
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Heilbronner Str. 10, D-10711 Berlin - Wilmersdorf

Sebastian Reich

Smoothed Langevin dynamics of

highly oscillatory systems

Preprint SC 96-04 (February 1996)



.



Smoothed Langevin dynamics of

highly oscillatory systems

Sebastian Reich

Konrad-Zuse-Zentrum Berlin
Heilbronner Str. 10

D-10711 Berlin

February 19, 1996

Abstract

In this paper we generalize a result by Rubin and Ungar on Hamiltonian systems
containing a strong constraining potential to Langevin dynamics. Such highly oscillatory
systems arise, for example, in the context of molecular dynamics. We derive constrained
equations of motion for the slowly varying solution components. This includes in parti-
cular the derivation of a correcting force-term that stands for the coupling of the slow
and fast degrees of motion. We will identify two limiting cases: (i) the correcting force
becomes, over a finite interval of time, almost identical to the force term suggested by
Rubin and Ungar (weak thermal coupling) and (ii) the correcting force can be approxi-
mated by the gradient of the Fixman potential as used in statistical mechanics (strong
thermal coupling). The discussion will shed some light on the question which of the
two correcting potentials is more appropriate under which circumstances for molecular
dynamics. In Sec. 7, we also discuss smoothing in the context of constant temperature
molecular dynamics.
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1 Introduction

Physical systems frequently exhibit fast oscillatory behavior coupled to a slowly varying mo-
tion. This is, for example, the case when the potential energy function U(q) consists of a
smooth contribution V (q) and a strong constraining potential modeled through [g(q)]2/(2ε2)
where g(q) is a scalar-valued function and ε > 0 is a small parameter, i.e.,

U(q) = V (q) +
1

2ε2
[g(q)]2 .

In the context of molecular dynamics [1], which provides the main motivation of this paper,
the strong potential can, for example, stand for the bond stretching motion, i.e.,

g(q) = r(q)− r0 ,

r(q) the actual bond length and r0 the equilibrium bond length, or for the bond angle bending
motion, i.e.,

g(q) = φ(q)− φ0 ,

φ(q) the actual bond angle and φ0 the equilibrium bond angle. The parameter ε2 is then the
inverse of the corresponding force constant K, i.e., ε2 = 1/K. Assuming a positive definite
mass matrix M , the Hamiltonian of the system is given by

H(q, p) =
pTM−1p

2
+ U(q) ,

q, p ∈ IR3N , and the corresponding equations of motion are

d

dt
q = M−1p , (1)

d

dt
p = −∇qV (q)− 1

ε2
G(q)T g(q) , (2)

G(q) the Jacobian of g(q), i.e., G(q) = gq(q). The system (1)-(2) exhibits rapid oscillations
on a time-scale of order O(ε). The “interesting” dynamics happens however on time-scales of
order O(1). To capture this “essential” behavior of (1)-(2) one could, for example, send the
solutions (q(t), p(t)) of (1)-(2) through a low-pass filter with cut-off frequency ωc = O(1/

√
ε).

Let us denote the corresponding time-functions by (〈q〉√ε(t), 〈p〉√ε(t)), i.e., for example,

〈q〉√ε(t) :=
1√
ε

∫ +∞

−∞
ψ(
t− t′√

ε
) q(t) dt′ (3)

with ψ : IR→ IR an appropriate weight function [14]. The idea of smoothed dynamics [3], [14]
is now to find equations of motion with smooth solutions (Q(t), P (t)) that satisfy

Q(t) = 〈q〉√ε(t) and P (t) = 〈p〉√ε(t) .

Such equations can indeed be defined in the limit ε → 0 and were first derived in [16] by Rubin
and Ungar and recently discussed by Schütte and Bornemann [3] in the context of molecular
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dynamics (see also their review paper [2] on the mathematical material). One obtains the
constrained Hamiltonian system

d

dt
Q = M−1P , (4)

d

dt
P = −∇qV (Q)− μ∇q

√
G(q)M−1G(q)T −G(Q)Tλ , (5)

0 = g(Q) . (6)

Note the additional potential energy term

Vc(Q) = μ
√
G(Q)TM−1G(Q)T , (7)

where μ is an appropriately chosen constant. This potential energy term is due to a momentum
related coupling of the fast and slow degrees of freedom (see the following sections and [16],[2]
for details).

In this paper, we generalize the results by Rubin and Ungar to thermally embedded
systems

d

dt
q = M−1p , (8)

d

dt
p = −∇qU(q)− γp + ξ(t) (9)

with U(q) as before, 1/γ � √
ε a positive friction constant, and ξ(t) ∈ IR3N a Gaussian white

noise process with zero mean value and variance

〈ξ(t) ξ(t + τ )T 〉 = 2γkBTMδ(τ ) ,

kB the Boltzmann constant, T the temperature of the heat bath, and 〈.〉 denotes the average
over all realizations of the stochastic process ξ(t) [1],[11]. We seek smooth Langevin equations
of motion that possess solutions (Q(t), P (t)) such that the average (〈Q〉(t), 〈P 〉(t)) over all
realizations of the stochastic process ξ(t) satisfies

〈Q〉(t) = 〈〈q〉√ε〉 (t)
and

〈P 〉(t) = 〈〈p〉√ε〉 (t)
in the limit ε→ 0. As we will show in Sec. 4, the equations of motion are

d

dt
Q = M−1P , (10)

d

dt
P = −∇QV (Q)− μ(t)∇Q

√
G(Q)M−1G(Q)T − γP + ξ(t)−G(Q)Tλ , (11)

0 = g(Q) . (12)
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Note that the correcting potential

Vc(Q, t) = μ(t)
√
G(Q)M−1G(Q)T (13)

is now time dependent. The differential equations for μ(t) will be derived in Sec. 5. We
will see that μ(t) can be considered as constant over time intervals of order 1/γ. If this
time interval is short compared to the dynamics due to the force term −∇QV (Q), then
the correcting potential Vc can be approximated by the Fixman potential [6],[13] as used in
statistical mechanics [1], i.e.,

Vc(Q) ≈ kBT

2
ln[G(Q)M−1G(Q)T ] . (14)

These results seem particularly interesting in the context of molecular dynamics for the fol-
lowing reasons:

• Often it is more realistic to solve the Langevin equations (8)-(9) instead of the Hamil-
tonian equations of motion (1)-(2). This is true in particular whenever various degrees
of freedom have been neglected throughout the modeling process [1].

• Even if we assume that (1)-(2) contains all relevant degrees of freedom and correctly
reflects the physical behavior of interest, the equations (10)-(12) seem to provide a more
realistic model for the smoothed dynamics of (1)-(2) than (4)-(6). This is due to the fact
that, in molecular dynamics, the force−∇qV (q) contains terms that are relatively strong
compared to −G(q)Tg(q)/ε2. These terms are basically given by the close Lennard-Jones
interactions of molecules and they lead to an energy transfer between the slow and fast
degrees of motion. In the smoothed equations (4)-(6) this energy transfer is completely
neglected (μ = const. in (7)) while the smoothed Langevin equations (10)-(12) allow one
to include this effect in a stochastic manner through a properly chosen friction constant
γ or, in other words, through a time-dependent μ(t) in the correcting potential (13).

• To be able to deal with the finite spectral gap between the fast and slow motion, we
introduced in [14] the assumption of quasi-stationarity to derive smoothed equations
of motion. The analysis of this paper will allow us to discuss this assumption in more
detail and to characterize the cases in which this assumption seems appropriate. This
also extends the analysis of Helfand [9] on the Fixman potential and its application in
molecular dynamics.

2 Equations of motion in local coordinates

We follow in this section the notations introduced in [14], i.e., we define local coordinates
(q1, q2) by

q1 = g(q) ,

q2 = b(q) ,
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where b(q) is a vector-valued function such that B(q)M−1G(q)T = 0, B(q) = bq(q), and
the composed matrix [G(q)T B(q)T ] is invertible and well conditioned. The corresponding
conjugate momenta are given by

[G(q)T B(q)T ]

[
p1
p2

]
= p

which results in the Hamiltonian

H(q1, p1, q2, p2) =
p1GM

−1GT p1
2

+
pT2BM

−1BTp2
2

+ V (q1, q2) +
1

2ε2
[q1]

2 ,

where, for notational convenience, we suppressed the arguments in the mappings G(q1, q2)
and B(q1, q2). The Langevin equations (8)-(9) are now equivalent to

d

dt
q1 = GM−1GT p1 , (15)

d

dt
p1 = − 1

ε2
q1 −∇q1

p1GM
−1GT p1
2

−∇q1ET(q1, q2, p2)− γp1 + ξ1(t) , (16)

and

d

dt
q2 = BM−1BTp2 ,

d

dt
p2 = −∇q2ET(q1, q2, p2)−∇q2

p1GM
−1GT p1
2

− γp2 + ξ2(t)

with

ET(q1, q2, p2) =
pT2BM

−1BT p2
2

+ V (q1, q2) . (17)

Here ξ1(t) and ξ2(t) are Gaussian white noise processes with zero mean value and variance

〈ξ1(t) ξ1(t + τ )〉 = 2γkBT [GM
−1GT ]−1δ(τ )

and

〈ξ2(t) ξ2(t + τ )T 〉 = 2γkBT [BM
−1BT ]−1δ(τ ) .

Following [16],[2], we also define the energy EN(q1, q2, p1) in the fast degree of motion by

EN(q1, q2, p1) =
p1GM

−1GT p1
2

+
1

2ε2
[q1]

2 .

(Note that H = ET + EN.) The time derivative of EN is given by

d

dt
EN =

(
d

dt
q2

)T

∇q2

p1GM
−1GT p1
2

+ p1GM
−1GT (−∇q1ET − γp1 + ξ1(t)) (18)
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which is of order O(1) with respect to the small parameter ε. Thus, as already pointed out
in [16], the energy EN in the fast degree of motion varies slowly although the motion itself
is rapidly oscillating. This implies that, over time-scales of order

√
ε, the motion in the fast

degree of motion is approximately given by

d

dt
q1 = GM−1GT p1 , (19)

d

dt
p1 = − 1

ε2
q1 (20)

with constant energy EN. Note that the slow variable (q2, p2) does not change over this
time-scale. (A careful review of this analysis can be found in [2].)

3 Averaging in time

In this section we apply the time-averaging operator (3) to the equations (8)-(9). From
the analysis of the previous section it follows that, in the limit ε → 0, 〈q2〉√ε(t) = q2(t),
〈p2〉√ε(t) = p2(t), and 〈EN〉√ε(t) = EN(t). For the (on time-scales of order

√
ε harmonic)

fast degree of motion we obtain relations such as 〈q1〉√ε(t) = 0, 〈p1〉√ε(t) = 0, and, by
equipartioning of energy [16],

〈q21〉√ε(t) = ε2EN(t)

as well as

〈p21〉√ε(t) =
EN(t)

GM−1GT

(compare [16] or [2] for details). Using also the fact that the time-averaging operator (3)
commutes with taking the time derivative [14], this yields, in the limit ε → 0, the following
smoothed equations of motion in the variables (Q2, P2):

d

dt
Q2 = ∇P2Ĥ(Q2, P2) = BM−1BTP2 , (21)

d

dt
P2 = −∇Q2Ĥ(Q2, P2)− EN(t)

2GM−1GT
∇Q2GM

−1GT − γP2 + Ξ2(t) . (22)

Here Ĥ is defined through

Ĥ(Q2, P2) = ET(Q1 = 0, Q2, P2)

with ET given by (17). The stochastic process Ξ2(t) is formally defined by Ξ2(t) = 〈ξ2〉√ε(t)
which, in the limit ε → 0, can again be modeled as a Gaussian white noise process with the
same properties as ξ2(t). The equations (21)-(22) can be written as a constrained Hamiltonian
system in the smoothed variables (Q,P ). This yields
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d

dt
Q = M−1P , (23)

d

dt
P = −∇QV (Q)− EN(t)√

G(Q)M−1G(Q)T
∇Q

√
G(Q)M−1G(Q)T −

−γP + ξ(t)−G(Q)Tλ , (24)

0 = g(Q) . (25)

Here the time-dependent force term

Fc(Q, t) = − EN(t)√
G(Q)M−1G(Q)T

∇Q

√
G(Q)M−1G(Q)T (26)

stands now for the correction due to the nonlinear coupling of the fast and slow degrees of
motion. To close the equations of motion we still need the time-evolution of the energy EN(t).
This will be the subject of the following section.

4 Time-evolution of EN

The differential equation (18) for the time-evolution of EN(t) contains highly oscillatory terms
that do not contribute to the time-evolution of EN over time-scales of order O(1). These are
the terms

p1GM
−1GT ∇q1ET ,

(
d

dt
q2

)T

∇q2

p1GM
−1GT p1
2

− EN√
GM−1GT

(
d

dt
Q2

)T

∇Q2

√
GM−1GT ,

and

γp1GM
−1GT p1 − γEN .

Thus we are left with the differential equation

d

dt
EN =

EN√
GM−1GT

(
d

dt
Q2

)T

∇Q2

√
GM−1GT − γEN + p1GM

−1GT ξ1(t) .

As shown in Appendix A

〈p1(t)GM−1GT ξ1(t)〉 = γkBT

and we replace p1(t)GM
−1GT ξ1(t) by [Ξ1(t)]

2 with Ξ1(t) a Gaussian white noise process with
zero mean and variance

〈Ξ1(t) Ξ1(t+ τ )〉 = γkBTδ(τ ) .
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Thus we finally derive the equation

d

dt
EN =

EN√
GM−1GT

(
d

dt
Q2

)T

∇Q2

√
GM−1GT − γEN + [Ξ1(t)]

2 . (27)

Upon neglecting fluctuations in EN(t) due to Ξ1(t), equation (27) can be simplified to

d

dt
EN =

EN√
GM−1GT

(
d

dt
Q2

)T

∇Q2

√
GM−1GT − γEN + γkBT . (28)

5 Generalization to more than one constraint

If g(q) becomes vector-valued, i.e., we consider more than one constraint, then G(q)M−1GT (q)
is a positive definite matrix. Thus there are orthogonal matrices V (q) depending smoothly
on q such that A(q) := V (q)T [GM−1G(q)T ]V (q) is diagonal. Upon introducing the canonical
transformation q̃1 = V (q)Tq1 and p̃1 = V (q)Tp1, the equations (15)-(16) become

d

dt
q̃1 = Ap̃1 ,

d

dt
p̃1 = − 1

ε2
q̃1 −∇q̃1

p̃T1Ap̃1
2

−∇q̃1ET − γp̃1 + ξ̃1(t)

which decouple in m, m = dim(g(q)), equations of motion for the pairs (q̃ i1, p̃
i
1), i = 1, . . . , m,

except for the term ∇q̃1ET. Assuming that there are no resonances [18],[2], this term can be
neglected and we obtain a set of m completely decoupled equations of motion. The smoothing
over each of these degrees of freedom can now be done as described in Sec.’s 2-5 for the scalar
case where we have to replace now GM−1GT by Aii.

6 Discussion and examples

Let us now discuss a few consequences of formula (28). First we rewrite the correcting force
(26) as

Fc(Q, t) = −μ(t)∇Q

√
G(Q)M−1G(Q)T

with

μ(t) =
EN(t)√

G(Q(t))M−1G(Q(t))T
.

The corresponding differential equation for μ(t) follows from (28) to

d

dt
μ = −γμ+

γkBT√
G(Q(t))M−1G(Q(t))T

. (29)
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Two cases seem of special interest: (i) γ small which leads to the correcting potential (7) over
time intervals of order 1/γ and (ii) γ large or G(Q(t))M−1G(Q(t))T ≈ const. which lead to

μ(t) ≈ kBT√
G(Q(t))M−1G(Q(t))T

and thus to the Fixman potential (14). In terms of reaction rate theory [8], case (i) corresponds
to the energy-diffusion-limit and case (ii) to the spatial-diffusion-limit.

What are the consequences of this for smoothed molecular dynamics? The limiting process
ε → 0 is artificial. It assumes that there is a clear-cut separation between fast and slow degrees
of motion. As already pointed out in the Introduction, this strong separation of time-scales
does not exist in molecular dynamics. In particular, the Lennard-Jones interactions seem to
lead to a slow but constant energy flow between fast and slow degrees of motion (see Example
1 below). The approach to smoothed molecular dynamics as suggested by Bornemann and
Schütte [3] (and also briefly considered by Helfand in [9]) completely ignores this energy
transfer (this corresponds to our case (i) with γ = 0). We feel that one might include energy
transfer between fast and slow degrees of freedom through the Langevin dynamics approach
described in this paper and an appropriate choice of the friction constant γ.

The simplifying assumption of quasi-stationarity, as made in [14] (which corresponds to
our case (ii)), is approximately satisfied for the bond stretching motion but might not hold for
the bond angle bending motion over time-intervals that are short compared to 1/γ. However,
the assumption of quasi-stationarity leads to the correct reduced macrocanonical distribution
function [6],[15]. This can be seen as follows: The Fokker-Planck equation [11] corresponding
to the equations (8)-(9) possesses the macrocanonical distribution function

ρ(q, p) = exp (−βH(q, p)) ,

β = (kBT )
−1, as an asymptotically stable stationary solution [11]. In the limit ε → 0, one

can, in the local coordinates (q1, p1, q2, p2), explicitly integrate over the variables (q1, p1) which
yields the reduced distribution function

ρred(q2, p2) =
∫ ∫

dq1dp1 ρ(q1, p1, q2, p2) .

The Hamiltonian that is associated with ρred(q2, p2) is called the free energy of the system
(8)-(9) with respect to the variables (q2, p2). As shown, for example, in [6],[15], the free energy
H is given by

H(q2, p2) = Ĥ(q2, p2) +
kBT

2
ln G(q2)M

−1G(q2)
T

and the additional potential energy term is equivalent to the Fixman potential. Note that
Langevin dynamics applied to (4)-(6) yields a different additional potential energy term and
thus a different macrocanonical distribution function.

We like to point out that the correcting force derived in this paper for small/moderate
values of γ differs from the modifications to the Fixman potential discussed by Helfand in [9].
His approach is based on the Mori projection calculus [7]. We also like to mention that one
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could discuss the introduction of modified constraint functions as suggested in [4],[14],[15] for
the equations (1)-(2) (which is another manifestation of the finite “spectral” gap between the
fast and slow motions).

Example 1. To demonstrate the energy transfer between the “fast” bond stretching and
bond angle bending motions and the “slow” translational, rotational and torsion angle mo-
tions, we simulated the collision of two butane molecules. The force field for butane and
the Lennard-Jones interaction between molecules was taken from [19]. We started the two
molecules from zero internal energy and kBT ≈ 0.6 kcal/mol translational energy per mole-
cule. The total energy in the fast degrees of motion (bond lengths and bond angles) as a
function of time can be found in Fig. 1. Note that the variation in energy after the collision
is due to the changes of the matrix GM−1G along the internal motion. It is obvious that the
Lennard-Jones interaction of the two outer CH3 groups caused an energy transfer to the fast
degrees of motion. For comparison we also plot the energy in the Lennard-Jones potential as
a function of time (Fig. 1). Note that the maximum energy in the Lennard-Jones potential
is less than kBT which is a realistic value for Lennard-Jones interactions.

Example 2. Let us now consider an artificial four-bead-three-bond structure. To make the
effect of the correcting potentials more pronounced [13], we set the ratio of the masses of the
outer and inner beads equal to ten. (For equal masses, like in butane, this effect would be
about four times smaller.) The bond stretching and bond angle bending motions are modeled
by strong harmonic potentials with a force constant corresponding to 1/ε2 = 100kcal/mol.
The equilibrium length of the bonds is r0 = 1.53 and the equilibrium angle φ0 = 109.5o. We
assume that initially, at the trans conformation (torsion angle ψ = 0), we have an energy of
EN = kBT in each fast degree of motion. The resulting Fixman and Rubin/Ungar correcting
potentials as a function of the torsion angle can be found in Fig. 2. Note that the correcting
potentials are not small compared to, for example, the torsion potential

Vtors(ψ) =
K

2
(1 − cos(3ψ))

with K = 1.5 kcal/mol and kBT = 0.6 kcal/mol. To see the effect of coupling the structure
to a heat-bath, we simulated the system with a moderate coupling parameter γ = 0.1. The
average normal energy EN in each fast degree of motion along a trajectory plotted as a
function of the torsion angle ψ can be found in Fig. 3. (Here the average is to be understood
as the average over the five fast degrees of motion.) Note that quasi-stationarity assumes
that EN ≈ kBT which we find satisfied near the local minima of the potential Vtors(ψ), i.e.,
near the trans and gauche conformations. Here, through the heat-bath coupling, the system
relaxes to thermal equilibrium and the Fixman correcting potential seems appropriate. The
situation is different for transitions between the local minima. Now the assumption μ = const.
seems more suitable and the corresponding correcting potential would be the Rubin/Ungar
potential. However, this effect is of the size of a few tenths of kBT and is, therefore, small
compared to the torsion potential Vtors(ψ) at room temperature. Thus the Fixman correcting
potential seem a good bet for Langevin dynamics simulations even for small/moderate values
of the coupling parameter γ. For example, consider the transition from the trans to gauche
conformation: As before, we fit the Rubin/Ungar potential such that it is equivalent to the
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Fixman potential at the trans conformation (Fig. 2). The resulting effective torsion potentials
in kcal/mol can be found in Fig. 4. What is of interest here is the different barrier height
for the two correcting potentials. Since this difference amounts to about 0.1 kcal/mol it is
small and might be neglected. (Note that we would take a different Rubin/Ungar potential
for the gauche to trans transitions. In this case we would fit the Rubin/Ungar potential to
the Fixman potential at the gauche conformations (ψ = ±2π/3).)

7 Application to constant temperature molecular dy-

namics

An interesting application of the ideas developed in this paper is related to constant tem-
perature molecular dynamics [12],[10]. In the Hoover formulation, the equations of motion
are

d

dt
q = M−1p , (30)

d

dt
p = −∇qU(q)− γp , (31)

d

dt
γ =

[
pTM−1p−XkBT

]
/D , (32)

where γ is now a time-dependent friction constant, D a parameter, and X the number of de-
grees of freedom. As shown in [10], the macrocanonical distribution function is a steady equi-
librium solution of these equations for the variables (q, p). Furthermore, the time-evolution
of γ is unique in the sense that no other differential equation for γ would lead to the macro-
canonical distribution function [10]. If

U(q) = V (q) +
1

2ε2
[g(q)]2 ,

then one can, in the limit ε → 0, again average over the fast degree of motion to obtain
smoothed equations of motion. These equations are

d

dt
Q = M−1P , (33)

d

dt
P = −∇QV (Q)− μ∇Q

√
G(Q)M−1G(Q)T − γP −G(Q)Tλ , (34)

0 = g(Q) , (35)

d

dt
μ = −γ μ , (36)

d

dt
γ =

[
EN + P TM−1P −XkBT

]
/D (37)
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with

EN = μ
√
G(Q)M−1G(Q)T

as before (see Appendix B for details). If one is only interested in the configurational part of
the macrocanonical distribution function and neglects fluctuations in the kinetic energy, then
one can use the constraint formulation

d

dt
Q = M−1P ,

d

dt
P = −∇QV (Q)− μ∇Q

√
G(Q)M−1G(Q)T − γP −G(Q)Tλ ,

0 = g(Q) ,

d

dt
μ = −γ μ ,

0 = EN + P TM−1P −XkBT

which is obtained by formally setting D → 0 [12]. Furthermore, taking into account that, for
the macrocanonical distribution function, we have 〈EN〉 = kBT , this simplifies to

d

dt
Q = M−1P ,

d

dt
P = −∇QV (Q)− kBT

2
∇Q ln[G(Q)M−1G(Q)T ]− γP −G(Q)Tλ ,

0 = g(Q) ,

0 = P TM−1P − (X − 1)kBT .

To extend these ideas to the isobaric/isothermal-isobaric case [12],[10],[5] is straightforward.

Acknowledgement. This paper was inspired through discussion with Christof Schütte and
Folkmar Bornemann about the “correct” correcting potential for smoothed molecular dyna-
mics.

Appendix A

In this appendix, we consider Langevin dynamics of (19)-(20), i.e.,

d

dt
q1 = GM−1GT p1 , (38)

d

dt
p1 = − 1

ε2
q1 − γp1 + ξ1(t) , (39)
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where we assume, for simplicity, that the matrix GM−1GT is constant. As before, ξ1(t) is a
Gaussian white noise process with variance

〈ξ1(t) ξ1(t + τ )〉 = 2γkBT [GM
−1GT ]−1δ(τ ) .

We are interested in the time-evolution of the energy

EN =
p1GM

−1GT p1
2

+
1

2ε2
[q1]

2

which is governed by the differential equation

d

dt
EN = −γp1GM−1GT p1 + p1GM

−1GT ξ1(t) . (40)

Since it is not obvious how to solve this differential equation, we will find the time-evolution
of the expectation value 〈EN〉(t) by explicitly solving the Langevin equations (38)-(39). For
that reason we rewrite (38)-(39) as

d

dt
x = Ax+ Ξ(t)

with x = (q1, p1)
T , Ξ(t) = (0, ξ1(t))

T , and A = JH + S where

H =

[
1
ε2

0
0 GM−1GT

]
,

S =

[
0 0
0 −γ

]
,

and

J =

[
0 1
−1 0

]
.

The solutions of (38)-(39) are now given by

x(t) = etAx0 + etA
∫ t

0
dt′ e−t′A Ξ(t′) .

Note that, in the limit ε→ 0, the exponential function exp(tA) can be approximated by

etA ≈ e−t �
2 etJH .

Using this in the evaluation of 〈EN〉(t) and taking note of the independence of x0 and Ξ(t),
we obtain

〈EN〉(t) = 〈x
THx

2
〉(t)

= e−tγ EN(0) + e−tγ
∫ t

0
dt′
∫ t

0
ds′ e(t

′+s′) �
2 〈Ξ(t′)T H

2
e(t

′−s′)JH Ξ(s′)〉
= e−tγ EN(0) + kBT (1− e−tγ) .

The corresponding differential equation is

d

dt
〈EN〉 = −γ〈EN〉+ γkBT

and comparison with (40) yields 〈p1GM−1GT ξ1〉(t) = γkBT .
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Appendix B

In this appendix, we indicate how to derive smoothed equations of motion for constant tem-
perature molecular dynamics.

In the local coordinates (q1, p1, q2, p2), the equations (30)-(32) are equivalent to

d

dt
q1 = GM−1GT p1 ,

d

dt
p1 = − 1

ε2
q1 −∇q1

p1GM
−1GT p1
2

−∇q1ET(q1, q2, p2)− γp1 ,

and

d

dt
q2 = BM−1BTp2 ,

d

dt
p2 = −∇q2ET(q1, q2, p2)−∇q2

p1GM
−1GT p1
2

− γp2

as well as

d

dt
γ =

[
p1GM

−1GT p1 + pT2BM
−1BTp2 −XkBT

]
/D .

Taking note that γ is a slowly varying variable, averaging in time results in

d

dt
Q2 = BM−1BTP2 ,

d

dt
P2 = −∇Q2Ĥ(Q2, P2)− μ(t)∇Q2

√
GM−1GT − γP2

and

d

dt
γ =

[
EN(t) + P T

2 BM
−1BTP2 −XkBT

]
/D .

The time-evolution of μ(t), EN(t) respectively, is determined by

d

dt
μ = −γ μ .

Reformulating everything in terms of the Cartesian coordinates (Q,P ), we obtain (33)-(37).
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Figure 1: Solid line: total energy in the fast degrees of motion in kcal/mol; dotted line: energy
in the Lennard-Jones potential in kcal/mol as a function of time in ps.
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Figure 2: Solid line: Fixman correcting potential in kBT ; dotted line: Rubin/Ungar correcting
potential in kBT .
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Figure 3: Average normal energy EN per fast degree of motion in kBT along a trajectory
plotted as a function of the torsion angle ψ.
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Figure 4: Solid line: effective torsion potential in kcal/mol using the Fixman correcting
potential; dotted line: using the Rubin/Ungar potential fitted at the trans conformation.


