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ON HILBERT BASES OF POLYHEDRAL CONES

MARTIN HENK AND ROBERT WEISMANTEL

Abstract. For a polyhedral cone C = pos{a1, . . . , am} ⊂ R
d , ai ∈ Zd,

a subset of integral vectors H(C) ⊂ C ∩Zd is called a Hilbert basis of C
iff (i) each element of C ∩ Zd can be written as a non-negative integer
combination of elements of H(C) and (ii) H(C) has minimal cardinality
with respect to all subsets of C ∩ Zd for which (i) holds.

We show that various problems related to Hilbert bases are hard in
terms of computational complexity. However, if the dimension and the
number of elements of the Hilbert basis are fixed, a Hilbert basis can
always be computed in polynomial time.

Furthermore we introduce an algorithm for computing the Hilbert
basis of a polyhedral cone. The finiteness of this method is deduced
from a result about the height of a Hilbert basis which, in particular,
improves on former estimates.

1. Introduction

Throughout the paper Rd denotes the d-dimensional Euclidean space and
posS, linS, convS denote the positive, linear and convex hull of a subset
S ⊂ R

d , respectively. The cardinality of a set S is denoted by #S and for
a vector x ∈ R

d its i-th coordinate is denoted by xi. The i-th unit vector
is represented by ei. | · | denotes the Euclidean norm and the maximum
norm is denoted by | · |∞. A cone C ⊂ R

d is a set with the properties that
x + y ∈ C if x, y ∈ C and λx ∈ C if x ∈ C, λ ≥ 0. A cone C is called
pointed if the set C\{0} is strictly contained in an open halfspace, i.e., there
exists c ∈ R

d such that cTx < 0 for all x ∈ C\{0}. If C = pos{a1, . . . , am}
with vectors ai, 1 ≤ i ≤ m, then C is called a polyhedral cone or a finitely
generated cone.

Here we are studying polyhedral cones C ⊂ R
d that can be represented

as

C = pos{a1, . . . , am},
where ai ∈ Z

d for all 1 ≤ i ≤ m. We remark that such a cone can also be
described by a system of inequalities C = {x ∈ R

d : Ax ≤ 0} with a suitable
matrix A ∈ Z

l×d (cf. [Min96]). To avoid some trivial cases we always assume
C �= {0}.

It is well known that for every polyhedral cone C there exists a set
H
Zd(C) ⊂ C ∩ Zd such that (cf. [Hil90], [Sch86])
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of the German Science Foundation (DFG) awarded to Günter M. Ziegler (Zi 475/1-1).
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1. each z ∈ C ∩Zd can be expressed as a positive integer combination of
elements in HZd(C), i.e. z =

∑
h∈H
Zd

(C) zhh, zh ∈ N.

2. H
Zd(C) has minimal cardinality with respect to all subsets of C ∩ Zd

for which (1) holds.

The set H
Zd(C) is called the Hilbert basis of C. If the cone is pointed it

is uniquely determined by the following characterization (cf. [Sch86])

HZd(C) =
{
h ∈ C ∩ Zd\{0} :h is not the sum of two other vectors

in C ∩ Zd\{0}
}
.

(1.1)

It is easy to see that the Hilbert basis is contained in the parallelepiped
spanned by a1, . . . , am, that is

HZd(C) ⊂ PZd(C) := {a1, . . . , am} ∪{
a ∈ C ∩Zd\{0} : a =

m∑
i=1

λia
i, 0 ≤ λi < 1, 1 ≤ i ≤ m

}
.

(1.2)

Hilbert bases are strongly related to the theory of integer programming.
Without claiming completeness we list three areas in which Hilbert bases
play a central role.

• A rational system Ax ≤ b is total dual integrality (TDI) if and only
if for each face F of the polyhedron P = {x : Ax ≤ b}, the rows
(a1)T , . . . , (ak)T of A satisfied with equality by all x ∈ F contain the
Hilbert basis of the cone CF = pos{a1, . . . , ak} [Sch86].

• Universal test sets of integer programs can be constructed from Hilbert
bases of certain cones, see [Gra75], [Tho94], [UWZ94].

• In polyhedral combinatorics one is often interested in deriving an in-
equality description of a polyhedron that is given as the convex hull of
its vertices. Sometimes such an inequality system can be explained via
Hilbert bases as in the case of the 0/1 knapsack polytope

∑n
i=1 aixi ≤ b

when #{ai : 1 ≤ i ≤ n} = 2, see [Wei94].

We also want to remark that Hilbert bases are related to the theory of
desingularizations of toric varieties (cf. [Dai95], [DHZ96], [Stu96]). In this
context it is an interesting question to bound the so called height of a Hilbert
basis. We study this problem in the next section and apply it later to prove
the finiteness of an algorithm for computing a Hilbert basis (see section 4).
In section 3 we deal with complexity issues for problems about Hilbert bases.
We also show that a Hilbert basis can be found in polynomial time provided,
the dimension and the cardinality of the Hilbert basis is fixed.

2. The height of a Hilbert basis

Before making precise our problem let us extend the notion of Hilbert
bases to arbitrary lattices. To this end we replace the standard lattice Zd
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by an arbitrary d-dimensional lattice Λ ⊂ R
d . For a pointed cone C =

pos{a1, . . . , am} with ai ∈ Λ the Hilbert basis is denoted by HΛ(C).
If l1, . . . , ld is a basis of Λ, i.e., Λ = {z1l1+· · ·+zdl

d : zi ∈ Z} and l1, . . . , ld

are linearly independent, then det(Λ) = |det(l1, . . . , ld)| is called the deter-
minant of the lattice. For a subset {a1, . . . , ad} of d linearly independent
lattice points ai ∈ Λ the quotient |det(a1, . . . , ad)|/ det(Λ) ∈ N is called the
index of {a1, . . . , ad} with respect to Λ. This value equals the number of
cosets of the lattice {z1a1+ · · ·+ zda

d : zi ∈ Z} in the additive group Λ. For
more information about lattices we refer to [GL87].

Let C = {a1, . . . , am}, ai ∈ Λ be a pointed cone. For h ∈ HΛ(C) the
number

gC(h) := min

{
m∑
i=1

λi : h =
m∑
i=1

λia
i, λi ≥ 0, 1 ≤ i ≤ m

}

is called the height of h. By (1.2) we have a trivial upper bound of gC(h) ≤
m. This bound can be improved easily, since by Carathéodory’s Theorem,
there are d vectors ai1 , . . . , aid such that h ∈ C′ = pos{ai1 , . . . , aid}. Thus
h ∈ HΛ(C

′) and (1.2) yields gC(h) ≤ d. Indeed, it is well known that
gC(h) < d − 1, d ≥ 2. This was first proved by Ewald&Wessels [EW91]
in the context of complete toric varieties. A simpler proof can be found in
[LTZ93].

Asymptotically the bound d − 1 is best possible. Let Λ = Z
d and let

ei ∈ R
d be the i-th unit vector. For r ∈ N\{0} let

C(d, r) = pos

{
e1, . . . , ed−1, red +

d−1∑
i=1

ei

}
.

h = (1, . . . , 1)T is an element of the Hilbert basis of height (d−1)·(r−1)/r+
1/r = (d− 1) − (d − 2)/r. If r goes to infinity the height of h = (1, . . . , 1)T

converges to the value d − 1.
One can also derive a sharp bound on the height of Hilbert basis elements.

More precisely, we show

Theorem 2.1. Let Λ ⊂ R
d be a lattice with det(Λ) > 0 and let C =

pos{a1, . . . , ad}, ai ∈ Λ, be a pointed cone with |det(a1, . . . , ad)| > 0. For
h ∈ HΛ(C) one has

gC(h) ≤ (d − 1) − (d − 2)
det(Λ)

|det(a1, . . . , ad)| .

As an immediate consequence we obtain with Carthéodory’s Theorem

Corollary 2.1. Let Λ ⊂ R
d be a lattice with det(Λ) > 0 and let C =

pos{a1, . . . , am} be a pointed cone with dim(C) = d. For h ∈ HΛ(C) one
has

gC(h) ≤ (d − 1) − (d − 2)
det(Λ)

|det(ai1 , . . . , aid)| ,
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where {ai1 , . . . , aid} is a subset of d linearly independent lattice vectors with
minimal index such that h ∈ pos{ai1 , . . . , aid}.

Furthermore, we get from Theorem 2.1 with the notation of (1.2) (cf. The-
orem 2.3.2. ii) in [Liu91])

Corollary 2.2. Let Λ ⊂ R
d be a lattice with det(Λ) > 0 and let C =

pos{a1, . . . , ad}, ai ∈ Λ, be a pointed cone with |det(a1, . . . , ad)| > 0. If
HΛ(C) = PΛ(C) then for h ∈ HΛ(C) satisfying

h =
d∑

i=1

λia
i, with 0 < λi < 1, i = 1, . . . , d, (2.1)

one has

1 + (d − 2)
det(Λ)

|det(a1, . . . , ad)| ≤ gC(h).

Proof. Assume that there exists a vector h ∈ HΛ(C) satisfying (2.1), but

with gC(h) < 1 + (d− 2) det(Λ)/|det(a1, . . . , ad)|. Then h =
∑d

i=1 a
i − h ∈

P(C) = HΛ(C) and

gC(h) = d− gC(h) > (d − 1) − (d − 2) det(Λ)/|det(a1, . . . , ad)|.
This is a contradiction to Theorem 2.1.

Remark. In [Liu91] it is claimed that 1 + (d − 2) det(Λ)/|det(a1, . . . , ad)|
is a lower bound on the height of Hilbert bases elements even if they lie
on the boundary of C. This is however not true for the following reason.
Assume that there is a cone Cd = pos{a1, . . . , ad} in R

d with respect to
the integer lattice Z

d such that each h ∈ HZd(Cd) = PZd(Cd) satisfies
this lower bound. Then we can embed Cd in R

d+n and by adding the
new generating vectors ed+1, . . . , ed+n to Cd we obtain a new cone Cd+n =
pos{(a1, 0)T , . . . , (ad, 0)T , ed+1, . . . , ed+n} with

|det((a1, 0)T , . . . , (ad, 0)T , ed+1, . . . , ed+n)| = |det(a1, . . . , ad)|.
In particular we have

HZd+n(Cd+n) = {(h, 0)T : h ∈ HZd(Cd)} ∪ {ed+1, . . . , ed+n}
and thus PZd+n(Cd+n) = HZd+n(Cd+n). Hence the height of each h ∈
HZd(Cd) is even bounded from below by 1 + (d + n − 2)/ det(Cd), for all
n ∈ N. Thus the assumption (2.1) is necessary indeed.

The proof of Theorem 2.1 is based on two lemmas that we present next. For
two integers p, r we denote by [p]r the least integer m ≥ 0 such that p ≡ m
mod r.

Lemma 2.1. Let p, r ∈ N, 1 ≤ p ≤ r−1, and let M(p, r) = {j ∈ {1, . . . , r−
1} : [j · p]r ≤ p}. Then #M(p, r) = p+ gcd(p, r)− 1.
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Proof. First assume gcd(p, r) = 1. Then [kp]r �= [lp]r for 1 ≤ k �= l ≤ r − 1
and thus {[jp]r : 1 ≤ j ≤ r − 1} = {1, . . . , r − 1}. Since p ≤ r − 1 we have
#M(p, r) = p.

Next assume gcd(p, r) = q > 1. By the first case we have #M(p/q, r/q) =
p/q. Let j ∈ M(p/q, r/q) and 0 ≤ i ≤ q − 1. It is easy to see that
[(j + i · r/q)p]r = q[j · p/q]r/q and thus [(j + i · r/q)p]r ≤ p. So

M∗(p, r) := {(j + i · r/q) : j ∈ M(p/q, r/q), i ∈ {0, . . . , q − 1}} ⊂ M(p, r).

For 1 ≤ j ≤ (r/q) − 1 the numbers (j + i · r/q), j ∈ M(p/q, r/q), i ∈
{0, . . . , q − 1} are pairwise disjoint and this implies #M∗(p, r) = p.

Now, let M0(p, r) = {j ∈ {1, . . . , r − 1} : [j · p]r = 0}. Obviously,
M0(p, r) = {j ·r/q : j ∈ {1, . . . , q−1}} and since [j ·p]r > 0 for j ∈ M∗(p, r)
we get

#M(p, r) ≥ #M∗(p, r) + #M0(p, r) = p+ gcd(p, r) − 1. (2.2)

On the other hand it is not hard to see that [j]r/q ∈ M(p/q, r/q) for j ∈
M(p, r)\M0(p, r) and this shows that equality holds in (2.2).

Lemma 2.2. Let m,n ∈ N and let Ni ⊂ {1, . . . , n} for 1 ≤ i ≤ m. If∑m
i=1#Ni ≥ (m− 1) · n+ k, k ∈ {1, . . . , n}, then

#

(
m⋂
i=1

Ni

)
≥ k.

Proof. We use induction on m. For m = 1 there is nothing to prove.
Hence let m > 1 and without loss of generality let Nm = {1, . . . ,#Nm}
with #Nm ≥ k. Since

∑m−1
i=1 #Ni ≥ (m − 2) · n + n + k − #Nm we have

#(∩m−1
i=1 Ni) ≥ n+ k −#Nm. Obviously, ∩m−1

i=1 Ni ⊂ {1, . . . , n} and thus

#

((
m−1⋂
i=1

Ni

)
∩ {1, . . . ,#Nm}

)
≥ k.

We are now ready for the proof of Theorem 2.1.

Proof of Theorem 2.1. By (1.2) it suffices to consider a vector h of the

form h =
∑d

i=1 λia
i ∈ HΛ(C) with 0 ≤ λi < 1, 1 ≤ i ≤ d. Let l =

|det(a1, . . . , ad)|/ det(Λ) be the index of C with respect to Λ. If l = 1 then
the vectors a1, . . . , ad form a basis of Λ. This implies HΛ(C) = {a1, . . . , ad}.
Otherwise we may assume that l > 1. Then it is not too difficult to see that
the coefficients λi have a representation as

λi =
pi
r
, pi ∈ {0, . . . , r − 1}, 1 ≤ i ≤ d, (2.3)

with gcd(p1, . . . , pd, r) = 1 where 2 ≤ r and r is a divisor of l. To verify this,
let A be the matrix with columns a1, . . . , ad and let L be a matrix whose
columns form a basis of the lattice Λ. Then there exists a matrix Z ∈ Z

d×d
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such that A = LZ and |det(Z)| = l. With λ = (λ1, . . . , λd)
T we obtain

Aλ = h = Lz for a certain z ∈ Z
d. This yields λ = Z−1z. From this a

representation of the desired form can be derived, see [GLS88] for details.
Next we transform the lattice and the cone into the “right” position. Let

Λh ⊂ Λ be the lattice generated by a1, . . . , ad and h. Obviously, h ∈ HΛh
(C)

and since det(Λh) ≥ det(Λ) it suffices to consider the cone C with respect
to the lattice Λh. Let A∗ = (1/r) ·A be the matrix with columns a1, . . . , ad

scaled by 1/r and let Λ∗ = A−1∗ Λ, C∗ = A−1∗ C = pos{re1, . . . , red}. Λ∗ is the
lattice generated by the elements re1, . . . , red and p = (p1, . . . , pd)

T . Clearly,

p ∈ HΛ�
(C∗) and we have to show

∑d
i=1 pi ≤ (d−1)r−(d−2)(r/l) (cf. (2.3)).

Since r ≤ l it is enough to prove
∑d

i=1 pi ≤ (d−1)r−(d−2) = (d−1)(r−1)+1.
Assume the opposite, i.e.

d∑
i=1

pi ≥ (d − 1)(r − 1) + 2. (2.4)

In the following we show that under this assumption p can be written as the
sum of two elements in C∗ ∩ Λ∗\{0} which contradicts property (1.1) of an
element of a Hilbert basis. For 1 ≤ j ≤ r − 1 let pj = ([jp1]r, . . . , [jpd]r)

T ∈
C∗ ∩ Λ∗. Since gcd(p1, . . . , pd, r) = 1 we also have pj �= 0, 1 ≤ j ≤ r − 1.
Now, let M(pi, r) = {j ∈ {1, . . . , r − 1} : [j · pi]r ≤ pi}, 1 ≤ i ≤ d. By
Lemma 2.1 we have #M(pi, r) ≥ pi and by (2.4)

d∑
i=1

#M(pi, r) ≥ (d − 1)(r − 1) + 2.

Applying Lemma 2.2 to the sets M(pi, r) ⊂ {1, . . . , r − 1} yields

#

(
d⋂

i=1

M(pi, r)

)
≥ 2.

For j ∈ ∩d
i=1M(pi, r) with j �= 1 we consider the point pj + pr+1−j. The

i-th component of this vector is given by [j · pi]r + [(r + 1 − j) · pi]r. Let
j · pi = li,jr + [j · pi]r for some li,j ∈ {0, . . . , pi − 1}. We get (r + 1 − j)pi =
(pi− li,j)r+ pi − [j · pi]r. As j ∈ M(pi, r) holds, we obtain [(r+1− j)pi]r =
pi − [j · pi]r. This shows p = pj + pr+1−j.

3. Complexity issues for Hilbert bases problems

This section treats algorithmic questions for problems about the Hilbert
basis of a pointed cone CA �= {0}. We assume throughout that CA is given
in the form

CA = {x ∈ R
d : Ax ≤ 0}, (3.1)

with A ∈ Z
m×d consisting of rows (ai)T , 1 ≤ i ≤ m. For abbreviation we use

the notation H(CA) for the Hilbert basis of CA with respect to the lattice
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Z
d. One constructive approach for Hilbert bases is based on a solution of

the following problem.

The Hilbert Basis Problem (HBP). Given a pointed cone CA ⊂ R
d and

vectors h1, . . . , hk ∈ H(CA), either

i) assert that h1, . . . , hk is the Hilbert basis of CA, or
ii) find a point h ∈ H(CA)\{h1, . . . , hk}.

For k = 0 HBP reduces to the problem of finding one member of the Hilbert
basis. We remark

Proposition 3.1. Let CA ⊂ R
d be a pointed cone. There exists a polyno-

mial time algorithm that determines one element h ∈ H(CA).

Proof. Let c =
∑m

i=1 a
i and PA = CA ∩ {x ∈ R

d : cTx ≥ −1}. Since CA is
pointed, PA is a polytope of which we can find a vertex v �= 0 in polynomial
time, see [GLS88]. Then there exists a system of d linearly independent
rows (aji)T , 1 ≤ i ≤ d such that

lin(v) =
d−1⋂
i=1

{
x ∈ R

d : (aji)Tx = 0
}

and (ajd)T v < 0. Let u be the solution of

(ajd)Tu = −1, (aji)Tu = 0, 1 ≤ i ≤ d − 1. (3.2)

We have u ∈ pos{v} and u may be written as

u =
1

q
(p1, . . . , pd)

T , q ∈ N, pi ∈ Z and |pi|, q ≤ |det(Aj)|, (3.3)

where Aj denotes the matrix with rows (aji)T , 1 ≤ i ≤ d (cf. [GLS88]). It is
well known that the gcd of d numbers can be calculated in polynomial time
and hence, h = q ·u/ gcd(p1, . . . , pd) can be constructed in polynomial time.
We now claim that h ∈ H(CA). First notice that h ∈ CA∩Zd. On account of
(1.1) it suffices to show that h cannot be written as a nontrivial sum of two
elements in CA∩Zd. Suppose h = f+g with f, g ∈ CA∩Zd\{0}. By (3.2) we
get f, g ∈ pos{v} = pos{h}. Since by our construction pos{h} ∩ Zd\{0} =
{n · h : n ∈ N}, the statement follows.

The proof of the proposition shows that one can find in polynomial time
an element of the Hilbert basis belonging to the boundary of the cone CA.
However, the problem to decide whetherH(CA) contains a (relative) interior
point of CA is NP-hard. This result will be derived next. We start with a
proof that it is NP-complete to decide whether a point g ∈ CA ∩ Z

d\{0}
can be written as the sum of two elements in CA ∩ Zd\{0}.
Theorem 3.1. The Decomposition Problem (DP): For a pointed cone
CA ⊂ R

d and a vector g ∈ CA ∩ Z
d it is NP-complete to decide whether

g /∈ H(CA),
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Proof. If g /∈ H(CA) then there exist two elements v,w ∈ CA ∩Zd\{0} with
g = v+w (cf. (1.1)). Thus the problem is in NP. In the following we give a
polynomial time reduction of the subset sum problem to the decomposition
problem: The subset sum problem is known to beNP-complete (cf. [Kar72])
and is the task:

The Subset Sum Problem (SSP). Let a1, . . . , ad, b be positive integers;
decide whether there exists a subset J ⊂ {1, . . . , d} with

∑
i∈J ai = b.

For an instance of SSP defined by the data a = (a1, . . . , ad)
T ∈ N

d , b ∈ N let
P (a, b) = {x ∈ {0, 1}d : aTx = b}. Our task is to decide whether P (a, b) �= ∅.
First we may assume that b ≤∑d

i=1 ai since otherwise we have P = ∅. Let
e = (1, . . . , 1)T be the vector of all-ones. Then x ∈ P (a, b) ⇔ (e − x) ∈
P (a,

∑d
i=1 ai − b) and thus

P (a, b) �= ∅ ⇐⇒ P (a,
d∑

i=1

ai − b) �= ∅.

Hence we may even assume that b ≤ (
∑d

i=1 ai)/2.
Now we claim that the given instance of SSP can be transformed in poly-

nomial time to an instance of SSP with input parameters ã = (ã1, . . . , ãn)
T ,

b̃ such that

P (a, b) �= ∅ ⇐⇒ P (ã, b̃) �= ∅ and
n∑

i=1

ãi = 2b̃.

The correctness of the claim follows from the following arguments. If b =
(
∑d

i=1 ai)/2, then we may set n = d, ãi = ai for all i = 1, . . . , d and

b̃ = b. If b < (
∑d

i=1 ai)/2, we define n = d + 1, ã = (ã1, . . . , ãd+1)
T =

(a1, . . . , ad,
∑d

i=1 ai − 2b)T ∈ N
d+1 and b̃ =

∑d
i=1 ai − b ∈ N.

From now on we assume that we are given an instance of a SSP with input
parameters ã = (ã1, . . . , ãn)

T , b̃ satisfying

n∑
i=1

ãi = 2b̃. (3.4)

For the parameters ã = (ã1, . . . , ãn)
T , b̃ let CA be the pointed cone given by

CA =

{
x ∈ R

n+1 :
n∑

i=1

ãixi − b̃xn+1 = 0, x ≥ 0

}
. (3.5)

We claim

P (ã, b̃) �= ∅ ⇐⇒ (1, . . . , 1, 2)T /∈ H(CA). (3.6)

By (3.4) we have h = (1, . . . , 1, 2)T ∈ CA ∩ Zn+1. Suppose h /∈ H(CA). In
this case we can find two elements v,w ∈ CA ∩ Zn+1\{0} with h = v + w.
Obviously, vi, wi ∈ {0, 1}, 1 ≤ i ≤ n and since ã1, . . . , ãn are positive we

have vn+1 = wn+1 = 1. Thus (v1, . . . , vn)
T , (w1, . . . , wn)

T ∈ P (ã, b̃).
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For the other direction let ṽ ∈ P (ã,b̃). Then v = (ṽ1, . . . , ṽn, 1) ∈ CA and
also w̃ = h− ṽ ∈ CA. This shows h /∈ H(CA).

An immediate consequence of this proof is

Corollary 3.1. Let CA ⊂ R
d be a pointed cone. The problem to find a point

h ∈ H(CA) contained in the relative interior of CA or to assert that no such
point exists, is NP-hard.

Proof. Again we consider an instance of the subset sum problem SSP. We
use the notation in the proof of Theorem 3.1. In particular, ã,̃b defines
the instance of SSP satisfying (3.4) and CA ⊂ R

n+1 is the cone defined via
(3.5). We have dim(CA) = n and h = (1, . . . , 1, 2)T is contained in the
relative interior of CA. If no point of H(CA) belongs to the relative interior
of CA, then h /∈ H(CA) and by (3.6) we know that SSP has a solution.
On the other hand if g ∈ H(CA) is contained in the relative interior of CA

then gi ≥ 1, 1 ≤ i ≤ n, and gn+1 ≥ 2. Suppose that ṽ ∈ P (ã,b̃). Then
v = (ṽ1, . . . , ṽn, 1) ∈ CA. As ṽi ∈ {0, 1} for all i = 1, . . . , n we obtain that
w̃ = g − ṽ ∈ CA, a contradiction that g ∈ H(CA). Therefore SSP does not
have a solution in this case.

Next we investigate the problem HBP. It seems quite likely that this prob-
lem is NP-hard, but we did not succeed in proving this. In the following we
show that HBP can be solved in polynomial time provided that the dimension
d is fixed.

For an instance A ∈ Z
m×d, h1, . . . , hk ∈ H(CA) of HBP let

FA(h
1, . . . , hk) = {f ∈ CA ∩ Zd\{0} : f − hj /∈ CA for all j = 1, . . . , k}.

(3.7)

If k = 0 we set FA(∅) = CA ∩ Zd\{0}. Obviously, f − hj /∈ CA implies that
this point violates a restriction (aji)Tx ≤ 0 of Ax ≤ 0. Hence

f ∈ FA(h
1, . . . , hk) ⇐⇒ f ∈ CA ∩ Zd\{0} and ∀j ∈ {1, . . . , k}

∃ ji ∈ {1, . . . ,m} with (aji)T f ≥ (aji)Thj + 1.
(3.8)

Let h ∈ H(CA)\{h1, . . . , hk}. By (1.1) we have h ∈ FA(h
1, . . . , hk) and

thus FA(h
1, . . . , hk) �= ∅. On the other hand if H(CA) = {h1, . . . , hk} then

each z ∈ CA ∩ Zd\{0} can be written as z =
∑k

i=1 zih
i with zi ∈ N ∪ {0}

and
∑k

i=1 zi ≥ 1, implying that FA(h
1, . . . , hk) = ∅. Therefore we have the

relation

{h1, . . . , hk} = H(CA) ⇐⇒ FA(h
1, . . . , hk) = ∅. (3.9)

Proposition 3.2. Let CA = {x ∈ R
d : Ax ≤ 0}, A ∈ Z

m×d, be a pointed
cone and let c =

∑m
i=1(a

i)T be the sum of the rows of A. If the problem

max cT z, z ∈ FA(h
1, . . . , hk).
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is infeasible then H(CA) = {h1, . . . , hk}. Otherwise, each optimal solution
belongs to H(CA)\{h1, . . . , hk}.
Proof. If max cT z, z ∈ FA(h

1, . . . , hk) is infeasible, then (3.9) implies
that {h1, . . . , hk} = H(CA). Otherwise, we conclude that cT z ≤ −1 for
all z ∈ CA ∩ Z

d \ {0}, because CA is a pointed cone. This shows that
there exists an optimal solution z∗ ∈ FA(h

1, . . . , hk). It is also clear that
z∗ /∈ {h1, . . . , hk}. What is not so clear is that z∗ ∈ H(CA). Assume the
opposite, i.e., z∗ = v + w with v,w ∈ CA ∩ Z

d\{0}. Since z∗ is optimal
and CA is pointed, neither v nor w are members of FA(h

1, . . . , hk). Then
there exists a vector hi, i ∈ {1, . . . , k} such that v − hi ∈ CA ∩ Zd. Then,
z∗ − hi = (v − hi) + w ∈ CA, a contradiction that z∗ ∈ FA(h

1, . . . , hk).

Taking this proposition into account, we see that one can solve HBP if one
is able to optimize c over FA(h

1, . . . , hk). In order to get a more tractable
description of FA(h1, . . . , h

k) we resort to a lemma that bounds the size of
all the vectors in H(CA).

Lemma 3.1. Let CA be a pointed cone. For h = (h1, . . . , hd)
T ∈ H(CA)

one has

|hi| < 2〈A〉, 1 ≤ i ≤ d,

where 〈A〉 denotes the encoding length of the matrix A (cf. [GLS88]).

Proof. Let {u1, . . . , ul} ⊆ R
d be a minimal set with CA = pos{u1, . . . , ul}.

For each uj there exists a system of d linearly independent rows (aji)T of A
such that uj is the solution of the system (cf. (3.2) and [Zie95])

(ajd)Tuj = −1, (aji)Tuj = 0, 1 ≤ i ≤ d− 1.

By (3.3) we may assume uj ∈ Z
d with |uji | < 2〈A〉−d2 (cf. [GLS88]). Let

h ∈ H(CA). By Carathéodory’s theorem there exist d vectors uj1, . . . , ujd

such that h ∈ Ch = pos{uj1 , . . . , ujd}. Obviously, h belongs to the Hilbert
basis of the cone Ch, and applying Theorem 2.1 to h and Ch with respect
to the space generated by linCh gives

|hi| ≤ gCh
(h)max{|ujki | : 1 ≤ k ≤ d} < (d − 1)2〈A〉−d2 .

Now, let

F̃A(h
1, . . . , hk) = FA(h

1, . . . , hk) ∩ {z ∈ Z
d : |z|∞ ≤ 2〈A〉}. (3.10)

On account of Proposition 3.2 and Lemma 3.1 we have

{z∗ : cT z∗ = max cT z, z ∈ FA(h
1, . . . , hk)}

= {z∗ : cT z∗ = max cT z, z ∈ F̃A(h
1, . . . , hk)}

and we can replace in Proposition 3.2 FA(h
1, . . . , hk) by F̃A(h

1, . . . , hk), i.e.,
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Remark 3.1. Let CA = {x ∈ R
d : Ax ≤ 0}, A ∈ Z

m×d, be a pointed cone
and let c =

∑m
i=1(a

i)T be the sum of the rows of A. If the problem

max cT z, z ∈ F̃A(h
1, . . . , hk)

is infeasible then H(CA) = {h1, . . . , hk}. Otherwise, each optimal solution
belongs to H(CA)\{h1, . . . , hk}.

The next step is to show that the set of all vectors in F̃A(h
1, . . . , hk) is

equal to the set of integral points that satisfy a system of inequalities in
integer variables.

Proposition 3.3. Let CA = {x ∈ R
d : Ax ≤ 0} with A ∈ Z

m×d be a pointed

cone and c =
∑d

i=1(a
i)T be the sum of the row vectors of A. An integral

vector z ∈ CA ∩ Z
d is in the set F̃A(h

1, . . . , hk) if and only if there exists
a 0/1-matrix λ ∈ {0, 1}m×k such that

∑m
i=1 λi,j ≥ 1 for every 1 ≤ j ≤ k

satisfying the following conditions:

(ai)T z ≥ λi,j

(
(ai)Thj + 1

)− (1 − λi,j)2
2〈A〉 for all 1 ≤ i ≤ m, 1 ≤ j ≤ k.

Proof. For f ∈ F̃A(h
1, . . . , hk) and j ∈ {1, . . . , k} let ji be the index in

{1, . . . ,m} with (aji)T f ≥ (aji)Thj + 1, see (3.8). With λi,j = 0 for all
i ∈ {1, . . . ,m}\{ji} and λji,j = 1 we have λi,j ∈ {0, 1}, ∑m

i=1 λi,j ≥ 1.
Moreover, for 1 ≤ i ≤ m we obtain

(ai)T f ≥ λi,j

(
(ai)Thj + 1

)− (1 − λi,j)2
2〈A〉,

where we use the estimate |(ai)T f | ≤ |ai| · |f | < 2〈ai〉−d(d2〈A〉) < 22〈A〉
(cf. [GLS88]).

Conversely, let z ∈ CA∩Zd and λ ∈ {0, 1}m∗k satisfy
∑m

i=1 λi,j ≥ 1 for all
1 ≤ j ≤ k and the system of inequalities outlined above. For every 1 ≤ j ≤ k
there exists a parameter λji,j = 1. Then

(aji)T z ≥ λji,j

(
(aji)Thj + 1

)− (1 − λji,j)2
2〈A〉 = (aji)Thj + 1.

So z − hj /∈ CA, z �= 0 and we have z ∈ F̃A(h
1, . . . , hk).

The optimization problem max cT z, z ∈ F̃A(h
1, . . . , hk) gives rise to a lin-

ear integer program in dimension d + mk. Therefore, we cannot simply
apply Lenstra’s algorithm [Len83] to this integer program in order to ter-
minate with a solution of HBP in polynomial time for fixed d. In order to end
up with a polynomial time algorithm we split the set F̃A(h

1, . . . , hk) into a
polynomial number of subsets each of which is easy to describe. Then we
apply Lenstra’s algorithm to each subset separately. A similar trick was
used in [CLS84], see also [Sch86].

Theorem 3.2. For fixed dimension d there exists a polynomial time algo-
rithm that solves HBP.

Proof. Let A ∈ Z
m×d and h1, . . . , hk ∈ H(CA) be an input of HBP. Again, we

denote by (ai)T the rows of A, 1 ≤ i ≤ m. By Theorem 3.1 we may assume
k ≥ 1.
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Let Z be the collection of vectors u ∈ CA ∩ {x ∈ R
d : |x|∞ ≤ 2〈A〉}

determined by d linearly independent equations from the following list:

(ei)Tu = 2〈A〉, i = 1, . . . , d,

(ei)Tu = −2〈A〉, i = 1, . . . , d,

(ai)Tu = 0, i = 1, . . . ,m (3.11)

(ai)Tu = (ai)Thj + 1/2, i = 1, . . . ,m, j = 1, . . . , k.

Since d is fixed we can find and store Z in polynomial time. Let r be
the maximal cardinality of a set of linearly independent vectors from Z.
Obviously, r = dim(CA). Now, we determine all affinely independent subsets
u1, . . . , ur+1, ui ∈ Z, such that for all j ∈ {1, . . . , k} there exists an index
ji ∈ {1, . . . ,m} with

(aji)Tul ≥ (aji)Thj + 1/2, 1 ≤ l ≤ r + 1. (3.12)

Let S be the collection of all these subsets. We claim

F̃A(h
1, . . . , hk) =

⋃
{u1,...,ur+1}∈S

(
conv{u1, . . . , ur+1} ∩ Zd\{0}

)
. (3.13)

Let f ∈ F̃A(h
1, . . . , hk). Since f − hj /∈ CA for each j ∈ {1, . . . , k} there

exists a ji ∈ {1, . . . ,m} such that (aji)T f ≥ (aji)Thj + 1 (cf. (3.8)). Hence
f is contained in the polytope

Pf = {x ∈ R
d : Ax ≤ 0, (aji)Tx ≥ (aji)Thj + 1/2, 1 ≤ j ≤ k, |x|∞ ≤ 2〈A〉}.

Since dim(CA) = r and (aji)T f ≥ (aji)Thj + 1 we have dim(Pf ) = r. By
Carathéodory’s Theorem f can be written as a convex combination of (r+1)
affinely independent vertices of Pf . Since each vertex of Pf is contained in Z,

there exists a set {u1 . . . , ur+1} ∈ S with f ∈ conv{u1, . . . , ur+1} ∩Zd\{0}.
On the other hand let {u1, . . . , ur+1} ∈ S and z ∈ conv{u1, . . . , ur+1} ∩

Z
d\{0}. Then we may write z =

∑r+1
i=1 λiu

i with
∑r+1

i=1 λi = 1, λi ≥ 0,
1 ≤ i ≤ r + 1. From (3.12) we get for j ∈ {1, . . . , k}

(aji)T z =
r+1∑
l=1

λi(a
ji)Tul ≥ (aji)Thj +

1

2
.

Hence (aji)T z ≥ (aji)Thj + 1. Since z ∈ CA ∩ Zd\{0}, |z|∞ ≤ 2〈A〉 we have

z ∈ F̃A(h
1, . . . , hk).

Now, let c =
∑m

i=1 a
i. For each S = {u1, . . . , ur+1} ∈ S we consider the

integer linear program

(IPS) max cT z, cT z ≤ −1, z ∈ convS ∩ Zd.

An integer program of this form can be solved by Lenstra’s algorithm
[Len83]. If for every S ∈ S the program (IPS) is infeasible, then H(CA) =
{h1, . . . , hk} by (3.13) and Remark 3.1. Otherwise, let zS denote an optimal
solution of a feasible problem (IPS). Let z

∗ be one of these optimal solutions
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that maximizes the objective function c. It follows that z∗ is a solution of
max cT z, z ∈ F̃A(h

1, . . . , hk). Therefore z∗ ∈ H(CA)\{h1, . . . , hk}.
From this Theorem we may deduce

Corollary 3.2. Let CA = {x ∈ R
d : Ax ≤ 0} be a pointed cone and

k = #H(CA). For fixed d and k there exists a polynomial algorithm which
determines the Hilbert basis of CA.

4. An algorithm to compute Hilbert Bases

Throughout this section we assume that A is a fixed m times d matrix of
integer coefficients with rows (a1)T , . . . , (am)T and C = {x ∈ R

d
+ : Ax ≤ 0}

is the polyhedral cone associated with A. For a vector v, v+ is the vector
with components v+i = max{0, vi} and v− = (−v)+. In the following we
present a procedure that computes an integral Hilbert basis of C that we
denote by H. For related algorithms see [Stu96], [Pot96], [Tho94], [UWZ94].

There are two ingredients that will be presented first and turn out to be
crucial for the proof of correctness of the algorithm: one is the notion of
reducibility and the other one is the definition of m total orders on Zd.

Definition 4.1. We say that v ∈ Zd reduces w ∈ Zd if the following four
properties hold:

v+ ≤ w+, v− ≤ w−, (Av)+ ≤ (Aw)+, (Av)− ≤ (Aw)−.

v is called reducible in this case. If there does not exist w ∈ Z
d reducing

v, we say that v is irreducible.

In words, if v reduces w, then for i ∈ {+,−} both wi and (Aw)i can be
written as the sum of two integral vectors that lie in the same orthant as wi

and (Aw)i, respectively. In particular, if w is an integral point in C and an
integral point v ∈ C reduces w, then w − v belongs to C.

Next we define m total orders on Z
d that we denote by the symbol �1,

�2, . . . , �m. The symbol �lex is used for the lexicographic order between
the lattice points in Zd. For x, y ∈ Z

d we define

x ≺i y ⇐⇒
{
(ai)Tx < (ai)T y, or

(ai)Tx = (ai)T y and x ≺lex y.

We are now ready to outline an algorithm that computes an integral
Hilbert basis H of C and verify its correctness.

Algorithm 4.1. to compute a minimal integral Hilbert basis H of
the cone C.

(1) Set G := {e1, . . . , ed} and Gold := ∅.
(2) While G and Gold differ perform the following steps:
(2.1) Set Gold := G.
(2.2) For every v, u ∈ G with |u+ v|∞ ≤ 2〈A〉 set w := u+ v.
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a) As long as possible find z ∈ G reducing w and update w :=
w − z.

b) If w �= 0, set G := G ∪ {w}.
(3) Set H := G.
(4) As long as there exists w ∈ H such that Aw �≤ 0 set H := H \ {w}.
(5) As long as there exists w ∈ H that is reducible by some v ∈ H set

H := H \ {w}.
The algorithm terminates in finite time and outputs an integral Hilbert

basis of the cone. This will be shown in two steps. We start with a lemma
saying that every integral vector x ∈ C\G can be reduced by integral vectors.

Lemma 4.1. Let x ∈ C ∩ N
d such that x �∈ G. For every i ∈ {0, . . . ,m}

there exist z1, . . . , zk ∈ G satisfying

(I) x =
k∑

v=1

zv and (II) zv ≺t 0 for 1 ≤ t ≤ i, 1 ≤ v ≤ k.

Proof. Let x ∈ C∩Nd and assume that x �∈ G. On account of Lemma 3.1 we
know that the Hilbert basis of C is contained in the cube with edge length
2 ∗ 2〈A〉. Therefore, we can assume that |x|∞ ≤ 2〈A〉. We use induction on i
in order to verify the lemma. If i = 0 we only need to verify the property
that there exist non-negative integral vectors z1, . . . , zk ∈ G that satisfy
(I) of Lemma 4.1. For example μ1 copies of e1, μ2 copies of e2, . . . , μd

copies of ed satisfy this requirement since e1, . . . , ed ∈ G are irreducible. We
now assume that the lemma is correct for a given value of i and show the
correctness for the index i+ 1.

Let x =
∑d

j=1 μje
j be given with μj ∈ N for all j = 1, . . . , d. By assump-

tion of the induction there exist non-negative integral vectors z1, . . . , zk ∈ G
that satisfy property (I) of Lemma 4.1 and condition (II) for all values of
t ∈ {0, . . . , i}, i.e., zv ≺t 0 for every t ∈ {0, . . . , i} and v ∈ {1, . . . , k}. With
every family z1, . . . , zk ∈ G of non-negative integral vectors that satisfy
property (I) and condition (II) for all values of t ∈ {0, . . . , i} we associate
a special point z∗ that is defined as the sum of vectors in the sequence that
are negative with respect to the order �i+1. In formulas, let v0 ∈ {1, . . . , k}
be the index such that

zv ≺i+1 0 for all v = 1, . . . , v0 − 1 and zv �i+1 0 for all v = v0, . . . , k,

then z∗ =
∑v0−1

v=1 zv. (Note that x ∈ C ∩ Nd and so v0 ≥ 2).

Choose vectors z1, . . . , zk ∈ G that satisfy property (I) and (II) for all

values of t ∈ {0, . . . , i} such that the special point z∗ :=
∑v0−1

v=1 zv is maximal

with respect to the order �i+1. If v0 = k+1, then z1, . . . , zk satisfy property
(II) of Lemma 4.1 for all values of t ∈ {0, . . . , i + 1} and we are done.
Otherwise, v0 ≤ k holds implying that z := zv0−1 + zv0 ∈ N

d . Since |z|∞ ≤
|x|∞ ≤ 2〈A〉 the point z was computed in Step (2.2) of Algorithm 4.1. Hence,
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there exists a representation of z in the form

z = g1 + . . .+ ga,

where g1, . . . , ga ∈ G reduce z. Let b ≤ a be the index with

g1 ≺i+1 0, . . . , g
b ≺i+1 0 and gb+1 �i+1 0, . . . , g

a �i+1 0.

Then z1, . . . , zv0−2, g1, . . . , gb, gb+1, . . . ga, zv0+1 . . . , zk is also a sequence of
non-negative integral points that satisfy condition (I) and condition (II) for
all values of t ∈ {0, . . . , i}. Yet, the special point z∗ of this new sequence is

v0−2∑
v=1

zv + g1 + . . . gb.

As zv0−1 ≺i+1 z
v0−1 + zv0 = z = g1 + . . . gb + gb+1 + . . .+ ga and as each gj

reduces z we obtain zv0−1 ≺i+1 g
j for j = 1, . . . , b. It then follows that the

special point in this new sequence is greater than the special point of the
original sequence z1, . . . , zk with respect to �i+1. We obtain a contradiction
that the sequence z1, . . . , zk was chosen such that the specified point z∗ is
maximal with respect to �i+1.

Theorem 4.1. Algorithm 4.1 terminates after a finite number of steps and
the output H is a Hilbert basis of C.

Proof. Finiteness of the algorithm follows from the fact that the number of
integral points in the set G that we compute in Steps (1) and (2) is always
finite. Each performance of Step (2) adds at least one element to the current
set G.

Furthermore, Lemma 4.1 with i = m shows that each x ∈ C ∩ Nd can be
written as the sum of elements in G. Thus

C ∩ Nd = {
k∑

i=1

nig
i : ni ∈ N, gi ∈ G ∩ C, 1 ≤ i ≤ k, k ∈ N}.

Hence it should be clear that steps (4) and (5) reduce G to the Hilbert
basis H.

Example 4.1. Let w1, . . . wd, wd+1, . . . , wl be non-negative integers such
that each wd+j, j = 1, . . . , l is an integer multiple of each wi, i = 1, . . . , d,
and set

C := {x ∈ R
d+l
+ :

d∑
i=1

wixi −
l∑

j=1

wd+jxd+j ≤ 0}.

Algorithm 4.1 starts with G =
⋃d

i=1{ei}∪
⋃l

j=1{ed+j}. Note that⋃l
j=1{ed+j}

⊆ C. Next we perform steps (2.1) and (2.2’). After performing Step 2, G
is of the form G = {e1, . . . , ed} ∪ {ei + ed+j : i = 1, . . . , d, j = 1, . . . , l} ∪
{ed+1, . . . , ed+l} because for every i, j ∈ {1, . . . , d} or i, j ∈ {d+1, . . . , d+l}
the vector ei + ej is reducible by ei. As wi − wd+j < 0, the set {ei + ed+j :
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i = 1, . . . , d, j = 1, . . . , l} is contained in C. Moreover, every vector of the
form ei+ed+j1 +ed+j2 with i ∈ {1, . . . , d} and j1, j2 ∈ {1, . . . , l} is reducible
by ei + ed+j1 . Therefore, performing Steps (2.1) and (2.2’) a second time
yields an updated set G of the form G = {ed+j : j = 1, . . . , l, ei + ed+j :
i = 1, . . . , d, j = 1, . . . , l, ei1 + ei2 + ed+j : i1, i2 = 1, . . . , d, j = 1, . . . , l}
∪ {e1, . . . , ed}.

Iterating these arguments shows that an irreducible vector is always of
the form

∑
i∈S ei + ed+j with S ⊆ {1, . . . , d} and j ∈ {1, . . . , l}. The fact

that each wd+j, j = 1, . . . , l is an integer multiple of each wi, i = 1, . . . , d

implies that a vector
∑

i∈S ei+ed+j such that S ⊆ {1, . . . , d}, j ∈ {1, . . . , l}
and

∑
i∈S wi − wd+j > 0 can be reduced by a vector

∑
i∈S̄ ei + ed+j where

S̄ ⊂ S and
∑

i∈S̄ wi − wd+j = 0.
It follows that we terminate with Step 2 of Algorithm 4.1 when G is equal

to the union of {e1, . . . , ed} and the set

{
∑
i∈S

ei + ed+j : S ⊆ {1, . . . , d},
∑
i∈S

wi ≤ wd+j , j = 1, . . . , l}.

After performing Steps (3), (4) and (5) we end with

H = {
∑
i∈S

ei + ed+j : S ⊆ {1, . . . , d}, j = 1, . . . , l,
∑
i∈S

wi ≤ wd+j}.

This is by our Theorem the Hilbert basis of the cone C. The number of times

Step 2 is performed is equal to the ratio
max{wd+j : j=1,... ,l}
min{wi: i=1,... ,d} .

Throughout this section we were dealing with cones that are contained in
one orthant of Rd . For polyhedral cones of the form C = {x ∈ R

d : Ax ≤ 0}
a slight modification of Algorithm 4.1 will still compute an integral Hilbert
basis of the associated cone. We replace the initial Step (1) by

(1’) Set G := {e1,−e1, . . . , ed,−ed} and Gold := ∅.
Then by applying the same techniques as we did in the proof of Lemma

4.1 we obtain

Lemma 4.2. Let x ∈ {x ∈ R
d : Ax ≤ 0} ∩ Zd such that x �∈ G where G is

the set that we computed via the modified Algorithm 4.1 with Steps (1’), (2)
- (5). For every i ∈ {1, . . . ,m} there exist z1, . . . , zk ∈ G satisfying

(I) x =
k∑

v=1

zv and (II) zv ≺t 0 for 1 ≤ t ≤ i, 1 ≤ v ≤ k.

As a consequence of Lemma 4.2 we obtain that the modified Algorithm
computes an integral Hilbert basis of the cone {x ∈ R

d : Ax ≤ 0}.
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Sophia Antipolis, Valbonne (1996).
[Sch86] A. Schrijver, Theory of Linear and Integer Programming, John Wiley and Sons,

Chichester, 1986.
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