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Abstract

We investigate dominance relations between basic semidefinite relaxations and classes of
cuts. We show that simple semidefinite relaxations are tighter than corresponding linear
relaxations even in case of linear cost functions. Numerical results are presented illustrating
the quality of these relaxations.
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1 Introduction

The quadratic knapsack problem is the easiest case of constrained 0/1 quadratic programming
and is extremely difficult to solve by linear programming alone. Semidefinite programming is well
known to provide powerful relaxations for quadratic 0/1 programming [11, 1, 6] and, as we intend
to show, it is very useful for quadratic knapsack problems as well. We compare several possibilities
for setting up initial relaxations and show that in the special case of linear cost functions some
are even better than the canonical linear relaxation. We discuss possible strengthenings of these
relaxations by polyhedral cutting plane approaches in theory and in practice. The main practical
difficulty with semidefinite approaches is the high computational cost involved. These stem from
the factorization of a completely dense symmetric positive definite matrix with dimension equal
to the number of constraints. To keep the number of constraints small it is of major importance
to understand the interaction and dominance relations between different classes of cuts. We
give several theoretical results in this direction. Finally, we present computational results of this
approach on practical data.

Let N = {1, . . . , n} be a set of items, a ∈ INn a vector of weights, b ∈ IN a capacity, and
C ∈ IRn×n a matrix of costs. The quadratic knapsack problem reads

(QK) Maximize xtCx
subject to atx ≤ b

x ∈ {0, 1}n .
We can interpret this problem in graph theoretic terms: Given the complete graph on n vertices
with node weights ai and profit cii for all i = 1, . . . , n. Every edge ij in the complete graph is
assigned an objective function coefficient cij. Find a set of nodes S with sum of the node weights
not greater than the threshold b that maximizes the profit

∑
i∈S cii+

∑
i,j∈S,i<j 2cij. As in the case

of the linear knapsack problem the quadratic knapsack problem often appears as a subproblem
to more complex optimization problems. Typical applications arise in VLSI- and compiler design
[5, 9].
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Our approach builds up on [6], which concentrates on the quadratic 0/1 programming aspects.
Here, we investigate quadratic representations of a linear constraint, as suggested in [11, 1, 6] and
discuss various aspects of knapsack specific inequalities. A preliminary version of this paper has
been presented at the fifth IPCO conference [8].

The paper is structured as follows. Section 2 introduces several semidefinite relaxations ob-
tained by different representations of the knapsack constraint and analyzes their strength. Section
3 surveys both well known and some new polyhedral concepts for generating knapsack specific
cuts. In Section 4 we deal with the dominance relation between these cuts. Section 5 is dedi-
cated to the special case when the knapsack constraint coincides with a generalized upper bound
constraint. We discuss implementational issues and our numerical results in Section 6.

2 Semidefinite Relaxation

(QK) is a constrained quadratic 0/1 programming problem. The usual approach for designing
relaxations is to linearize the quadratic cost function by switching to “quadratic space”. To this
end we introduce variables yij for i ≤ j which are used to model the products xixj. In the
unconstrained case the convex hull of all feasible points in quadratic space is referred to as the
boolean quadric polytope. The knapsack constraint cuts off part of this polytope. Although
the convex hull of the restricted set of feasible integral points may differ substantially from the
boolean quadric polytope it seems natural to start with a strong relaxation for the boolean quadric
polytope and add knapsack specific inequalities on top.

Relaxation for the Boolean Quadric Polytope.

As a relaxation for the boolean quadric polytope we use the semidefinite framework of [6] which
is based on [11] and [1]. We model the dyadic product xxt by a (symmetric) matrix variable Y .
We denote the diagonal of this matrix by y. Using this notation the feasible set of matrices can
be restricted to those satisfying Y − yyt � 0, i.e. Y − yyt must be positive semidefinite. This
condition is equivalent to (

Y y
yt 1

)
� 0. (1)

The diagonal elements yi are obviously bounded by 0 and 1 and correspond to xi. Looking at the
determinant of a 3× 3 principal minor containing the last row we get

yiyj −
√

yiyj(1 + yiyj − yi − yj) ≤ yij ≤ yiyj +
√

yiyj(1 + yiyj − yi − yj) (2)

which yields an absolute lower bound of −1
8
for yij .

Numerous facet defining inequalities are known for the boolean quadric polytope [13] and can
be added to sharpen the relaxation. Some of the most popular inequalities are (for all possible i,
j and k)

yij ≥ 0 (3)

yij ≤ yii (4)

yii + yjj ≤ 1 + yij (5)

yik + yjk ≤ ykk + yij (6)

yij + yik + yjk + 1 ≥ yii + yjj + ykk (7)

These correspond to the triangle inequalities of the max-cut polytope [2].
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Modelling the Knapsack Constraint.

The easiest way to model the knapsack constraint atx ≤ b on Y is to restrict the diagonal elements
of Y , yielding our first semidefinite relaxation,

(SQK1) Maximize tr(CY )
subject to tr(Diag(a)Y ) ≤ b

Y − yyt � 0.

Can we do better than (SQK1) by choosing some other representation of the knapsack inequality?
Let us first consider a generic approach [11]. b− atx ≥ 0 implies

(b− atx)(b− atx) = b2 − 2batx+ atxxta ≥ 0.

So a possible representation for the knapsack inequality could read

b2 − 2baty + atY a ≥ 0.

However, this inequality is already implied by the semidefinite constraint Y − yyt � 0. Because
of the integrality of the coefficients ai and b we can employ a combinatorial argument to sharpen
this inequality. Observe that |(2b−1)−2atx| is at least one for all 0/1 vectors x and therefore the
quadratic representation of (2b− 1− 2atx)2 ≥ 1 yields a valid inequality for the boolean quadric
polytope which is best formulated with respect to (1),

( −2at 2b− 1
)( Y y

yt 1

)( −2a
2b− 1

)
≥ 1. (8)

This inequality is no more implied by Y − yyt � 0. Indeed, it can be worked out that it belongs
to the class of hypermetric inequalities 1 and that for special choices of a and b it will yield a facet
defining inequality for the boolean quadric polytope. Notice however that this inequality does not
exclude 0/1 solutions that violate the knapsack constraint. However, it is tight for all x which
satisfy atx = b or atx = b− 1 and might therefore turn out to be a useful cutting plane.

To achieve our goal of cutting off a larger part of the boolean quadric polytope we exploit the
fact that atx ≥ −b on the feasible set. Squaring both sides of atx ≤ b yields

atxxta ≤ b2.

Replacing xxt by Y we call this the square representation of the inequality and use it to form a
second relaxation

(SQK2) Maximize tr(CY )
subject to tr(aatY ) ≤ b2

Y − yyt � 0.

Lemma 2.1 (SQK2) is tighter than (SQK1).

Proof. With Z = Y − yyt we get
atZa+ (aty)2 ≤ b2 (9)

which implies aty ≤ b by the positive semidefiniteness of Z.

This proof suggests the following corollary.

Corollary 2.2 If aty = b for some Y satisfying tr(aatY ) ≤ b2 and Y − yyt � 0, then a is in the
null space of Z = Y − yyt.

1More precisely, the inequality corresponds to a hypermetric inequality of the max-cut polytope for any a and
b such that there is a 0/1 vector x with atx = b or atx = b− 1. For a survey on the facets of the max-cut polytope
see [3, 4].
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Another possibility to construct quadratic representations is to multiply the inequality by
either xi or (1− xi) [11, 1]. If, for some fixed i, we sum up the two inequalities

n∑
j=1

ajyij ≤ byi (10)

n∑
j=1

aj(yj − yij) ≤ b(1− yi) (11)

we get aty ≤ b.

Lemma 2.3 The relaxation obtained by replacing tr(Diag(a)Y ) ≤ b of (SQK1) with a pair of
inequalities (10) and (11) for some i is tighter than (SQK1).

By including all n inequalities of type (10) and one additional inequality of type (11) we get

(SQK3) Maximize tr(CY )
subject to

∑n
j=1 ajyij ≤ byi i = 1 . . . n∑n
j=1 aj(yjj − y1j) ≤ b(1− y1)

Y − yyt � 0.

Lemma 2.4 (SQK3) is tighter than (SQK2).

Proof. By multiplying inequality i of type (10) with ai
n∑

j=1

aiajyij ≤ baiyi

and summing up over all n inequalities, we obtain atY a ≤ baty ≤ b2. The right hand side inequality
follows from Lemma 2.3.

In practice it is more efficient to start with (SQK2) and to add Inequalities (10) and (11) in case
of violation only.

Example 2.5 To illustrate that the gap between these relaxations may indeed be quite large con-
sider the following problem for k ≤ n,

Maximize xt(eet − I)x
subject to etx ≤ k

x ∈ {0, 1}n .

(12)

Here, e denotes the n-vector of all ones, and xT (eet − I)x =
∑

i<j 2xixj. The optimal value of
(12) is k(k − 1). Observe that, because of symmetry, in any quadratic relaxation there exists an
optimal solution such that every on-diagonal element has the same value d and every off-diagonal
element has the same value f, i.e., there is an optimal solution of the form Y = d · I+f · (eet− I).
Thus, it suffices to compute the maximal possible f for relaxations (SQK1) to (SQK3).

First consider (SQK1). The diagonal representation of etx ≤ k reads ety ≤ k which implies
d ≤ k

n . Because of the positive semidefiniteness of Y we certainly cannot choose f larger than d.

For f = d = k
n we have Y − yyt = (f − f2)eet � 0 and so this choice of f is optimal. The optimal

value of (SQK1) for (12) is (n− 1)k. Asymptotically, for n → ∞, this bound gets arbitrarily bad.
For (SQK2) the quadratic representation reads etY e ≤ k2. Again we get the largest possible f

by choosing f = d and etY e = n2f = k2. This leads to an optimal value of n−1
n

k2. For k = 2 we
get an asymptotic error factor of 2.

In (SQK3) each line of type (10) leads to (n − 1)f ≤ (k − 1)d. Because one pair of (10) and
(11) implies the diagonal constraint we get that d ≤ k

n . It easy to check that we can indeed set both

values to their respective upper bounds. In particular we get f = k(k−1)
n(n−1) and the optimal value is

k(k − 1) which is exact.

As we will see in Section 6 for practical examples the gap between (SQK2) and (SQK3) is
much smaller, and (SQK3) itself may still have a rather large relative gap.
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Comparison With a Linear Relaxation.

We investigate the special case of a linear cost function C = Diag(c), i.e. Cij = 0 for i �= j. The
standard linear relaxation reads

(LK) Maximize ctx
atx ≤ b
0 ≤ xi ≤ 1 i = 1, . . . , n.

(SQK1) is equivalent to (LK) because for any feasible x vector there is a feasible matrix Y having
x as its diagonal. However, this is not true for (SQK2).

Lemma 2.6 Let Y ∗ be an optimal solution of (SQK2) for C = Diag(c). If (LK) has a unique
optimal solution x∗ which is not integral then tr(Y ∗C) < ctx∗.

Proof. First notice that if x∗ is not integral then atx∗ = b. As x∗ is unique it has exactly one
element xı̂ with 0 < xı̂ < 1. Consider a matrix Y satisfying y = diag(Y ) = x∗ and Y − yyt � 0.
Because of (2) yij = yiyj for i �= j. Therefore the only non zero element of Z = Y − yyt is
zı̂ı̂ = xı̂ − x2

ı̂ . Obviously atZa = a2ı̂ zı̂ı̂ is greater than zero. Thus, by Corollary 2.2, Y is not
feasible for (SQK2). Finally, the fact that y∗ = diag(Y ∗) is feasible for (LK) completes the proof.

Because of this result we can expect that for numerous linear 0/1 programming problems we get
better relaxations by simply translating the linear relaxation to the semidefinite representation.

3 Cutting Planes

In this section we introduce several classes of valid inequalities for the polyhedra associated with
the linear and the quadratic representation. These classes serve as the basis for an algorithm to
tighten bounds obtained from the semidefinite relaxation of a knapsack problem, see Section 6.

The Linear Knapsack Polyhedron.

Our starting point is the polyhedron

P := conv{x ∈ {0, 1}n :
∑
i∈N

aixi ≤ b}.

A typical example of valid inequalities for P are cover inequalities. Let S be a subset of N
with

∑
i∈S ai > b, then the cover inequality with respect to the cover S

∑
i∈S

xi ≤ |S| − 1 (13)

is valid for P. The original weights are completely ignored by cover inequalities.

Definition 3.1 (weight inequalities) Let T ⊆ N with a(T ) < b and set r := b − a(T ). The
weight inequality with respect to T is defined as∑

i∈T

aixi +
∑

i∈N\T
max{0, (ai − r)}xi ≤ a(T ).

The name weight inequality expresses that the coefficients of the items in T equal their weights.
The symbol r := b− a(T ) corresponds to the remaining capacity of the knapsack when xt = 1 for
all t ∈ T . The right hand side of the inequality is the weight of the set T . Hence, if for an item
i ∈ N \ T ai ≤ r holds, then xt = 1 for all t ∈ T and xi = 1 is a feasible solution. Therefore,
the coefficient of i equals 0 in this case. For an item i ∈ N \ T such that ai > r, the value ai − r
corresponds to the weight by which the knapsack capacity b is exceeded if we set xi = 1 and xt = 1
for all t ∈ T . These arguments can be made precise to yield Proposition 3.2.
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Proposition 3.2 [14] For T ⊆ N , a(T ) < b and r := b − a(T ), the weight inequality with
respect to T is valid for P.

Example 3.3 For the knapsack polyhedron

SP7 := conv{x ∈ {0, 1}7 : x1 + x2 + x3 + 2x4 + 2x5 + 3x6 + 4x7 ≤ 6,

the following weight inequalities are easily seen to be facet-defining:

x1 + x2 + x3 + 2x4 + x5 + 2x6 + 3x7 ≤ 5

xi + xj + 2xk + x6 + 2x7 ≤ 4 for all i, j ∈ {1, 2, 3}, i �= j and for all k ∈ {4, 5}
x1 + x2 + x3 + x7 ≤ 3.

The idea of weight inequalities can be extended to more general cases. Instead of taking the
values of the weights of the items into account, we introduce “relative” weights for all the items
and derive an analogon of weight inequalities for these relative weights.

For disjoint subsets T and I such that a(T ∪ I) ≤ b, at ≤ ai for all t ∈ T and i ∈ I and
a(T ) ≥ ai for all i ∈ I, we define the relative weight cu of an item u ∈ T ∪ I as follows:

cu := 1 if u ∈ T ; cu := min{|S| : S ⊆ T, a(S) ≥ au} if u ∈ I.

In words, we first normalize the weights of the items in T to the value 1; thereafter an item i ∈ I
obtains as a new weight the value that counts the number of items in T that one needs in order to
cover the original weight ai. Under these assumptions we define for z ∈ N \ (T ∪ I) the extended
weight inequality with respect to T ∪ I ∪ {z} as follows:

Definition 3.4 (extended weight inequalities) For r := b− a(T )− a(I), the extended weight
inequality with respect to T ∪ I ∪ {z} is of the form

∑
i∈T

xi +
∑
i∈I

cixi + czxz ≤ |T |+
∑
i∈I

ci,

where cz := min{|S|+ ∑
j∈J cj : S ⊆ T, J ⊆ I, a(S ∪ J) ≥ az − r}.

Extended weight inequalities have been introduced and analyzed in [14]. For the purpose of
this paper the following proposition is needed.

Proposition 3.5 [14] The extended weight inequality defined for T ∪ I ∪ {z} is valid for P.

Example 3.6 We continue analyzing the knapsack polyhedron SP 7. Setting T := {1, 2, 4}, I = ∅
and z = 6, the extended weight inequality for T , I and {z} is the inequality

x1 + x2 + x4 + x6 ≤ 3,

that happens to be a minimal cover inequality. This inequality lifts to the facet-defining inequality

x1 + x2 + x4 + x6 + x7 ≤ 3

of SP7. The extended weight inequality with respect to T = {1, 4}, I = {6} and z = 7 is the
inequality

x1 + x4 + 2x6 + 3x7 ≤ 4.

After computing lifting coefficients according to the sequence (7, 2, 5, 3), for instance, we obtain
the inequality

x1 + x2 + x4 + x5 + 2x6 + 3x7 ≤ 4.

This induces a facet of SP7.

It was also shown in [14] that for any extended weight inequality lifting coefficients can always
be computed in polynomial time. In particular, the exact lifting coefficient of an item coincides
either with a certain lower bound or its value equals this lower bound plus 1.

6



The Quadratic Knapsack Polyhedron.

In the following we will study the polyhedron

Q := conv{y ∈ {0, 1}n(n+1)/2 :
∑
i∈N

aiyii ≤ b, yij = yiiyjj ∀i < j}.

that we obtain by lifting the original polyhedron to the space of quadratic variables. In this
higher dimensional space, there are novel ways to construct relaxations of Q that, itself, allow for
generating valid inequalities for Q.

Lemma 3.7 Let N1, . . . , Nk be a partition of N . For every v ∈ {1, . . . , k} we choose a spanning
tree (Nv, Tv) in the complete graph K(Nv) on the node set Nv. By deg

v
i we denote the degree of node

i in the tree (Nv , Tv). The polyhedron conv{y ∈ {0, 1}n(n+1)/2 :
∑k

v=1(
∑

i∈Nv
ai)[

∑
ij∈Tv

yij +∑
i∈Nv

(1− degvi )yii] ≤ b} contains all the feasible points of Q.

Proof. Let y ∈ Q, integral, be given and choose a tree (Nv , Tv), v ∈ {1, . . . , k}. We want to show
that the corresponding summand

∑
ij∈Tv

yij +
∑

i∈Nv
(1− degvi yii) is one if yii = 1 for all i ∈ Nv

and not greater than zero otherwise. First suppose yii = 1 for all i ∈ Nv . In this case∑
ij∈Tv

1 +
∑
i∈Nv

1−
∑
i∈Nv

degvi = |Nv| − 1 + |Nv| − 2|Nv − 1| = 1.

Otherwise edges with yij = 0 decompose the tree into several subtrees which again satisfy yii = 1
for all nodes belonging to the same subtree and are maximal in this respect. However, the value
degvi of at least one node in such a subtree must exceed the degree within the subtree by at least
one. This is due to the fact that each subtree is connected by at least one edge to a vertex j ∈ Nv

with yjj = 0. Therefore the contribution of a subtree to the summand is not greater than zero.

Lemma 3.7 allows us to derive valid inequalities for Q via the following scheme: Generate a
relaxation Q′of Q as stated in the Lemma. Find valid inequalities, like cover inequalities, weight
inequalities or extended weight inequalities for Q′. These inequalities are also valid for Q.

Example 3.8 Consider the knapsack polyhedron

conv{x ∈ {0, 1}6 : 5x1 + 6x2 + 7x3 + 8x4 + 9x5 + 12x6 ≤ 21}.
Partitioning into sets {1, 2}, {3, 4}, {5, 6} and choosing the edge set of the complete graphs on two
nodes for all elements in the partition yields the knapsack polyhedron

Q′ := conv{y ∈ {0, 1}21 : 11y1,2 + 15y3,4 + 21y5,6 ≤ 21}.
A valid inequality for this polyhedron is given by the cover inequality y1,2 + y3,4 + y5,6 ≤ 1. Parti-
tioning N into the sets {1, 2, 3}, {4}, {5}, {6} and choosing the edges (1, 2), (1, 3) in the complete
graph with vertices 1, 2, 3 yields another knapsack polyhedron

Q′′ := conv{y ∈ {0, 1}21 : 18[y1,2 + y1,3 − y1,1] + 8y4,4 + 9y5,5 + 12y6,6 ≤ 21}.
A valid inequality for Q′′ is given, for instance, by the constraint 2[y1,2+y1,3−y1,1]+y4,4+y5,5+
y6,6 ≤ 2.

In the remainder of this paper we sometimes refer to special relaxations of Q. These are
obtained by partitioning a subset S = {i1, . . . , is} of N of even cardinality into elements of
cardinality two, S1, . . .S

s
2 , S1 = {i1, i2}, S2 = {i3, i4}, . . . , S

s
2 = {is−1, is}, for instance.

In other words, we choose a perfect matching M in the complete graph with node set S, or a
matching M in the complete graph with node set N . By Lemma 3.7 the polyhedron

conv

⎧⎨
⎩y ∈ {0, 1}n(n+1)/2 :

∑
ij∈M

(aj + ai)yij +
∑

i∈N\S
aiiyii ≤ b

⎫⎬
⎭
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is a relaxation of Q. The knapsack inequality

∑
ij∈M

(aj + ai)yij +
∑

i∈N\S
aiiyii ≤ b

is called the matching-knapsack-constraint associated with the matching M in the complete graph
with node set N . We will refer to a cover inequality based on a matching-knapsack-constraint as
matching-cover-constraint.

We conclude this section by introducing a quadratic representation for linear cover inequalities.
Let S ⊂ N define a valid cover inequality for P and choose any hamiltonian cycle CS in the
complete graph over the vertex set S. Then

∑
ij∈CS

yij ≤ |CS| − 2

is a valid inequality for Q. We refer to this type of inequalities as cycle inequalities [5].

4 The Strength of Cutting Planes

In general (SQK2) and (SQK3) will not be tight enough to provide provably optimal solutions but
it is possible to improve these semidefinite relaxations by adding further inequalities. We have
already mentioned generic cuts from the boolean quadric polytope in Section 2. In this section we
will consider knapsack specific inequalities.

Linear Cutting Planes.

We start with valid inequalities for P as defined in Section 3. These are again linear constraints
which have to be transformed into some quadratic representation. In principal we have the same
possibilities as for modeling the knapsack inequality and the same results apply. Note, that in
case of multiplication with xi it may be worth to postpone the lifting procedure. Multiplication
of atx ≤ b with xi corresponds to a conditional inequality, which is effective only if xi > 0,

xi

∑
j �=i

ajxj ≤ (b− ai)xi.

So for an extended weight inequality multiplied with xi we can lift the remaining coefficients with
respect to the reduced knapsack inequality

∑
j �=i ajxj ≤ b− ai instead of the original atx ≤ b.

Example 4.1 For the knapsack polyhedron

SP4 := conv{x ∈ {0, 1}4 : 4x1 + 5x2 + 6x3 + 7x4 ≤ 16},

lifting the inequality x1+x2+x3 ≤ 3 with respect to the original inequality yields x1+x2+x3+x4 ≤
3. By multiplying with x3 we get

y13 + y23 − 2y33 + y34 ≤ 0.

Lifting x1 + x2 ≤ 2 with respect to 4x1 + 5x2 + 7x3 ≤ 10 yields

y13 + y23 − 2y33 + 2y34 ≤ 0.

It is also interesting to investigate the dominance relation between different representations if
we include triangle inequalities (3) to (7) in the basic relaxation. Consider the extended weight
inequality for P ∑

i∈T

(1− xi) +
∑
i∈I

ci(1− xi)− czxz ≥ 0. (14)
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Multiplication with xz yields the quadratic representation

∑
i∈T

(yzz − yiz) +
∑
i∈I

ci(yzz − yiz)− czyzz ≥ 0. (15)

We subtract this inequality from the diagonal representation of (14) (replace xi with yii) and get

∑
i∈T

(1− yii − yzz + yiz) +
∑
i∈I

ci(1− yii − yzz + yiz) ≥ 0.

If we require the triangle inequalities (5) to hold, the latter expression is clearly nonnegative and
(15) dominates the diagonal representation of (14). Intuitively, the triangle inequalities help to
spread the influence of an inequality defined on a single row over the whole matrix.

Quadratic Cutting Planes.

We now turn towards valid inequalities for the polyhedron Q. One question in terms of compu-
tations is to choose a relaxation of the original problem that allows to derive strong valid cuts for
the quadratic knapsack problem. If we restrict the discussions to cuts that are cover inequalities,
a precise statement can be made for a comparison of the polyhedra Q and

C := conv{y ∈ {0, 1}n(n+1)/2 :
∑
i∈N

a2i yii +
∑

i<j, i,j∈N

2aiajyij ≤ b2}

that we associate with the form atxatx ≤ b2 of the given quadratic knapsack problem.

Lemma 4.2 For (SQK1) combined with the triangle inequalities (4) every cover inequality that
is valid for C is dominated by a matching-cover-constraint.

Proof. Consider a subset S of the set of variables
⋃

i∈N{i} and a subset T of the set of variables⋃
i<j, i,j∈N{ij} such that

∑
i∈S a2i +

∑
ij∈T 2aiaj > b2. The cover inequality associated with S

and T reads ∑
i∈S

yii +
∑
ij∈T

yij ≤ |S|+ |T | − 1, (16)

and is obviously valid for C. Let I denote the set of indices appearing in S or, as an endpoint, in
T . We first show that

∑
i∈I ai > b. Assume otherwise, then

b2 ≥ (
∑
i∈I

ai)
2 ≥

∑
i∈S

a2i +
∑
ij∈T

2aiaj,

which is a contradiction to our assumptions on S and T . Now consider a maximum cardinality
matching M ⊂ T in the graph (I, T ). We denote by J ⊂ I the indices not covered by an edge of
M . Obviously, ∑

i∈J

yii +
∑
ij∈M

yij ≤ |J |+ |M | − 1

is a valid matching-cover-constraint for Q. Except for the variables yii with i ∈ J \ S all variables
of this inequality also appear in (16). For any i ∈ J \ S there is at least one j such that ij ∈ T .
Since we require (4) to hold and for all ij yij ≤ 1 by the semidefiniteness constraint the matching-
cover-constraint indeed dominates (16).

The next lemma is another indication that matching-knapsack-constraints yield useful relaxations
for deriving valid inequalities.

Lemma 4.3 Let S ⊂ N be a cover. The square representation of the cover inequality with respect
to S is dominated by the diagonal representation combined with

(a) matching-cover-inequalities if |S| is even,
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(b) cycle inequalities if |S| is odd.

Proof. Let S ⊂ N be a cover for P. The square representation reads

∑
i∈S

yii +
∑

i,j∈S,i<j

2yij ≤ (|S| − 1)2. (17)

We first assume that |S| is even. For M a perfect matching in the complete graph with vertex set
S we obtain the matching-cover constraint

∑
ij∈M

yij ≤ |S|
2

− 1.

Let M1,M2, . . . ,M|S|−1 be a partition of the edge set of the complete graph with node set S into
perfect matchings. Then

|S|−1∑
k=1

∑
ij∈Mk

yij ≤ (|S| − 1)(
|S|
2

− 1).

To cover the yii terms of (17) we add the diagonal representation of the underlying cover inequality
and get

∑
i∈S

yii +
∑

i,j∈S,i<j

2yij = 2

|S|−1∑
k=1

∑
ij∈Mk

yij +
∑
i∈S

yii

≤ 2(|S| − 1)(
|S|
2

− 1) + |S| − 1 = (|S| − 1)2.

If |S| is odd then we partition the edge set of the complete graph with node set S into
|S|−1

2
hamiltonian cycles, C1 . . . , C jSj�1

2

. With each cycle Ck we associate the cycle constraint

∑
ij∈Ck

yij ≤ |S| − 2.

Summing up over all cycles we get

jSj�1
2∑

k=1

∑
ij∈Ck

yij + yvv =
∑

i,j∈S,i<j

yij ≤ |S − 1|
2

(|S| − 2).

Multiplying by two and adding the diagonal representation yields (17).

5 Upper Bound Constraints

A typical constraint that arises in many practical applications is that at most k items from a given
ground set of n items may be selected,

etx ≤ k.

This is known as an upper bound constraint. Even within our framework the importance of this
class of inequalities is immediate since the most fundamental cutting planes, the cover inequalities
(13), belong to it.

In the following we assume k ≥ 2. We start with further investigating Example 2.5 which is a
special case of an upper bound constrained problem. Consider the constraint associated with the
cost matrix,

tr((eet − I)Y ) ≤ k(k − 1). (18)

10



It forms a quadratic representation of etx ≤ k which together with the semidefiniteness constraint
yields, as we will show, a tighter relaxation than (SQK2). Let us call this special relaxation the
upper bound relaxation,

(UBR) Maximize tr(CY )
subject to tr((eet − I)Y ) ≤ k(k − 1)

Y − yyt � 0.

In the next lemma we prove that on the feasible set of (UBR) the diagonal representation of
etx ≤ k is satisfied.

Lemma 5.1 (UBR) is tighter than the relaxation (SQK1) associated with etx ≤ k.

Proof. Consider any feasible Y of (UBR). Using (1) we have for any α ∈ IR

(
et α

)( Y y
yt 1

)(
e
α

)
= etY e+ 2αety + α2 ≥ 0.

Because of (18) we get etY e ≤ k(k − 1) + ety implying that

k(k − 1) + (2α+ 1)ety + α2 ≥ 0.

Setting α = −k (remember that k ≥ 2) and rearranging terms shows ety ≤ k.

Since for any feasible Y of (UBR)

etY e = et(Y −Diag(y))e + ety ≤ k(k − 1) + k = k2

we immediately get the following corollary.

Corollary 5.2 (UBR) is tighter than the relaxation (SQK2) associated with etx ≤ k.

The relation between (UBR) and (SQK3) follows directly from Example 2.5 where we proved that
we cannot violate (18) within the feasible set of (SQK3).

Corollary 5.3 (SQK3) is tighter than (UBR).

Although these results indicate that (18) is a reasonable way to model the upper bound con-
straint etx ≤ k, it is not too hard to see that the face F induced by the set of all points satisfying
(18) at equality does not define a facet of Q. Indeed, every point in F is contained in the face
induced by the set of all points y ∈ Q that satisfy

n∑
i=1

yii − 1

k − 1

∑
1≤i<j≤n

yij ≤ k

2

at equality. This inequality is valid forQ and always facet-defining. It corresponds to the represen-
tation (8) of the upper bound constraint etx ≤ k and, therefore, defines a hypermetric inequality
of the max-cut polytope.

Remark 5.4 The face induced by the set of all points in Q that satisfy the knapsack constraint
etx ≤ k at equality is contained in the face induced by the set of all points in Q that satisfy the
hypermetric inequality

( −2et 2k− 1
)( Y y

yt 1

)( −2e
2k − 1

)
≥ 1. (19)

at equality.
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In the special case when k = 2, the hypermetric inequality associated with etx ≤ 2 reads

∑
i∈N

yii −
∑

i<j∈N

yij ≤ 1

and the inequalities of the form (10) specialize to the family
∑

j∈N\{i} yij ≤ yii for all i ∈ N .
These inequalities plus the non-negativity constraints describe Q.

theorem 5.5 The polyhedron

Q := conv{y ∈ {0, 1}n(n+1)/2 :
∑
i∈N

eiyii ≤ 2, yij = yiiyjj ∀i < j}

is described by the system of inequalities

yij ≥ 0 for all i, j ∈ N (20)∑
i∈N

yii −
∑

i<j∈N

yij ≤ 1 (21)

∑
j∈N\{i}

yij ≤ yii for all i ∈ N. (22)

Proof. We have to show that for every objective function c �= 0 the set of all optimal solutions is
contained in the face induced by one of the inequalities (20), (21), (22), see [10]. Let c ∈ IRn(n+1)/2,
c �= 0 be any objective function. By X∗ we denote the set of optimal solutions in Q with respect
to c. The following cases are distinguished.
Case 1: 0 �∈ X∗, then every optimal solution x ∈ X∗ satisfies etx = 1 or etx = 2. Therefore X∗ is
contained in the face induced by the set of all points y in Q for which

∑
i∈N yii−

∑
i<j∈N yij = 1.

Case 2: 0 ∈ X∗ implying that cii ≤ 0 for all i ∈ N and cii + cjj + cij ≤ 0 for all i < j ∈ N . First
note that we cannot have all these inequalities tight because this would imply c = 0. Therefore
one of the following subcases must hold.
(i) ci0i0 < 0 for some i0 ∈ N . Then no y ∈ X∗ satisfies yi0i0 = 1 and yjj = 0 for all j ∈ N \ {i0}.
Hence, every y ∈ X∗ satisfies the inequality

∑
j∈N\{i0} yi0j ≤ yi0i0 at equality.

(ii) ci0i0 + cj0j0 + ci0j0 < 0 for some i0 < j0 ∈ N . Then there is no optimal solution y in X∗ such
that yi0j0 = 1. Therefore, yi0j0 = 0 for all y ∈ X∗.
This completes the proof.

6 Implementation

For solving the semidefinite programs we use the primal-dual path-following interior point algo-
rithm of [7]. To guarantee that there is no duality gap between primal and dual optimal solutions
we have to ensure that at least one of both has a feasible point satisfying all inequalities strictly.
To this end we add the constraint yij = 0 whenever ai + aj > b for some i �= j. The arithmetic
mean of all zero, one, and two items solutions is now such a feasible point.

Each iteration of the interior point code requires the factorization of a dense positive definite
matrix. The dimension of this matrix is the number of constraints of the semidefinite program.
More than 60% of the overall computation time are spent in this routine. It is therefore extremely
important to keep the set of constraints as small as possible. Even expensive separation routines
will pay off if they help to achieve this goal.

To illustrate the quality of the relaxations we give numerical results in Table 1 for some compiler
design problems taken from [9]. For all problems the cost matrix is nonnegative and sparse (e.g.
the problem of dimension 61 has just 187 nonzeros), and both, costs and weights, vary over a wide
range. We emphasize that we do not exploit the sparsity of the problem at all. For each example
we compute solutions for right hand sides 450, 512, and 600.
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The first column of Table 1 gives the dimension of the problem, the second the value of the
right hand side of the knapsack constraint, the third gives the best feasible solution we found. All
other columns display the relative gap

% =

(
upper bound

feasible solution
− 1

)
× 100

of the upper bound — obtained after at most 30 minutes of CPU time2 using the specific relaxation
— with respect to this feasible solution. Whenever the gap between feasible solution and upper
bound is closed (relative gap < 5 ·10−6) we mark this by � and give the computation time, instead.

Table 1: Compiler design problems taken from [9]
dim rhs feas. SQK1 SQK2 SQK3 �-ineq. lin. cuts matching

sol. % % % %/mm:ss %/mm:ss %/mm:ss

30 450 1580 41 17 13 0.23 � 00:19 � 00:24
512 1802 39 20 17 5.60 0.35 � 26:10
600 2326 24 12 11 2.64 � 1:55 � 1:31

45 450 2840 16 8.7 8.4 2.90 � 13:54 � 13:43
512 3154 30 12.7 12.7 3.07 1.61 1.58
600 3840 22 8.2 8.2 � 20:16 � 3:45 � 3:02

47 450 1732 7 5.9 5.8 2.51 � 15:02 � 31:10
512 1932 30 12 11 1.30 � 16:59 � 8:20
600 2186 31 18 17 8.89 6.02 4.09

61 450 26996 3.7 2.4 2.4 0.40 � 3:17 � 3:23
512 29492 2.9 2.0 2.0 1.34 � 28:53 0.02
600 32552 2.6 1.9 1.9 1.04 0.42 0.33

Columns (SQK1), (SQK2), and (SQK3) refer to the respective relaxations of Section 2. The
performance of (SQK1) is rather poor, (SQK2) halves the gap of (SQK1) requiring the same
amount of computation time, (SQK3) is just a little bit better than (SQK2) but takes about twice
as long to compute.

For column �-ineq. we start the algorithm with (SQK2) as initial relaxation and compute its
optimal solution. Then we improve the relaxation by adding n cutting planes of type (3)–(7), (10),
or (11) and iterate. All these cutting planes are applicable for all quadratic 0/1 problems and do
not exploit any special properties of the knapsack problem. Yet the bound is already acceptable.

In column lin. cuts we also include cutting planes which are quadratic representations of valid
inequalities for the linear knapsack polytope. In particular we consider weight inequalities and
extended weight inequalities. In our experiments (10) was clearly the most successful quadratic
representation. Representation (11) will be of importance if the cost matrix contains negative
entries as well. As we can see in Table 1 the addition of these cuts was sufficient to close the gap
for most of our test problems within half an hour. In general the final relaxation included just a
few knapsack specific cutting planes and lots of triangle inequalities (3)–(7).

Finally, column matching gives the results if we separate matching inequalities as well. We use
a preliminary version of the maximum weighted matching code of LEDA [12] to find reasonable
starting sets and derive extended weight inequalities for these sets. Although this separation
procedure is computationally quite expensive total computation time is roughly the same. In view
of the fact that we started only recently to experiment with matching inequalities these results
are very promising.

7 Conclusions

We presented several basic semidefinite relaxations for the 0/1 quadratic programming problem
and compared them with respect to their quality in theory and in practice. The straight forward

2Computation times refer to a Sun Sparcstation 10.

13



approach of modelling the constraint on the diagonal (SQK1) yields a rather poor bound. At
the same computational cost we can get a much better bound by using the square representation
(SQK2). For this relaxation we proved that in case of linear cost functions it is superior to
the canonical linear relaxation. Slightly better than (SQK2) is the relaxation formed by using
all representations obtained by “multiplying” the knapsack inequality with xi for all i (SQK3).
However, computationally it is more efficient to start with (SQK2) and to compute (SQK3) by
successively adding violated inequalities.

Generic 0/1 cutting planes such as the triangle inequalities (3)–(7) significantly improve these
relaxations and yield surprisingly good bounds without requiring any special knowledge about the
nature of the problem itself. However, special polyhedral knowledge is indispensable to close the
gap and speed up the computation.

A good way to model valid inequalities of the linear knapsack polyhedron in quadratic space
is to multiply it with some xi (10). In case of negative elements in the cost matrix it is worth
considering representation (11) as well. Combining the semidefinite framework with quadratic
representations of weight inequalities and extended weight inequalities yields a reasonable approach
to solve rather dense, small to medium sized problems.

In Section 3 we introduced a large new class of valid inequalities for the quadratic knapsack
polyhedron which allow for direct derivation of quadratic cutting planes. We presented some
theoretical and computational evidence for their importance in cutting plane approaches. However,
there is much room for improvement, and it can be expected that the quadratic knapsack polytope
has still a lot to offer.

The good quality of the bounds, even without exploiting special properties of the problem at
hand, gives rise to the hope that — in spite of the high computational cost involved — semidef-
inite programming will become a useful tool to model and solve difficult subproblems in integer
programming.
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