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Seeking the Equation of State

of Non�Compact Lattice QED

Preprint SC 96–15 (May 1996)



Seeking the Equation of State of
Non-Compact Lattice QED
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1 Introduction

Non-compact lattice QED undergoes a second order chiral phase transition
at strong coupling [1]. This allows one to take the cut-off to infinity, which
is prerequisite to a non-perturbative definition of a continuum theory. A
wide-spread belief is that QED, like other non asymptotically-free theories,
is trivial in the sense that all renormalized couplings vanish as the cut-off is
taken to infinity. It would, of course, be much more interesting if the theory
had a non-trivial continuum limit.

In a series of papers [2, 3, 4, 5, 6] we have investigated the ultra-violet be-
haviour of four-flavour non-compact QED using staggered fermions. Among
other things, we found that the data are consistent with mean field criti-
cal exponents plus logarithmic corrections, and that the renormalized charge
vanishes in the continuum limit. Furthermore, the effective Yukawa couplings
could be shown to follow roughly the behaviour of the renormalized charge,
which suggests that they too vanish at the critical point.

On the other hand, the Illinois group has mainly focused on the equa-
tion of state. They first reported [7] Miransky scaling [8] and argued that
the phase transition is driven by monopole condensation, leading to electron
confinement in the chirally broken phase [9]. Later on this transition was
interpreted as four-dimensional percolation [10] with power-law critical ex-
ponents, the major support for this idea being the apparent coincidence of
chiral phase transition and monopole percolation thresholds. But “the truth
cannot be so simple”, as Hands and Kogut concluded [11] correctly [12].

Another approach was suggested by the Zaragoza group, who use a mean
field guided algorithm to simulate the effect of dynamical fermions [13, 14,
15]. In this algorithm the chiral limit is taken before the infinite volume limit.
It is known from examples of explicitly solvable models that this can lead to
wrong results [16]. We expect this procedure to be particularly dangerous in
the symmetric phase of the theory.

In spite of these efforts the subject has remained controversial. The vari-
ous groups disagree in the exact position of the critical point and the critical
exponents of the chiral phase transition. In the present paper we shall re-
turn to the determination of the equation of state with improved statistics,
simulating on larger lattices and closer to the critical point, and hopefully
answer some of the open questions.

The paper is organized as follows. In section 2 we give the details of
the lattice calculation. In section 3 we derive a finite size formula for the
chiral condensate and the ratio of scalar and pseudoscalar susceptibilities.
We use that formula to extrapolate the lattice data to the infinite volume.
In section 4 we investigate possible forms of the equation of state, and in
section 5 we determine the parameters by fitting to the data. Alternatively,
the critical coupling and exponents can be determined from the susceptibility
ratio, which is discussed in section 6. In section 7 we derive a relation between
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the equation of state and the average plaquette. This provides a further test
of our results. Finally, in section 8 we end with some concluding remarks.

2 Lattice Calculation

The non-compact gauge field action is given by

SG =
β

2

∑
x,μ<ν

F 2
μν(x) (1)

with
Fμν(x) = ΔμAν(x)−ΔνAμ(x), (2)

where Δμ is the forward lattice derivative, β = 1/e2, and e is the bare
charge. In Eqs. (1) and (2) and in the following the lattice constant has
been set equal to 1 for convenience, so that all dimensionful quantities are
to be understood in units of the (inverse) lattice spacing. The gauge fields
take values on the real line. As long as one only considers gauge invariant
quantities, the functional integral can always be made well-behaved, in spite
of the unbounded range of integration.

Since chiral symmetry plays a major role in this work, a natural choice
for the fermionic variables are staggered fermions. The corresponding action
is given by

SF =
∑
x,y

χ̄(x)Mxyχ(y), (3)

Mxy = mδxy +
1

2

∑
μ

(−1)x1+...+xµ�1[eiAµ(x)δy x+μ̂ − e−iAµ(y)δy x−μ̂]

≡ mδxy + iDxy , (4)

where m is the bare mass. In the naive continuum limit this action describes
four Dirac fermions (flavours) minimally coupled to a U(1) gauge field. For
finite lattice spacing it has a chiral U(1) × U(1) symmetry at m = 0. The
physically interesting region is near the phase transition at β = βc, where
this chiral symmetry is spontaneously broken.

The calculations in this paper are based on the action S = SG+SF , where
we have used periodic boundary conditions for the gauge fields and periodic
(anti-periodic) spatial (temporal) boundary conditions for the fermions. The
extent of the lattice will be denoted by L, so that the four-dimensional volume
is given by V = L4.

We have performed simulations on 44, 64, 84, 104, 124, 164 and 204 lattices
at β values ranging between 0.16 and 0.22 and at masses between 0.005
and 0.16. The actual values can be read off from Tables 1–3. We have
used the hybrid Monte Carlo algorithm [17] for updating the gauge field
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configurations. Some details of the performance of the algorithm for QED
can be found in Ref. [2].

We have in general accumulated 1000 trajectories for each pair of param-
eters (β,m). At the smallest bare mass, m = 0.005, the statistics is in some
cases only 500 trajectories, while for the 204 lattice it is only 100 trajecto-
ries. On the 64 lattice we generated 5000 trajectories for each (β,m) and on
the 44 lattice 10000 trajectories for each (β,m). The trajectory length was
chosen to be 0.7–1.0, and the molecular dynamics step sizes were adjusted
so that acceptance rates of 70–80 % were obtained. The stopping criterion
for the conjugate gradient inverter was taken to be r2 < 10−10 for m > 0.005
and r2 < 10−14 for m = 0.005. Compared to our previous investigations this
represents a considerable increase in statistics.

We have computed the average plaquette P , the chiral condensate σ and
the logarithmic derivative R of the chiral condensate,

R ≡ ∂ lnσ

∂ lnm

∣∣∣∣∣
β

=
m

σ

∂σ

∂m

∣∣∣∣∣
β

. (5)

From rigorous Ward identities we know that R can be independently com-
puted as the ratio of zero momentum meson propagators (susceptibilities):

∂σ

∂m

∣∣∣∣∣
β

= Cσ(p = 0) ,

σ

m
= Cπ(p = 0) , (6)

so that

R =
Cσ(p = 0)

Cπ(p = 0)
. (7)

Naturally, this is only an exact identity if the full propagators are used:

Cσ(p = 0) ≡ ∑
x

(〈χ̄(0)χ(0)χ̄(x)χ(x)〉 − 〈χ̄(0)χ(0)〉〈χ̄(x)χ(x)〉) , (8)

Cπ(p = 0) ≡ ∑
x

(−1)x1+x2+x3+x4 (〈χ̄(0)χ(0)χ̄(x)χ(x)〉
− 〈χ̄(0)χ(0)〉〈χ̄(x)χ(x)〉)

=
∑
x

(−1)x1+x2+x3+x4〈χ̄(0)χ(0)χ̄(x)χ(x)〉 . (9)

It can be shown that in the pion propagator at momentum zero only the
fermion-line-connected part of 〈χ̄(0)χ(0)χ̄(x)χ(x)〉 contributes. This is not
the case for Cσ, where the fermion-line-disconnected contribution is impor-
tant. We found that in the broken phase it can change Cσ by ≈ 50%.

We computed the fermionic observables, including the fermion-line-dis-
connected part of Cσ, by using stochastic estimators (see e.g. [18]). The
computation is based on expressing Eq. (8) in terms of the fermion matrix
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M defined in Eq. (4),

Cσ(p = 0) =
1

V

∑
x,y

(〈χ̄(x)χ(x)χ̄(y)χ(y)〉 − 〈χ̄(x)χ(x)〉〈χ̄(y)χ(y)〉)

=
1

V

(
〈TrM−1 TrM−1〉 − 〈Tr(M−1M−1)〉 − 〈TrM−1〉2

)
.

(10)

We obtained the traces of these matrices by averaging over vectors of random
numbers η,

TrA = 〈η†Aη〉η . (11)

The random variables have to be chosen such that 〈η〉η = 0 and 〈η∗
xηy〉η = δxy.

In our calculations we used twenty random vectors for each configuration.

The results for the average plaquette P , the chiral condensate σ, and the
ratio R are shown in Tables 1, 2 and 3, respectively.

3 Finite Size Analysis

Important for analyzing the data is an understanding of the finite size effects.
Although in general they are small, results in the symmetric phase and at
smaller bare masses can suffer from finite size effects, σ being under-estimated
on small lattices.

According to finite size-scaling theory [19, 20] we expect the general form
of the chiral condensate σ and correlation length ξ to be given by scaling
relations of the form

σ = L−β̇/ν σ̃
(
τL1/ν, mLδβ̇/ν

)
and ξ = L ξ̃

(
τL1/ν, mLδβ̇/ν

)
, (12)

where τ = (β−βc)/βc and β̇, δ and ν are the critical exponents. We have used
the symbol β̇ for the critical exponent β to distinguish it from the inverse
coupling β. The identity γ = β̇(δ− 1) has been used to eliminate the critical
exponent γ in favour of δ in the above expressions. These scaling relations
can be rearranged to give an implicit equation which the chiral condensate
must satisfy,

f
(
L/ξ, τ/σ1/β̇ , m/σδ

)
= f

(
mRL, τ/σ

1/β̇, m/σδ
)
= 0 , (13)

where mR is the renormalized mass.

Unfortunately, this form is far too general for our purposes. Therefore
we need to make a model calculation to see what form f has. Because finite
size effects are largest at large β, we have investigated them in the β = ∞
limit, where they are exactly calculable.

At infinite β all plaquettes are forced to have minimum action, so the
only gauge fields we have to consider are those that are gauge-equivalent
to a constant A field. We need to know the fermion determinant in such a
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background field. The fermion determinant F for Nf flavours of staggered
fermions is

F ≡ det (m+ iD)
(Nf/4) = det

(
m2 +D2

)(Nf/8)
. (14)

It is more convenient to work with the second form, because the eigenvectors
of D2 are simpler than those of D. The eigenvectors of D2 in a constant
A field are simply exp(−ik · x), where the momentum vector k is consistent
with the boundary conditions. The eigenvectors do not depend on the value
of A, however the corresponding eigenvalues do depend on the background
field. They have the value

∑
μ sin

2(kμ − Aμ). Thus

F (A) =
∏
k

(K(k − A))(Nf/8) = exp

(
Nf

8

∑
k

lnK(k − A)

)
, (15)

where
K(p) ≡ m2 +

∑
μ

sin2(pμ) . (16)

We can easily calculate the chiral condensate from Eq. (15):

σ =
4

V Nf

∂

∂m

∫
d4AF (A) =

∫
d4AF (A) s(A)∫

d4AF (A)
(17)

with
s(A) =

∑
k

m

K(k −A)
. (18)

Equation (17) is exact, and we have evaluated it on the computer, but it is
more useful to look at the limit m � 1, mL � 1, where we can simplify
this expression. We find the large L limit of the k sums in the standard way,
using identities of the form

L∑
n=1

g
(
2πn

L
− θ

)
= L

∞∑
j=−∞

exp(ijLθ)
∫ 2π

0

dp

2π
g(p) exp(ipjL) , (19)

valid for a periodic function g(k) with period 2π. Applying the four-dimensional
analogue of Eq. (19) to the sums of interest gives

s(A) =
∑
j

exp(iLj · A)
∫

d4p

(2π)4
exp(iLj · p) m

K(p)
. (20)

When the four-vector j is non-zero, the p integral is exponentially small.
The leading behaviour of these integrals can be found in several ways, for
example by the saddle point approximation, or by considering the asymptotic
behaviour of the Bessel functions:

s(A) ≈
∫

d4p

(2π)4
m

K(p)
+
∑
j �=0

exp(iLj · A)
(

2m

πL|j|
) 3

2

exp(−mL|j|) . (21)
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Similarly, for the sum of logarithms appearing in Eq. (15) we find

1

V

∑
k

lnK(k − A) =
∑
j

exp(iLj · A)
∫

d4p

(2π)4
exp(iLj · p) lnK(p)

≈
∫

d4p

(2π)4
lnK(p) −∑

j �=0

exp(iLj ·A) 2

L|j|
(

2m

πL|j|
) 3

2

exp(−mL|j|) .
(22)

Substituting Eqs. (21), (22) into Eq. (17) and collecting terms independent of
A (terms with cyclic dependence on A give zero when A is integrated over),
we get

σ =
∫

d4p

(2π)4
m

K(p)
− 16

π3
Nfm

3 exp(−2mL) + · · ·

= σ∞ − 16

π3
Nfm

3 exp(−2mL) + · · · . (23)

Features of Eq. (23) to note are that no terms of order exp(−mL) survive
the integration over the background fields A, and that in the coefficient of
exp(−2mL) all powers of L cancel, leaving a coefficient ∝ L0. This formula
has been derived at β = ∞, where bare and renormalized fermion masses are
the same. We want to use it to suggest a finite size formula which can be used
at finite β too, so we have to consider whether to interpret m as the bare or
renormalized mass. On physical grounds it is clear that the mass appearing
in the exponential function should be the renormalized mass mR. We have
therefore used the observation [3] that the lowest-order result σ ≈ 0.62mR

works well, both at β = ∞ and in the critical region, to rewrite the formula
in terms of σ, a quantity easier to calculate than mR,

σ − σ∞ ∝ Nf m
3
R exp(−2mRL) + · · ·

∝ Nf σ
3 exp(−3.23σL) + · · · . (24)

This formula was applied in [4, 5] successfully. Obviously, a formula derived
at β = ∞ must be tested before being applied at other β values. If we plot σ
against the right hand side of Eq. (24), we obtain straight lines [5]. Another
encouraging observation is that finite size effects are tiny in the quenched
case and grow as the number of flavours, Nf , increases [10], as expected from
Eq. (24).

In order to reconcile this calculation with the ansatz (13), we write

σ∞ = σ (1 + a(σ,m, L)) , (25)

where

a(σ,m, L) = A

(
σδ

m

)q

exp(−3.23σL) . (26)

Differentiating this finite size formula for σ gives the following result for R:

R∞ =
R [1 + a(σ,m, L)(1 + δq − 3.23σL)]− qa(σ,m, L)

1 + a(σ,m, L)
. (27)
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The prefactor is now linear in L, which indicates that the finite size correc-
tions to R will be larger than those for σ.

In order to obtain values for σ∞ and R∞, we made combined overall fits
to the available data (with the restrictions L ≥ 8, and 3.23σL > 3 which
corresponds to mRL > 1.5). In total 138 values for σ and 49 values for R
were used in the fit. We only have three free parameters, A, δ and q, to
describe all these data. The results of the fit are A = 29.7(35), q = 0.754(23)
and δq = 2.465(56). Hence we obtain the critical exponent δ = 3.27(12).
The χ2/dof is 2.29.

Plots of this fit are shown in Figs. 1 and 2. The data are consistent
with the formula. We see that our restriction on using σ data was quite
conservative. Our ansatz describes the σ data down to 2mRL ≈ 3.23σL = 2,
and is also valid for many data from the smaller lattices.

As a check of our assumption σ ≈ 0.62mR, we experimented with in-
troducing a fourth parameter ε in the exponential term exp(−ε 3.23σL). It
came out to be 1 within 1 % error, showing that such a modification of the
exponential term is not needed.

The results of the extrapolation to infinite volume are given in the last
column of Tables 2 and 3. In most cases σ∞ differs very little from the value
on the largest lattice we used.

4 Equation of State

In this section we will attempt to numerically determine the equation of state

m = f(σ, β) . (28)

From now on, we take σ to be the value extrapolated to the infinite volume,
as given by the last column in Table 2. Noting that for m non-zero f is
analytic in β, we expand it around β = βc. This gives

m = f0(σ) + (β − βc)f1(σ) +O((β − βc)
2) . (29)

The function f0(σ) must vanish faster than f1(σ) for σ → 0. To test whether
it is reasonable to truncate the series after f1, we look at a contour plot
obtained by interpolating the infinite volume values of σ. We interpolate
linearly in the variable β and logarithmically in m. The results are shown in
Fig. 3. As we see very little curvature, we conclude that higher terms in the
expansion are negligible.

We fit a line to each contour independently, and find f0 and f1 from
the intercepts and gradients. This allows us to investigate the functions f0
and f1 without having to make any assumptions about the form of their σ
dependence. To investigate deviations from mean field behaviour

f0(σ) ∝ σ3 ,

f1(σ) ∝ σ , (30)
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Figure 1: Finite size scaling behaviour of σ at m = 0.005 (top) and m = 0.02
(bottom). Solid (open) symbols denote whether a point is (not) included
in the fit. The solid lines show the fit to Eq. (25). The dashed-dotted line
represents 3.23σL = 3.
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Figure 2: Finite size scaling behaviour of R at m = 0.005 (top) and m = 0.01
(bottom). Shown are data that are included in the fit. The lines are the fit
to Eq. (27). The lines are plotted in the region 3.23σL > 3.
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Figure 3: Contours of constant values of σ in the (β,m)-plane. The values
are σ = 0.08 to σ = 0.46 in steps of 0.02, from bottom right to top left.

we plot in Fig. 4 f1(σ)/σ versus σ. We see that f1 grows slightly faster than
σ. Since this is a log-log plot, the curvature in the data indicates a non-power
behaviour of f1.

Knowing f1, we can estimate βc. We rewrite Eq. (29) as

β − m

f1(σ)
= βc − f0(σ)

f1(σ)
. (31)

The ratio f0/f1 vanishes as σ → 0, in the mean field case quadratically. This
suggests plotting the l.h.s. of Eq. (31) against σ2 to get βc from the intercept.
From Fig. 5 we read off βc ≈ 0.19. Deviations from σ2 behaviour are small.

Finally, we attempt to determine f0(σ) by rearranging the equation of
state (29) to read

f0(σ) = m− (β − βc)f1(σ) . (32)

Knowing f1 and βc gives in principle f0. Of course, the result is somewhat
uncertain at the smallest σ values due to the sensitivity on βc. In Fig. 6
we show, motivated from mean field exponents (30), f0(σ)/σ

3 against σ for
βc = 0.19040(9) (the value to be found in the following section).
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Figure 4: Numerical results for f1 (defined in Eq. (29)). The lines represent
fits discussed in section 5. The solid line represents fit 1, the dotted line
represents fit 3.

Figure 5: Numerical results for the l.h.s. of Eq. (31), allowing one to read
off βc from the intercept. The lines represent fits discussed in section 5. The
solid line represents fit 1, the dotted line represents fit 3.
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Figure 6: Numerical results for f0 (defined in Eq. (29)). The lines represent
fits discussed in section 5. The solid line represents fit 1, the dotted line
represents fit 3.

5 Critical Behaviour

In this section we study specfic ansätze for the functions f0(σ) and f1(σ)
introduced in Eq. (29). We start with the mean field equation of state

m = A0σ
3 + A1(β − βc)σ . (33)

As we have already seen in the previous section, there are corrections to mean
field behaviour. Nevertheless, it is instructive to look at a Fisher plot [21],
because it gives another perspective. This is shown in Fig. 7. From Eq. (33)
we expect to see straight parallel lines if we plot σ2 over m/σ. These lines
are labeled by β, and the line corresponding to βc ends at the origin. In
Fig. 7 we see just such behaviour. We can read off 0.19 < βc < 0.195. The
curvature of these lines is slight, showing that the deviations from mean field
behaviour are not large.

There are two ansätze for modifications to Eq. (33) discussed in the liter-
ature. Our approach has been the introduction of logarithmic corrections [2]:

m = A0
σ3

lnp0(1/σ)
+ A1(β − βc)

σ

lnp1(1/σ)
. (34)
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Figure 7: Fisher plot of extrapolated σ data. The solid lines connect data
belonging to the same β. The dotted lines are lines of constant m. The
values are m = 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07 and 0.09, from left
to right.

This equation has five parameters, namely βc, A0, p0, A1 and p1. An alterna-
tive ansatz used in [10] is

m = A0σ
δ + A1(β − βc)σ

b . (35)

It has also five parameters, namely βc, A0, δ, A1 and b. This ansatz means
that one is looking for non-mean field critical exponents δ and β̇ (recall that
b = δ − 1/β̇, where again we have denoted the critical exponent β by β̇ to
distinguish it from the inverse coupling β).

We fit both equations to the data, as we did already in [5]. In addition to
the increase in statistics, there is improvement in two directions. Firstly, we
have now extrapolated our data to infinite volume. Secondly, we have made
simultaneous fits to σ and R data, using all the independent information
that we have. According to the definition (5), the fit formula for R can be
obtained by differentiating Eqs. (34) and (35). We fitted all infinite volume
data in the parameter range m ≤ 0.05 and 0.16 ≤ β ≤ 0.22 (see Tables 2
and 3). The total number of data used is 77 for σ and 42 for R. The results
are:
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Fit βc A0 p0 A1 p1 χ2/dof
1 0.19040(9) 1.798(5) 0.324(15) 6.76(3) 0.485(7) 7.63
2 0.18748(4) 1.828(6) 1 (fixed) 7.46(2) 0.686(5) 20.55
Fit βc A0 δ A1 b χ2/dof
3 0.19039(11) 2.138(29) 3.206(14) 8.154(55) 1.255(4) 9.72
4 0.19617(8) 1.203(8) 2.596(7) 5.300(8) 1 (fixed) 47.86

The errors given in this table are directly taken from MINUIT. In Fig. 8 we
show σ data together with fit 1. Figure 9 shows this fit compared with R
data. Several comments are in order:

• Fit 2 is included to compare with our old result, where we fixed p0 ≡ 1
and found βc = 0.187(1), p1 = 0.61(2) [3]. Our new data prefer a
different p0: leaving p0 as an additional free parameter improves the
χ2/dof considerably.

• Fixing b ≡ 1, as we did in fit 4, was proposed in [10]. Compared with
fit 3, the χ2/dof increases by a factor of nearly 5.

• Fits 1 and 3 give consistent results, especially for βc. This is to be
expected because Eqs. (34) and (35) are numerically similar. From
Eq. (34) one can derive effective values for δ and b, δeff = 3+p0/ ln(1/σ),
beff = 1 + p1/ ln(1/σ). The positive values of p0 and p1 correspond to
δ > 3 and b > 1.

• Finally, we can compare the fit with our findings of the previous section.
In Figs. 4, 5 and 6 we plotted the results from fit 1 (solid lines) and
fit 3 (dotted lines). Data and fits differ mainly for large values of σ. In
Figs. 4 and 5 fit 1 describes the data a little better than fit 3. From
Fig. 4 we also see that f1/σ is not constant. This would be the case if
b = 1.

We see that βc is insensitive to the specific ansatz used for the equation
of state. The data do not support the assumption b = 1.

6 Susceptibility Ratio

An alternative approach to the determination of βc and δ was proposed
in [10]. It is based on the susceptibility ratio R defined in Eq. (5).

The critical behaviour of the equation of state can be read off from the
form of R at small m values. In the broken phase R must vanish when
m → 0. If σ is proportional to mp for small m, as expected at the phase
transition and (with a different power) in the symmetric phase, R will go
to p as m → 0. At βc the power p is 1/δ, so we can determine δ from the
intercept of the R curve at the critical coupling. In the symmetric phase p is
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Figure 8: Fit of the logarithmically improved equation of state (34) to σ
data. The dashed line is the extrapolation to m = 0.

1/(δ − 1/β̇). In both cases logarithmic corrections, as in Eq. (34), can mean
that the asymptotic values are only reached at extremely low m. Since at
large m the fermion determinant and the partition function are ∼ mV , we
know that σ → 1/m at large m. Therefore, at very large m, R goes to −1
for all β.

In Fig. 9 we plot the R values extrapolated to infinite volume according to
Eq. (27). The separatrix between curves showing the behaviour expected in
the broken and the symmetric phase, respectively, corresponds to a coupling
which lies slightly above 0.19. This is consistent with the results of sections
4 and 5. The exponent δ is in the neighbourhood of 3.

In Fig. 9 we also compare the R values with the equation of state derived
in section 5. The data are compatible with the fit, though naturally the σ
data with their smaller statistical errors and finite size effects dominate the
determination of the critical parameters.

In [10] the mass ratio m2
π/m

2
σ was used as an approximation to the sus-

ceptibility ratio Cσ/Cπ. The approximations involved in this substitution
are discussed in [4]. Comparing the R values in Table 3 with the mass ratios
in [10], we see that this is not a valid approximation.
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Figure 9: Plot of R data. The dotted lines shall guide the eye. The solid
lines represent the fit to the logarithmically improved equation of state (34)
(fit 1 from section 5). The dashed line corresponds to βc from that fit.

7 Maxwell Relation

Another quantity which can be computed with high precision is the average
plaquette P ,

P ≡ 1

6V

〈 ∑
x,μ<ν

F 2
μν(x)

〉
. (36)

The plaquette values can be related to the equation of state for the chiral
condensate by means of a Maxwell relation, which we now derive.

We know that both the chiral condensate and the average plaquette can
be found from the partial derivatives of the partition function Z:

1

V

∂

∂m
lnZ

∣∣∣∣∣
β

=
Nf

4
σ (37)

and
1

V

∂

∂β
lnZ

∣∣∣∣∣
m

= −6P . (38)
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This allows us to express the second derivative ∂
∂m

∂
∂β

lnZ in two different
ways:

1

V

∂

∂m

∂

∂β
lnZ =

Nf

4

∂σ

∂β

∣∣∣∣∣
m

= −6
∂P

∂m

∣∣∣∣∣
σ

, (39)

which leads to

∂P

∂m

∣∣∣∣∣
β

= −Nf

24

∂σ

∂β

∣∣∣∣∣
m

=
Nf

24

∂m

∂β

∣∣∣∣∣
σ

∂σ

∂m

∣∣∣∣∣
β

. (40)

These thermodynamic relations hold for any lattice size and for all values of
β and m. The second form of the identity is the most useful, as our equations
of state give us m as a function of σ and β. For this reason we will express
P as a function of σ and β, too.

The partial differential equation, Eq. (40), can be solved by

P (σ, β) =
Nf

24

∫ σ

0
dσ′∂f(σ

′, β)

∂β
+ C(β) ≡ I(σ, β) + C(β) , (41)

where m = f(σ, β) is the equation of state and C(β) is a constant of integra-
tion, which can depend only on β. If terms of O((β − βc)

2) in Eq. (29) are
neglected (as in the ansätze (34) and (35)), the integral I is independent of
β and depends only on σ. Applying Eq. (41) to the equation of state (34)
leads to

P (σ, β)− Nf

24
A12

p1−1Γ (1− p1, 2 ln(1/σ)) = C(β) , (42)

where Γ is the incomplete Γ function [22]. The corresponding result from the
power-law ansatz (35) is

P (σ, β)− Nf

24

A1

b+ 1
σb+1 = C(β) . (43)

Using the plaquette values reported in Table 1, we have plotted in Fig. 10
β(P (σ, β)− I(σ)), i.e. the l.h.s. of Eqs. (42) and (43) multiplied by β. If the
equation of state is accurate, we should find that β(P − I) depends only on
β, so the values calculated at different m should all lie on a single curve.
We find that the logarithmic equation of state (fit 1) and the power-law
equation of state with all exponents free (fit 3) satisfy this test. However,
in the power-law fit with b ≡ 1 (fit 4), shown in Fig. 11, we see deviations
depending systematically on m.

Azcoiti et al. have used their technique to compute the plaquette values
at m = 0 on an 84 lattice [13, 14]. These data have to be regarded with some
caution, because of the small lattice size, and because (as already noted) it
would be preferable to take the large volume limit before the m → 0 limit.
Nevertheless, we have compared the data reported in [13] with the expected
infinite volume value given by the Maxwell relation (42). The results are
shown in Fig. 12. The agreement is fair. The 84 data differ by less than 1 %
from our infinite volume expectation. It would be most interesting to know
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Figure 10: Test of the mass independence of β(P (σ, β)− I(σ)) for the best
two fits of section 5. The massm takes values in the range 0.005 ≤ m ≤ 0.05.
Average plaquette data from the largest available lattices are used. Results
for a given β are plotted beside one another, with m growing from left to
right.

19



Figure 11: Test of the mass independence of β(P (σ, β)−I(σ)) for fit 4 (power-
law equation of state with b ≡ 1 imposed). In this case the m dependence is
considerably greater than in Fig. 10.

Figure 12: Comparison of the average plaquette data from the Zaragoza
group on an 84 lattice at m = 0 [13] with infinite volume values expected by
the Maxwell relation (40). To draw the line we used the parameters of fit 1
and took C(β) = 0.1138 + 0.1870/β.

20



whether the values found on larger lattices move in the expected direction.
(Simulations have recently been carried out on larger lattices [23]. Unfortu-
nately plaquette values are not reported.) In [13, 14] a critical coupling of
βc = 0.208(4) is extracted from these calculations. In view of Fig. 12, we
think the data are just as compatible with βc = 0.19.

8 Conclusions

We have presented a determination of the equation of state, including the
critical exponents and coupling, of four-flavour non-compact QED. This work
extends previous investigations in several respects. Most important was the
finite size analysis of the lattice data. The finite size formula, which we
have derived for the chiral condensate σ and the susceptibility ratio R, was
found to be in good agreement with the numerical results. This allowed us
to extrapolate the numbers to the infinite volume. A further addition was
that we fitted the σ and R data simultaneously.

With the finite size formula at hand, we can compare our data with
the results of other groups taken on different-sized lattices. We find good
agreement with the results of the Illinois group. These authors use a hybrid
Monte Carlo algorithm like ours. The Zaragoza group has only published
data on 84 lattices. Their σ values are consistent with the prediction of the
finite size formula, albeit a precise comparison is not possible because of the
relatively large errors of the data. Their plaquette values at m = 0 on 84

lattices differ by less than 1 % from our extrapolated infinite lattice values.

The magnitude of finite size effects can be read off from Tables 1, 2 and
3. We see that finite size effects in the chiral condensate can be neglected,
compared to the statistical errors, only if σL >∼ 3. A large portion of the data
that went into a recent analysis of the Zaragoza group [23] does not satisfy
this constraint. Since finite size effects are largest when m is small, one must
be particularly cautious about zero mass measurements.

We have taken special care in determining the critical coupling βc. In
the Fisher plot (Fig. 7), susceptibility ratio plot (Fig. 9) and in Fig. 5 we
can see directly from the data, without making fits, that the critical coupling
is βc ≈ 0.19. Both the logarithmic (fit 1) and power-law equation of state
(fit 3) give βc = 0.1904(1).

The Maxwell relation provides an independent test of the equation of
state. The logarithmic fit (fit 1), as well as the unconstrained power-law fit
(fit 3), passed this test successfully.

For simplicity we have made use of the power-law scaling relation in our
finite size analysis. Assuming logarithmically improved mean field behaviour
would give the same result. For the critical exponent δ that enters the finite
size scaling formula (25) we find the effective value δ = 3.27(12). This is
in excellent agreement with the result of the power-law fit (fit 3) of δ =
3.206(14).
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Our final conclusion is that the data are consistent with a logarithmically
improved mean field equation of state, as one would expect for a trivial the-
ory. However, a power-law equation of state can describe the data nearly as
well. A more direct approach to the problem, though much more demand-
ing, is to determine the renormalized couplings of the theory near and at
the critical point [2, 6]. A refined calculation of the renormalized charge on
larger lattices and closer to the transition point is in progress.
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Tables

Table 1: Data for the average plaquette P . Listed are our old [2] and new data. In
addition, on the 204 lattice at β = 0.20 and m = 0.005 we obtain P = 1.0504(5).
We include (printed in italics) data from Refs. [13] (84) and [10] (104 and 164).

β m L = 4 L = 6 L = 8 L = 10 L = 12 L = 16

0.160 0.02 1.3083(26) 1.3538(12) 1.3617(22)
0.04 1.3266(39) 1.3705(11) 1.3739(11)
0.05 1.378
0.09 1.4018(8)
0.16 1.4280(8)

0.170 0.005 1.2413(14) 1.2528(10) 1.2529(7)
0.01 1.2461(12) 1.2579(20) 1.2586(7)
0.02 1.2237(26) 1.2578(12) 1.2669(12) 1.2669(6)
0.03 1.2773(24)
0.04 1.2362(19) 1.2784(13) 1.2837(13) 1.2832(6)
0.05 1.287
0.09 1.3093(5)
0.16 1.3376(4)

0.180 0.005 1.1615(11) 1.1684(14) 1.1736(10) 1.1729(5)
0.01 1.1669(11) 1.1774(15) 1.1779(6)
0.02 1.1566(16) 1.1795(14) 1.1873(20) 1.1881(6) 1.1879(3)
0.03 1.1944(15)
0.04 1.1692(15) 1.1982(11) 1.2031(9) 1.2022(6)
0.05 1.208
0.09 1.2287(8) 1.2303(4)
0.16 1.2583(5) 1.2577(4)

0.185 0.005 1.1323(9) 1.1358(11) 1.1363(17) 1.1375(7)
0.01 1.1327(11) 1.1392(13)
0.02 1.1439(9) 1.1482(12) 1.1526(8)
0.03 1.1588(13) 1.1612(7)
0.04 1.1360(16) 1.1617(20) 1.1654(12) 1.1681(10)
0.05 1.1738(11) 1.1729(9)
0.06 1.1790(7)
0.07 1.1848(8)

0.190 0.005 1.1024(9) 1.1037(12) 1.1046(11) 1.1057(5)
0.01 1.1043(9) 1.1099(8) 1.1113(12) 1.1106(9) 1.1108(3)
0.02 1.1107(9) 1.1166(11) 1.1194(5) 1.1196(3)
0.03 1.1257(9) 1.1282(9) 1.1288(6)
0.04 1.1049(14) 1.1283(10) 1.1331(13) 1.1349(8) 1.1343(5)
0.05 1.139 1.1424(9)
0.06 1.1469(6)
0.07 1.1515(10)
0.09 1.1589(6) 1.1610(3)
0.16 1.1872(6) 1.1876(4)

0.195 0.005 1.0752(9) 1.0766(8) 1.0761(4) 1.0769(3)
0.01 1.0755(7) 1.0773(11) 1.0805(9) 1.0808(5) 1.0817(2)
0.02 1.0811(7) 1.0879(13) 1.0896(9) 1.0896(5) 1.0902(3)
0.03 1.0946(10) 1.0969(9) 1.0992(5)
0.04 1.0784(14) 1.0954(7) 1.1040(10) 1.1036(10) 1.1026(6)
0.05 1.109 1.1098(11)
0.06 1.1152(7)
0.07 1.1216(10)
0.09 1.1296(5)

(continued on next page)
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Table 1: Average plaquette data (continued from previous page).

β m L = 4 L = 6 L = 8 L = 10 L = 12 L = 16

0.200 0.005 1.0506(9) 1.0505(7) 1.0513(5) 1.0506(2)
0.01 1.0539(7) 1.0541(9) 1.0548(6) 1.0548(2)
0.02 1.0572(8) 1.0592(6) 1.0621(8) 1.0621(8) 1.0617(2)
0.03 1.0677(10) 1.0671(8) 1.0710(5)
0.04 1.0680(7) 1.0731(7) 1.0766(7) 1.0739(3)
0.05 1.081 1.0810(8)
0.06 1.0858(7)
0.07 1.0913(6)
0.09 1.1000(7) 1.0997(3)
0.16 1.1244(5) 1.1256(3)

0.205 0.005 1.0263(5)
0.01 1.0291(6) 1.0301(7)
0.02 1.0361(6)
0.03 1.0401(8) 1.0430(8) 1.0442(4)
0.04 1.0485(7)
0.05 1.054 1.0536(7)
0.06 1.0585(6)
0.07 1.0636(6)

0.210 0.005 1.0060(5)
0.01 1.0070(7) 1.0073(6) 1.0068(4) 1.0075(2)
0.02 1.0084(6) 1.0112(8) 1.0135(6) 1.0114(3) 1.0127(2)
0.03 1.0160(7) 1.0197(9) 1.0181(4)
0.04 1.0178(6) 1.0224(8) 1.0247(10) 1.0234(4)
0.05 1.029 1.0287(5)
0.06 1.0320(6)
0.07 1.0374(7)
0.09 1.0466(5) 1.0455(3)
0.16 1.0695(3)

0.215 0.005 0.9842(6)
0.01 0.9861(9) 0.9851(7)
0.02 0.9904(6)
0.03 0.9946(8) 0.9952(8) 0.9950(3)
0.04 1.0003(7)
0.05 1.003 1.0046(8)
0.06 1.0087(8)
0.07 1.0136(6)

0.220 0.005 0.9638(6)
0.01 0.9651(6) 0.9661(5) 0.9657(4) 0.9659(2)
0.02 0.9664(6) 0.9679(6) 0.9679(4) 0.9692(3) 0.9700(2)
0.03 0.9731(6) 0.9735(10) 0.9751(5)
0.04 0.9731(6) 0.9771(8) 0.9779(10) 0.9779(3)
0.05 0.980 0.9829(8)
0.06 0.9869(6)
0.07 0.9906(8)
0.09 0.9972(4) 0.9978(2)
0.16 1.0205(5) 1.0206(3)
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Table 2: Data for the chiral condensate σ. Listed are our old [2] and new data as well as
extrapolations to infinite L. In addition, on the 204 lattice at β = 0.20 and m = 0.005 we
obtain σ = 0.0899(8). We include (printed in italics) data from Refs. [13] (84) and [10] (104

and 164).

β m L = 4 L = 6 L = 8 L = 10 L = 12 L = 16 L =�
0.160 0.02 0.1760(37) 0.3611(13) 0.3804(16) 0.3815(16)

0.04 0.2819(54) 0.4012(9) 0.4062(12) 0.4066(12)
0.05 0.418(3) 0.4183(30)
0.09 0.4470(7) 0.4471(7)
0.16 0.4782(5) 0.4782(5)

0.170 0.005 0.1747(38) 0.2699(17) 0.2921(9) 0.2904(8)
0.01 0.2434(25) 0.3047(27) 0.3109(13) 0.3109(11)
0.02 0.1289(40) 0.3020(16) 0.3325(13) 0.3329(9) 0.3336(7)
0.03 0.3547(17) 0.3559(17)
0.04 0.2185(26) 0.3585(19) 0.3689(8) 0.3698(7) 0.3697(5)
0.05 0.382(2) 0.3825(20)
0.09 0.4194(3) 0.4194(3)
0.16 0.4577(3) 0.4577(3)

0.180 0.005 0.0977(30) 0.1903(43) 0.2177(26) 0.2239(9) 0.2255(8)
0.01 0.1684(30) 0.2351(23) 0.2494(7) 0.2499(7)
0.02 0.0998(22) 0.2473(32) 0.2790(18) 0.2855(8) 0.2843(4) 0.2845(4)
0.03 0.3046(16) 0.3072(15)
0.04 0.1859(30) 0.3143(20) 0.3281(11) 0.3277(6) 0.3282(5)
0.05 0.344(2) 0.3450(20)
0.09 0.3907(7) 0.3910(3) 0.3910(3)
0.16 0.4380(5) 0.4375(3) 0.4377(3)

0.185 0.005 0.1383(41) 0.1760(30) 0.1843(25) 0.1863(13) 0.1872(10)
0.01 0.1320(24) 0.1963(34) 0.2176(29)
0.02 0.2145(24) 0.2501(20) 0.2579(10) 0.2588(9)
0.03 0.2854(16) 0.2887(10) 0.2891(8)
0.04 0.1687(31) 0.2899(33) 0.3069(13) 0.3095(12) 0.3094(9)
0.05 0.3265(10) 0.3261(9) 0.3267(6)
0.06 0.3410(9) 0.3411(9)
0.07 0.3554(8) 0.3555(8)

0.190 0.005 0.1045(39) 0.1348(29) 0.1452(18) 0.1512(9) 0.1526(7)
0.01 0.1121(26) 0.1700(24) 0.1820(21) 0.1835(13) 0.1885(5) 0.1886(4)
0.02 0.1841(30) 0.2255(15) 0.2282(16) 0.2340(7) 0.2334(4) 0.2336(3)
0.03 0.2635(16) 0.2650(12) 0.2658(8) 0.2662(6)
0.04 0.1512(27) 0.2656(22) 0.2850(13) 0.2893(14) 0.2892(6) 0.2891(5)
0.05 0.307(1) 0.3111(15) 0.3095(8)
0.06 0.3257(8) 0.3258(8)
0.07 0.3400(1) 0.3401(1)
0.09 0.3619(6) 0.3635(3) 0.3633(3)
0.16 0.4172(5) 0.4177(2) 0.4176(2)

0.195 0.005 0.0834(31) 0.1010(19) 0.1114(11) 0.1208(6) 0.1226(5)
0.01 0.0886(33) 0.1305(18) 0.1533(21) 0.1587(9) 0.1600(3) 0.1606(3)
0.02 0.1555(15) 0.1971(23) 0.2065(14) 0.2102(5) 0.2106(3) 0.2107(2)
0.03 0.2399(24) 0.2420(9) 0.2450(6) 0.2445(5)
0.04 0.1389(27) 0.2399(23) 0.2677(13) 0.2696(12) 0.2705(6) 0.2706(5)
0.05 0.289(1) 0.2905(13) 0.2911(8)
0.06 0.3105(9) 0.3107(9)
0.07 0.3271(8) 0.3272(8)
0.09 0.3508(3) 0.3508(3)

(continued on next page)
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Table 2: Chiral condensate data (continued from previous page).

β m L = 4 L = 6 L = 8 L = 10 L = 12 L = 16 L =�

0.200 0.005 0.0580(16) 0.0754(17) 0.0836(11) 0.0902(6) 0.0932(4)
0.01 0.1097(18) 0.1244(18) 0.1322(10) 0.1353(4) 0.1364(4)
0.02 0.1398(20) 0.1694(10) 0.1875(13) 0.1891(9) 0.1876(2) 0.1878(2)
0.03 0.2189(17) 0.2214(13) 0.2259(5) 0.2256(4)
0.04 0.2226(11) 0.2483(18) 0.2523(9) 0.2514(5) 0.2520(4)
0.05 0.273(3) 0.2754(8) 0.2758(8)
0.06 0.2938(6) 0.2941(6)
0.07 0.3104(8) 0.3106(8)
0.09 0.3361(5) 0.3377(3) 0.3375(3)
0.16 0.3975(5) 0.3982(2) 0.3981(2)

0.205 0.005 0.0580(13)
0.01 0.0892(13) 0.1059(10) 0.1190(11)
0.02 0.1623(12) 0.1678(11)
0.03 0.1988(19) 0.2058(13) 0.2076(6) 0.2077(5)
0.04 0.2325(13) 0.2337(13)
0.05 0.258(4) 0.2575(9) 0.2583(9)
0.06 0.2781(8) 0.2785(8)
0.07 0.2969(8) 0.2971(8)

0.210 0.005 0.0491(12)
0.01 0.0788(15) 0.0883(8) 0.0917(6) 0.0974(4) 0.0991(3)
0.02 0.1083(18) 0.1321(19) 0.1466(10) 0.1467(5) 0.1514(3) 0.1511(2)
0.03 0.1789(18) 0.1901(9) 0.1899(6) 0.1908(5)
0.04 0.1902(16) 0.2126(18) 0.2213(9) 0.2197(4) 0.2204(4)
0.05 0.242(4) 0.2434(11) 0.2444(10)
0.06 0.2640(9) 0.2645(9)
0.07 0.2823(8) 0.2826(8)
0.09 0.3124(5) 0.3123(2) 0.3125(2)
0.16 0.3798(4) 0.3798(2) 0.3798(2)

0.215 0.005 0.0370(5)
0.01 0.0648(10) 0.0729(7)
0.02 0.1292(8) 0.1365(8)
0.03 0.1624(14) 0.1737(10) 0.1746(5) 0.1751(4)
0.04 0.2054(11) 0.2072(11)
0.05 0.226(3) 0.2303(12) 0.2313(11)
0.06 0.2519(9) 0.2525(9)
0.07 0.2695(8) 0.2699(8)

0.220 0.005 0.0325(4)
0.01 0.0570(5) 0.0658(6) 0.0692(8) 0.0722(2) 0.0747(2)
0.02 0.0893(10) 0.1012(34) 0.1144(7) 0.1213(4) 0.1223(2) 0.1233(2)
0.03 0.1527(10) 0.1588(16) 0.1625(5) 0.1631(4)
0.04 0.1616(15) 0.1808(10) 0.1921(15) 0.1917(4) 0.1920(4)
0.05 0.210(3) 0.2173(10) 0.2183(9)
0.06 0.2387(9) 0.2395(9)
0.07 0.2572(8) 0.2577(8)
0.09 0.2887(5) 0.2898(2) 0.2899(2)
0.16 0.3618(5) 0.3624(2) 0.3624(2)
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Table 3: Data for the susceptibility ratio R. All of these data are new. In addition, on the
204 lattice at β = 0.20 and m = 0.005 we obtain R = 0.642(33).

β m L = 4 L = 6 L = 8 L = 10 L = 12 L = 16 L =�
0.160 0.02 0.802(8) 0.153(3)

0.04 0.554(12) 0.137(4)
0.170 0.005 0.652(12) 0.169(11) 0.077(3) 0.077(3)

0.01 0.386(12) 0.130(6) 0.093(3) 0.095(3)
0.02 0.905(10) 0.253(5) 0.143(2) 0.130(4) 0.131(2)
0.03 0.142(7) 0.136(7)
0.04 0.718(6) 0.205(6) 0.149(3) 0.164(11) 0.146(3)
0.09 0.161(5) 0.161(5)

0.180 0.005 0.869(8) 0.329(33) 0.177(11) 0.147(6) 0.130(5)
0.01 0.635(12) 0.260(9) 0.158(8) 0.158(6)
0.02 0.934(5) 0.415(10) 0.194(6) 0.195(7) 0.194(5)
0.03 0.254(5) 0.236(5)
0.04 0.803(11) 0.303(8) 0.222(9) 0.222(9)
0.09 0.214(6) 0.214(6)

0.185 0.005 0.549(55) 0.295(13) 0.170(16) 0.186(18) 0.168(8)
0.01 0.769(10) 0.395(28) 0.221(21)
0.02 0.518(10) 0.295(15) 0.240(13)
0.03 0.285(14) 0.260(13)
0.04 0.838(7) 0.362(13) 0.279(10) 0.264(10)
0.05 0.264(5) 0.255(5)

0.190 0.005 0.704(46) 0.487(35) 0.377(20) 0.314(15) 0.290(10)
0.01 0.834(11) 0.494(18) 0.336(21) 0.308(12) 0.293(8)
0.02 0.631(13) 0.309(7) 0.316(15) 0.306(6)
0.03 0.336(11) 0.299(10)
0.04 0.873(4) 0.438(11) 0.298(5) 0.297(5)
0.09 0.262(3) 0.262(3)

0.195 0.005 0.778(36) 0.651(19) 0.554(16) 0.410(14) 0.394(9)
0.01 0.876(31) 0.672(21) 0.435(18) 0.398(6) 0.393(5)
0.02 0.738(7) 0.492(30) 0.377(8) 0.366(3) 0.365(3)
0.03 0.412(22) 0.356(20)
0.04 0.893(4) 0.527(11) 0.373(12) 0.346(4) 0.344(4)
0.09 0.292(7) 0.292(7)

0.200 0.005 0.903(27) 0.763(16) 0.636(21) 0.584(13)
0.01 0.726(45) 0.555(20) 0.505(11) 0.482(9)
0.02 0.789(13) 0.462(12) 0.446(4) 0.444(4)
0.03 0.487(14) 0.410(13)
0.04 0.582(8) 0.411(5) 0.409(5)
0.09 0.321(6) 0.321(6)

0.205 0.01 0.863(14)
0.03 0.565(22) 0.466(20)

0.210 0.01 0.881(16) 0.780(9) 0.691(13) 0.659(8)
0.02 0.881(6) 0.747(34) 0.653(8) 0.593(13) 0.599(6)
0.03 0.641(19) 0.522(17)
0.04 0.690(8) 0.571(14) 0.499(12) 0.495(9)
0.09 0.386(6) 0.386(6)

0.215 0.01 0.937(17)
0.03 0.701(26) 0.570(23)

0.220 0.01 0.945(3) 0.887(13) 0.836(5) 0.774(6)
0.02 0.927(2) 0.742(7) 0.709(4) 0.685(4)
0.03 0.728(14) 0.594(13)
0.04 0.792(5) 0.583(11) 0.571(11)
0.09 0.435(7) 0.434(7)
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