical system theory is rather informal and with a 	more empirical
attitude�
 Essentially their argument relies on the existence of adiabatic
invariants for multifrequency systems �cf� the beginning of �
�� p� �����
and �
�� formula ������� From the mathematical point of view this is a quite

�For recent results on computational issues consult the articles ��� ��� ��� and the
literature cited therein� For a review of applications look at ���� or at the web address
���� and the vast pointers to the recent literature given there�
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dangerous assumption� We best cite from the same book of Arnol d which
serves as a reference to the mathematical literature for them ���� p� 
����
emphasis ours�� 	For nonlinear systems with several degrees of freedom� the
adiabatic invariance of the action variables does not hold� in spite of asser�
tions in the physical literature� they are only almost adiabatic invariants�
i�e�� change little for the majority of initial conditions�
 One might argue
that realistic initial values do us the favor of belonging to that majority �
but putting that wish on a �rm base seems to be at least extremely di�cult�

As we will show a great deal less than adiabatic invariance will do the
job� A careful two�time�scale kind of perturbation analysis will prove our
main result that condition A implies that the deviation !� of the Car�
Parrinello method from the adiabatic model with the Kohn�Sham operator
can be estimated by

!� � C�����

for some constant C � �� Since the computational cost grows linearly
with ���� one can regard the Car�Parrinello method as a kind of �rst order
method�

The paper is organized as follows� In Sec� 
 we extract the mathematical
structure of the Car�Parrinello method and of condition A� We give a precise
statement of the main theorem� The proof of this theorem will be given
in Sec� �� In Sec� � we apply the theorem to a model problem which was
investigated numerically in �
��� We show that our result cannot be improved
in general� Particular attention is paid to the case where condition A is not
satis�ed�

� The Underlying Mathematical Structure

To reveal the mathematical structure of the Car�Parrinello method we use a
Hamiltonian description instead of a Lagrangian one� To simplify notation
we introduce the constraint manifold

M � f� � ���� � � � � �m� � h�j � �ki � �jkg

which describes the orthonormalization of the electronic one�particle wave�
functions� The Hamiltonian HI of the quantum adiabatic model with Kohn�
Sham operator is given by the expression

HI �



�
pTM��p � min

��M
EKS��� q�� �z �
�UKS�q�

�

�



where we have incorporated the bare ion�ion interaction potential U�
I �q� into

the energy EKS and M denotes the diagonal matrix of ionic masses� The
corresponding second order equation of motion reads

M "q� �
	UKS�q�

	q

����
q�q�

� ��

Its solution will always be denoted with the superscript ��
The Hamiltonian of the Car�Parrinello method is given by

HCP �



�
pTM��p �




��
h
� 
i � EKS��� q�

with the holonomic constraints � � M� Here� 
j � � ��j denotes the canon�
ical momentum associated with �j � The 	unphysical
 part of the energy
function� the so called 	fake
 kinetic energy

Kf �



��
h
� 
i �

mX
j��

h
j � 
ji

��

is a kind of measure for the deviation between the motions belonging to
HCP and HI � The second order equations of motion belonging to HCP are

� "�� �
�EKS��� q��

���

����
����

� TM� �� �M�

M "q� �
	EKS���� q�

	q

����
q�q�

� ��

where the superscript denotes the explicit dependence on the parameter
�� The functional derivative �EKS���

� is connected to the Kohn�Sham
operator as expressed in formula ����

Condition A� which was mentioned in the Introduction� will give a more
detailed description on how the minimum min��MEKS��� q�� is attained
along the solution of the adiabatic model� If

UKS�q��t�� � EKS����t�� q��t��� ���t� �M�

realizes at least a local minimum� we necessarily have that the eigenvalues
��
jk of the second functional derivative of EKS with respect to the con�

straints � � M are nonnegative� Note that �jk constitutes a normal mode
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frequency of the linearized system with frozen coe�cients� According to
Pastore� Smargiassi� and Buda �
�� these normal modes are given by

��
jk �

�
fj��

�

k � �j�� k � m � 
� � � � �

�fj � fk���k � �j���� k � 
� � � � �m�

for j � 
� � � � �m� Here� we denote by ��k the eigenvalue of the kth unoccu�
pied level and by �j the jth occupied one of the Kohn�Sham Hamiltonian
HKS���� q��� Thus� the necessary nonnegativity condition is ful�lled if the
occupied states correspond to the lowest m one�particle eigenvalues and� in
the case of unequal occupation numbers fj �� fk of two occupied states j
and k� if the state with higher energy has lower occupation�

Some of the frequencies �jk are identically zero in time� for instance

�jj � �� j � 
� � � � �m�

and
�jk � �� if fj � fk�

As shown in �
�� there is a one�to�one correspondence of these nonoscillating
modes� which are �rst integrals of the adiabatic model by the way� to �rst

integrals of the Car�Parrinello model HCP � To be speci�c� phase invariance
of the Hamiltonian HCP and the constraint manifold M yields the �rst
integral

Ijj � h
j � �ji � h�j � 
ji�

whereas invariance of the Kohn�Sham operator with respect to unitary trans�
formations of the occupied states with the same occupation number yields
the �rst integral

Ijk � h
j � �ki � h�j � 
ki�

provided that fj � fk�
We now give the precise statement of condition A� All the other modes

are uniformly oscillating� i�e�� there is a gap �min � � such that

�jk�t� 	 �min� j �� k� fj �� fk�

for all times t under consideration� In particular� condition A excludes
any energy level crossings of occupied states and crossings of occupied with
unoccupied states�

�



If we eliminate	 the degrees of freedom corresponding to the nonoscil�
lating modes in the adiabatic model and to the �rst integrals in the Car�
Parrinello model� we can apply the following theorem� which reveals the
assertion of the Introduction� For the sake of simplicity we state and prove
this theorem only for �nite�dimensional �real� Hilbert spaces as arising after
Ritz�Galerkin approximation of the Kohn�Sham Hamiltonian�

Theorem � Let M be a compact �nite dimensional manifold and E��� q�
be a smooth energy function on M
RN � i�e�� uniformly bounded from below�

i �Establish Condition A�� Let �� � M be a strict local minimizer of

E��� q�� for a given q� � R
N � Then there exists a neighborhood V of q��

a unique smooth function �� � V �M� and a constant �min � � such

that ���q� is a strict local minimizer of E��� q� and the eigenvalues of

the Hessian D�
�E��� q�j�����q� restricted to TM are bounded below by

��
min for q � V �

ii �The Adiabatic Model�� We de�ne on V the adiabatic potential

U�q� � E����q�� q� �q � V�

Given an initial momentum p� � R
N there exists a time T � �� such

that the adiabatic model

M "q� �
	U�q�

	q

����
q�q�

� �� q���� � q�� M �q���� � p��

has a unique solution q� � C����� T �� V �� Along this solution condition

A is ful�lled�

iii �The Car�Parrinello Model�� For each time T with the properties of
step �ii� the Car�Parrinello model

� "�� �
	E��� q��

	�

����
����

� TM� �� �M�

M "q� �
	E���� q�

	q

����
q�q�

� ��

with initial data

q���� � q�� M �q���� � p�� ����� � ��� ������ � ��

has a unique solution q�� �� for � � � and � � t � T �

�For the dimensional reduction of Hamiltonian systems due to conservation laws we re�
fer to ���� Theorem ������ The original system is related to the reduced one by quadratures�

�



iv �The Error�� There are constants C � � and �� � � such that

!� � jq��t� � q��t�j � j���t�� ���q��t��j � C���� � � t � T

and the fake kinetic energy satis�es

Kf �
�

�
j ����t�j� � C� � � t � T

for all values of the parameter � satisfying � 
 � � ���

� The Proof

Part i of Theorem 
 can directly be shown by a straightforward application
of the implicit function theorem and continuity arguments� Parts ii and iii
follow by well known results for the existence and uniqueness of solutions
of ordinary di�erential equations� The �nal time T is reached since con�
servation of energy does not allow the solution to leave a su�ciently large
compact subset of the phase space� The remaining part iv is considerably
more di�cult�

Since the total energy

H�
CP �




�
pTM��p �




��
h
� 
i � E��� q�

is a constant of motion and the initial data �x

H�
CP �




�
pT�M

��p� � E���� q��

to be in fact independent of �� we conclude that

p� � O�
�� 
� � O������� i�e�� �q� � O�
�� ��� � O��������

using that the energy function E is bounded from below� Since we work on
a compact time interval ��� T � this implies q� � O�
�� By compactness of M
and �� �M we also have �� � O�
�� Below we will show that the following
estimates hold in fact�

�� � ���q�� � O������ and ��� � O�
�� ���

Now� we can readily prove the error estimates of part iv� Because �� is
de�ned as a local minimizer we have 	�E����q�� q� � � and get the identity

	U

	q
�q� �

	E

	�
����q�� q�

	��

	q
�q� �

	E

	q
����q�� q�

�
	E

	q
����q�� q��

�



where U denotes the adiabatic potential introduced in step ii of Theorem 
�
Thus� estimate ��� implies that q� satis�es the equation

� � M "q� �
	E

	q
���� q�� � M "q� �

	U

	q
�q�� � O�������

which is a perturbation of the adiabatic model of part ii� By stability we get
the error estimate

q� � q� � O�������

which implies

j�� � ���q��j � j�� � ���q��j � j���q��� ���q��j � O�������

The proof of Theorem 
 is �nished�

Proof of the estimates ���� We embed the manifold M to some Eu�
clidean space and introduce in the neighborhood of �� �M an orthonormal
parametrization x 
� ��x� �M� i�e��

h	i�� 	j�i � �ij � 	i� � TM� ���

where 	i � 	�	xi and h�� �i denotes the inner product of the embedding
space� In the following we always assume that T and � are small enough
that we live in this coordinate patch around ��� The global result can be
easily obtained by continuation exploiting compactness�

Using summation convention we obtain

�� � 	i� � �xi� "� � 	j	i� � �xi �xj � 	i� � "xi�

Inserting that into the equation

� "�� �
	E��� q��

	�

����
����

� TM

which uses the same embedding of M by the way� and taking the inner
product with 	k� yields

�"x�k �
	E

	xk
�x�� q�� � ��kij�x

�� �x�i �x�j � � �k� ���

Here� we introduced the preimage x� by �� � ��x��� the tensor

�kij � h	k�� 	i	j�i�


�



and by 	abus de langage


E�x� q� � E���x�� q��

The tensor �kij obeys the symmetries

�kij � ��ijk� �kij � �kji� ���

where the �rst one can be obtained by di�erentiating the orthogonality
relation ��� and the second one is obvious� With # � ��kij�kij we write the
second order equation ��� in the short form

�"x� �
	E

	x
�x�� q�� � �#�x�� � �x� � �x� � �� ���

The corresponding initial values are given by

x���� � x� with �� � ��x��� and �x���� � ��

Along the same lines we introduce x��t� �� as the preimage of ���q��t���

���q��t�� � ��x��t� ����

This allows us to conclude from condition A the properties

	E

	x
�x��t� ��� q��t�� � �

and
	�E

	x�
�x��t� ��� q��t�� � � � � 	 ��

minj�j
� ���

Now� the crucial methodical idea is to make the two�time�scale ansatz

x��t� � x��t� �� � ����t����

where we have introduced � � ���� for short� By �� � O�
� and q� � O�
�
we surely get x� � O�
� and x���� �� � O�
�� but this implies only

�������� � O�
�� ���

The asserted estimate ��� requires but a far sharper estimate of ��� To
this aim we seriously simplify notation in the following� We suppress all
superscripts � and set

� � t���







The derivative with respect to � will be denoted by a prime throughout� We
are done� if we can show that there is a constant M � �� such that

max
�
j����j� j�����j

�
�M � � � � T��� �
��

since this immediately implies the asserted estimate ���� Inserting the two�
time�scale ansatz into ��� and using a Taylor expansion of the force term
	E�	x we �nally get after division by ��

� � ������ �
	�E

	x�
�x����� ���� q����� � ����

� �

Z �

�
�
 � s�

		E

	x	
�
x����� ��� � s������ q����

�
� ���� � ���� ds

� �#�x����� � �x����� ��� � �x����� ���

� ��#�x����� � ����� � �x����� ���

� �#�x����� � ����� � ����� � � "x����� ����
�

�

We observe the following properties�

A The symmetries ��� of # yield

h# � �� � ��� ��i � h# � �� � �x�� ��i � ��

B The integral can be written as a force term�Z �

�
�
 � s�

		E

	x	
�
x����� ��� � s��� q����

�
� �� � ds �

	W

	�
���� �� ���

where the potential W satis�es by virtue of estimate ���

max�jW �t� �� ��j� jWt�t� �� ��j� � c��
 � j�j	�

for � � t � T and � 
 � � ��� Here we have to restrict x to a simply
connected coordinate patch�

Taking the inner product of the second order equation �

� with �� we are
led to �while suppressing several arguments�

h���� ��i � h	�xE � �� ��i� � 	�W � �� � � h����� ��� ��i � �� �
��


�



Here� we collected all 	nice
 terms into the function

��t� �� � #�x�t�� � �x��t� ��� � �x��t� ��� � "x��t� ����

which can easily be estimated by

j��t� ��j � c� � � t � T� � 
 � � ���

We rewrite the equation �
�� in the following energy�type form�

d

d�

	



�
j��j� �




�
h	�xE � �� �i � �W



�

�

�
h	�x	tE ��� �i���Wt�� h����� ��� ��i�

Using ��� and observation B we can estimate the right hand side of this
equation by

RHS � � c��
 � j�j� � j��j�� � � c	

	

 �

��
min

�
j�j� �




�
j��j�



�
��

for � 
 � � �� and � � t � T � After setting

K � � exp�c	T����

where � is a constant which we will �x later on� we modify W for j�j � �K
to a potential W� in such a way that the estimates of observation B are not
touched but additionally

jW�j � c� � � t � T� � 
 � � ���

holds for all �� This leads to � jW�j � 
 for all � 
 � � �� if we choose �� � ��
but small enough� Replacing the integral in equation �

� by the term 	�W�

we get an equation which determines a certain function �� instead of �
subject to the same initial conditions� However� by construction estimate
�
�� holds for �� instead of � with the same constant c�� Surely we have to
replace W by W� on the left hand side� Thus� introducing

$� �



�
j��
�
j� �




�
h	�xE � ��� ��i � �W� 	




�
j��
�
j� �

��
min

�
j��j

� � 
�

where we have to restrict � � ��� estimate �
�� gives us the di�erential

inequality
d

d�
$� � � c	�$� � ��� �
��


�



Note that this is the place where we �nally made use of condition A� The
initial value of $� is given by

$���� �



�
j��
�
���j� � �W���� �� �� �




�
j�����j� � �W ��� �� ��

and can be estimated by j$����j � c� for all � � ��� Obviously� the constant
c� does not depend on the modi�ed potential W��

Observing $� � � � � an application of Gronwall s lemma to the di�er�
ential inequality �
�� leads to the estimate




�
j��
�
j� �

��
min

�
j��j

� � $� � � � �$���� � �� exp�c	T � �
��

for � � T�� and � � ��� We immediately see that the choice �which could
have been made prior to the modi�cation step%�

�� �
��c� � ��

��
min

yields j��j � K for the times t and parameter � under consideration� But this
means� that �� does not 	see
 the modi�cation of W into W� and therefore
�� is a solution of the original equation �

�� By uniqueness we thus get

�� � ��

Hence� the estimate �
�� already implies the desired estimate �
�� of � and
��� The proof of Theorem 
 is �nished�

Remark� Exactly the same line of arguments which led to the proof of the central
estimate �
� can be used to prove the following time�dependent version of Theorem ��

Theorem � Let M be a compact �nite dimensional manifold and E��� t� �� be a smooth
energy function on M� R� � i�e�� uniformly bounded from below�

i Let �� � M be a strict local minimizer of E��� �� ��� Then there exists a time
T � �� a parameter �� � �� a unique smooth function �� � ��� T �� ��� ����M� and
a constant �min � � such that ���t� �� is a strict local minimizer of E��� t� �� and
the eigenvalues of the Hessian D�

�E��� t� ��j�����t��� restricted to TM are bounded

below by ��
min for � � t � T and � � � � ���

ii For each time T with the properties of step �i� there is a �� � � with �� � ��� such
that the second order problem

� ��� �
�E

��
���� t� �� � TM� �

� �M� �
���� � ��� ������ � ��

has a unique smooth solution �� for � � � � �� and � � t � T � There is a constant
C � � such that

j���t�� �
��t� ��j � C�

��� and j ����t�j � C for � � t � T� � � � � ���


�



� An Example

To exemplify our theorems and the relevance of condition A we pick up a lin�
ear two�level model which was already discussed to some extend by Pastore�
Smargiassi� and Buda �
�� Sec� IV�B� using numerical experiments� These
experiments show that cum grano salis the example contains all important
features of the Car�Parrinello method�

Let A�t� be a smooth time�dependent family of symmetric two�by�two
matrices and consider the energy

E��� t� �



�
hA�t����i

on the constraint manifold

M � f� � R
� � h���i � 
g�

The corresponding second order equation is given by

� "�� � A�t��� � ����� �� �M� �
��

with initial values ����� � �� � M and ������ � �� For �� satisfying the
assumptions of Theorem � it has to be a strict local minimizer of E��� ���
This is the case if and only if there are two di�erent eigenvalues ����� 

����� of A��� with corresponding eigenstates ����� and ����� where �� is
given by the lower state �� � ������ Clearly we can continue these values
as smooth functions of t up to every time T � � prior to any point of level
crossing�

A�t����t� � ���t����t�� � � �� 
� � � t � T�

where ���t� 
 ���t�� The gap �min � � is de�ned by

���t� � ���t� � ���t� 	 ��
min� � � t � T�

Theorem � states� that there is a constant C � � such that the deviation
from the time�dependent ground state �� is given by

j���t� � ���t�j � C����

for � � t � T and su�ciently small parameter ��
We will go further and show two more facts� First� the convergence

estimate O������ cannot be improved in general� Second� if we start in the


�



higher state� �� � ������ the Car�Parrinello solution �� keeps on oscillating
for �� � and not even time averages converge to any of the eigenstates�

To this end we introduce Lagrangian coordinates on the manifold M�
Each � �M can be written as

� � ���� �
�

cos������ sin�����
�T

�

Introducing �� � ������ �� � ������ � � �� 
� and �� � ����� a straight�
forward calculation shows that �
�� is equivalent to the equation

�"�� � �� sin��� � ��� � �� �
��

of a nonlinear pendulum with initial data ����� � �� and ��� � ��

The Case �� � �
����� As in the proof of Theorem 
 we use a two�time�

scale ansatz
���t� � ���t� � ���t���� � � �����

With � � t�� and d�d� denoted by a prime� we get the initial values

���� � �� ����� � � �������

Insertion of the two�time�scale ansatz into �
�� yields after division by �

������ � ������
sin�������

�
� � "������ � ��

This is a single frequency problem and the theorem of the adiabatic invari�
ance of the action variable ��� p� 
��� is applicable� It states that there is a
constant c�� such that

jI��� � I���j � c�� for � � � � T���

where the action is given by

I��� �



�

j�����j� � ������j����j�

�����
�

By a little calculation we obtain the estimate

j���t� � ���t�j �
j ������jp
������t�

���� � c� � �
j ������j

�min
���� � c� � �
��


�



for � � t � T and some constant c�� Thus� the existence of an adiabatic
invariant provides a proof of Theorem � indeed� but only in a very special
case�

Intuitively� having a look on the estimate �
�� one expects that the order
of approximation cannot be better than O������� whenever the ground state
is moving initially� i�e�� ������ �� �� In fact� for the special choice

��t� � 
� ���t� � t� �
��

equation �
�� can be solved explicitly in terms of elliptic functions� cf�� ���
eq� C ��
���

�� � t� � arcsin

	
�

�
sn

	
t

�

���� ��




� t� � sin�t��� � O����� � � �����

where the asymptotics is in accordance with the estimate �
��� The asymp�
totic result for Jacobi s sine amplitude function sn��j�� which we have used
can be found in �
� eq� 
��
��
��

The Case �� � �
����� Now� the assumptions of Theorem � are violated

at time t � �� We will show� that this constitutes a kind of catastrophe
for the Car�Parrinello method which does not converge to any state in any
reasonable way then�

Again� we consider the special choice �
�� which implies by orthogonality
of the eigenstates

���t� � ���t� � 
 � t � 
�

if we �x the phase initially as ����� � 
� Thus we can write the second order
problem �
�� in the form

�"�� � sin���� � �� ����� � �� ������ � 
� ����

where
�� � ���t� � ���t� � t � 
 � ���t��

Lemma 	 The functions cos������ and sin������ are periodically oscillat�
ing between �
 and 
 with a period

T� � O�� log ����� � � �����

Their means are converging for �� � as

cos������
�
� � and sin������

�
� ��

where the weak	 convergence is meant to hold in the space L���� T ��


�



We postpone the proof and study the consequence for the solution �� of
the model equation �
��� It is rapidly oscillating while covering the whole
of manifold M on an exceedingly small time scale and converges weakly to
zero�

�� �



cos������

sin������

�
�



cos������ cos������ � sin������ sin������

sin������ cos������ � cos������ sin������

�

�
� ��

Thus� in the limit average the Car�Parrinello solution �� does not give
preference to any particular state � of the two�level state space under con�
sideration at any time�

Remark� The start of the Car�Parrinello method at the wrong energy level
resembles the situation of the method shortly after an energy level crossing�
cf�� �
��� Our example suggests that averaging the rapid oscillations would
probably not cure the method from breakdown after level crossings�

Proof of Lemma 	� The second order equation for �� has Hamiltonian
structure� Hence� we have conservation of 	energy


��

�
j ���j� � cos�� �

��

�
� 
� ��
�

which immediately yields j ���j 	 
� Even more� by ������ � 
 we conclude
that ��� 	 
� Thus� the function �� increases strictly monotone� In particu�
lar� it reaches the value �
 after a certain time T �� � which can be calculated
by separation of variables�

T �� � �

Z ��

�

d�p
�� � ��
 � cos��

� O�� log �����

By the energy relation ��
� we have

���T ��� � �
 and ����T �� � � 


which implies by the �
�periodicity of the sine function and uniqueness of
the solutions of problem ���� that

���t � T ���� �
 � ���t� t 	 �� ����


�



Consequently� the function cos������ is periodic with period T� � �T �� and
of the form

cos����t���� � ��t�T�� ��

for some smooth function � which is 
�periodic in the �rst argument� A well
known generalization of the Riemann�Lebesgue lemma� which can be found
in ��� p� ��� yields the weak convergence

cos������
�
� � �

Z �

�
���� �� d��

Using ���� again� one can establish the anti�symmetry

cos����t � T ������ � � cos����t�����

which directly implies � � �� The assertions concerning sin������ are proved
in a completely analogous fashion�
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