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Abstract

The results of analyzing experimental data using a parametric model may heavily de-

pend on the chosen model. With this paper we describe computational tools in Splus for

the adequate selection of nonlinear regression models if the intended use of the model is

among the following:

1. estimation of the unknown regression function, 2. prediction of future values of the

response variable, 3. calibration or 4. estimation of some parameter with a certain mean-

ing in the corresponding field of application. Moreover, we provide programs for variance

modelling and for selecting an appropriate nonlinear transformation of the observations

which may lead to an improved accuracy. We describe how the accuracy of the parameter

estimators is assessed by a ”moment oriented bootstrap procedure”. This procedure is also

used for the construction of confidence, prediction and calibration intervals. The use of

our tools is illustrated by an example. Help files are given in an appendix.
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1. Introduction

Many papers and books are concerned with the analysis of experimental data estimating the

parameters in a linear or nonlinear regression model, see e.g. Bunke and Bunke [2, 3], Seber

and Wild [15] or Huet, Bouvier, Gruet and Jolivet [11]. However, in practice it is usually not

known, whether a certain regression model describes the unknown true regression function

sufficiently well. The results of the statistical analysis may depend heavily on the chosen

model. Therefore there should be a careful selection of the model, based on the scientific and

practical experience in the corresponding field of application and on statistical procedures.

Moreover, a nonlinear transformation of the observations or an appropriate model for the

variance structure can lead to an improved accuracy. In Bunke, Droge and Polzehl [5] we have

provided a methodology for model selection, variance estimation and use of transformations

in nonlinear regression. The aim of this paper is to describe the handling of computational

tools written in Splus for analyzing data by the proposed strategies.

We assume to have possibly replicated observations of a response variable Y at fixed values

x1, . . . , xk of exploratory variables (or nonrandom design points), which follow the model

Yij = f(xi) + εij , i = 1, . . . , k, j = 1, . . . , ni,
k∑

i=1

ni = n. (1.1)

In (1.1) the regression function f is unknown and real-valued and the εij are uncorrelated

random errors with zero mean and unknown variances σ2i = σ2(xi). The usual assumption

of a homogeneous error variance σ2
i = σ2 is unrealistic in many applications and one is often

confronted with heteroscedasticity problems.

The analysis of the data requires in general to estimate the regression function which

describes the dependence of the response variable on the explanatory variables. This is usually

done by assuming that this dependence may be described by a parametric model

f(x) = f(x, ϑ) (ϑ ∈ Θ) , (1.2)

where the function f(., ϑ) is known up to a p-dimensional parameter ϑ ∈ Θ ⊆ Rp, so that the

problem reduces to estimate this parameter using the data. As an estimate of the parameter

we will employ the ordinary least squares estimator (OLSE) ϑ̂, which is a minimizer of the

sum of squares

S(ϑ) =
k∑

i=1

ni∑
j=1

(Yij − f(xi, ϑ))
2 (1.3)

with respect to ϑ. In practice this is the most popular approach to estimate ϑ. Weighted LSE

will be discussed later in Section 2.. We preliminarily restrict ourselves to the case of real-

valued design points, that is, we will assume to have only one explanatory variable, although

later versions of the functions described here will cover the case of multivariate explanatory

variables.

A starting point in an approach to model selection is the idea, that even if a certain

regression model is believed to be convenient for given experimental data, either because of
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theoretical reasonings or based on past experience with similar data, there is seldom sure

evidence on the validity of a model of the form (1.2). Therefore a possible modification of the

model could lead to a better fit or to more accurate estimates of the interesting parameters.

Our model selection procedure starts with a set of competitive models fm of similar qualitative

behaviour corresponding to theoretical or practical experience in the field of application. From

this set we select one (or several) appropriate candidate(s) by taking into account the intended

usage of the model. We allow that the aim of the analysis is one of the following objectives:

• estimation of the unknown regression function,

• prediction of future values of the response variable,

• calibration or

• estimation of some parameter with a certain meaning in the corresponding field of ap-

plication.

For a more detailed description the reader is referred to Bunke, Droge and Polzehl [5].

The tools provided with this paper allow to handle the following steps of our strategy for

analyzing the dependence of the response variable on the explanatory variables:

• description of the data and of a class of reasonable regression models (possibly containing

only a few or even a single model) in a standardized way

• generation of initial parameter estimates

• selection of a best regression model or of a class of acceptable regression models with

respect to a cross-validation criterion corresponding to one of the objectives mentioned

above. This includes the choice of a Box-Cox transformation as well as of a variance

model used in (i) a weighted least squares estimate (WLSE) or (ii) estimating the vari-

ances σ2
i .

• assessment of the accuracy of estimates in the chosen model by a moment oriented

bootstrap methodology, construction of confidence, prediction and calibration intervals.

• standardized presentation of the results at each stage of the analysis.

The remaining sections of the paper explain this in more detail.

For a detailed description of the provided Splus functions and the structure of the resulting

Splus objects we refer to the help files contained in the Appendix. The names of the regression

models utilized in the examples of the helpfiles refer to the corresponding equation numbers

in Bunke, Droge and Polzehl [5].

Example (Esterase count data). For the sake of illustration we discuss the statistical

analysis of the esterase count data example in Carroll and Ruppert [7] (Table 2.3, pp. 46-47).

In an assay for the concentration of an enzyme esterase, the observed concentration of esterase

was recorded, and then in a binding experiment the number of bindings were counted.
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In the original treatment of the example as a calibration problem, the objective is to take

observed new counts and infer the corresponding concentration of esterase. Alternatively,

another objective could be to estimate the regression function to obtain a good model for the

dependence between esterase concentration and the number of bindings.

2. Model Selection Procedure

2.1 Initialization

Suppose one has to analyze the data mentioned in the introduction. The first step is to set

up the data in a standard format under Splus. The functions provided here assume, that the

data are given as a list with numerical components $x (values of the explanatory variable) and

$y (values of the response variable), and character components $xname and $yname (will be

used in summaries and plots as labels for $x and $y). $x and $y have to be of the same length.

For our example the data (source: Carroll and Ruppert [7]) may be provided by

esterase <- list{x=c(6.4, 6.7, 8.0, 8.1, 8.4, 8.6, 9.0, 9.5, 10.5, 10.8, 11.1, 11.6,

12.1, 12.6, 12.8, 13.1, 13.3, 13.8, 13.9, 14.1, 14.6, 6.5, 7.8, 8.0, 8.2, 8.6,

8.8, 9.2, 10.3, 10.6, 10.9, 11.6, 11.8, 12.3, 12.8, 13.1, 13.3, 13.7, 13.8,

14.0, 14.4, 14.6, 14.6, 15.0, 15.2, 15.8, 16.0, 16.1, 16.9, 17.1, 17.7, 18.8,

19.2, 20.5, 20.8, 20.9, 21.4, 21.8, 23.0, 23.5, 23.8, 24.4, 25.2, 25.5, 27.2,

27.7, 29.0, 30.8, 35.2, 38.6, 40.5, 41.2, 44.5, 46.6, 52.1, 14.8, 15.2, 15.2,

15.9, 16.0, 16.4, 17.0, 17.5, 18.1, 19.0, 20.5, 20.8, 20.8, 21.2, 21.8, 22.1,

23.2, 23.7, 24.2, 24.6, 25.2, 26.9, 27.4, 29.0, 30.3, 33.6, 38.2, 39.1, 40.9,

41.7, 45.0, 52.0, 52.4, 6.1, 3.1, 11.2, 5.6, 11.0), y=c(84, 86, 104, 96,

124, 79, 79, 203, 191, 167, 116, 170, 233, 115, 201, 144, 139, 154, 97, 288,

239, 85, 127, 107, 130, 105, 153, 100, 159, 93, 100, 97, 131, 256, 219, 215,

268, 249, 226, 329, 255, 317, 216, 301, 389, 271, 148, 315, 126, 340, 276, 262,

336, 393, 270, 343, 270, 296, 409, 381, 529, 566, 418, 435, 208, 412, 474, 438,

416, 717, 695, 597, 718, 599, 921, 266, 193, 278, 250, 103, 256, 137, 136, 342,

486, 354, 459, 260, 474, 416, 317, 376, 466, 412, 369, 531, 472, 646, 595, 527,

635, 695, 1042, 239, 1006, 778, 789, 679, 52, 28, 373, 166, 423), xname =

"Amount of esterase", yname = "Observed count")

attr(esterase, "doc") <- "Esterase Count Data"

In Carroll and Ruppert [7] the linear model

f(x, ϑ) = ϑ1 + ϑ2x (2.1)

is used to analyze the data. Alternative models from the catalogue given in Bunke, Droge and

Polzehl [5] could be

f(x, ϑ) = ϑ1 exp[ϑ2/(x+ ϑ3)] (2.2)

f(x, ϑ) = ϑ1 − ϑ2ϑ
x
3 (2.3)

f(x, ϑ) = ϑ1(1− exp(−ϑ2x))
ϑ3 (2.4)

f(x, ϑ) = ϑ1 + ϑ2x
ϑ3 (2.5)
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f(x, ϑ) = ϑ1(1 + x)ϑ2 (2.6)

f(x, ϑ) = ϑ1x
ϑ2x

−ϑ3
(2.7)

f(x, ϑ) =
x

ϑ1 + ϑ2x+ ϑ3
√
x

(2.8)

f(x, ϑ) =
1

ϑ1 + ϑ2xϑ3
(2.9)

f(x, ϑ) =
ϑ2 + ϑ3x

1 + ϑ1x
(2.10)

f(x, ϑ) = ϑ1 + ϑ2 log(x+ ϑ3) (2.11)

f(x, ϑ) =
ϑ1 + ϑ3x

1 + ϑ2x+ ϑ4x2
. (2.12)

Each regression model from this class will be specified by a list with components $fkt (con-

taining an expression (third element of a formula object) employed to evaluate the regression

model, with the explanatory variable denoted by xr and parameters denoted by p1, p2, . . .), $p

(number of parameters), $inv (containing an expression (third element of a formula object)

used to evaluate the inverse of the regression model, with dependent variable denoted by yr

and parameters denoted by p1, p2, . . .) and $name (character string taken as a name for the

model). The description of model (2.2) would be generated by

fkt2 <- yr ~ p1 * exp(p2/(xr + p3))

inv2 <- xr ~ p2/log(yr/p1) - p3

model2 <- list(fkt=fkt2[[3]], inv=inv2[[3]], p=3, name="Model (2.2)")

The class of models fm under consideration is generated by

fktlesterase <- list(model1, model2, ..., model12)

The most crucial part in nonlinear regression is to find reasonable initial estimates of the pa-

rameters. This may even be impossible if the model under consideration is not well defined

for the given design and shape of the data. To get rough starting values one should employ

properties of the model and of the data like monotonicity and asymptotic behaviour. We

provide the function parinit as an interactive tool to find initial parameter estimates succes-

sively for all models in the class. The function uses stochastic search minimizing the residual

sum of squares (1.3) to find reasonable initial parameter estimates. Starting values can be

supplied or generated randomly during the analysis. The original regression problem can be

substituted by a regression problem obtained by clustering (see Hartley and Booker [10]) to

get likely starting values. The parameter estimates found by stochastic search are improved

by numerical optimization. Plots of the fitted models, residual plots and residual statistics

are provided to assist the decision between accepting and rejecting the initial estimates. The

calculated estimates can be accepted or alternatively the search can be continued with possibly

new starting values or also the model can be excluded from the analyses. Information about

initial estimates is added to the list describing the class of models under consideration (see

Appendix). In our example initial parameter estimates can be obtained by

fktlesterase <- parinit(esterase, fktlesterase, graph=T)
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The results may be summarized by

print(fktlesterase)

2.2 Variance Modelling and Estimation

The observation variances σ2i may be estimated by the intra sample estimates

s2i =
1

ni − 1

ni∑
j=1

|Yij − Ȳi|2, Ȳi =
1

ni

ni∑
j=1

Yij, (2.13)

if there are enough replications (ni relatively large!). In such an exceptional situation these

estimates may be utilized for calculating WLSE’s.

An improved variance estimation may be possible using alternative variance models and

taking into consideration, that it is possibly not sure that a certain variance model is adequate

and moreover it is even not sure that a certain structure of the regression function is adequate.

Our procedure (see Bunke, Droge and Polzehl [5, 6]) is based on a least squares fitting of alter-

native variance models to conveniently defined ”observations” z1, . . . , zk. The ”observations”

zi are defined in such a way, that they have (roughly) the variances σ2i as their expectation, as

it is exactly the case for the estimates s2i given by (2.13). Assuming ordered univariate values

x1 < x2 < . . . < xk of the independent variable we make use of the ”observations”

zi :=

{
s2i if ni ≥ 2
1
6 |2ei − ei+1 − ei−1|2 if ni = 1 (no replications).

(2.14)

Here we use the residuals

ei = Yi1 − fm∗(xi, ϑ̂m∗) (2.15)

in employing the (best fitting) model fm∗. This model is chosen among the admitted models

fm as that with smallest sum S(ϑ̂m) of squared errors (ϑ̂m: OLSE under fm, see (1.3)). In

the case of n1 = 1 and nk = 1 we employ z1 =
1
2 |e1 − e2|2 and zk = 1

2 |ek − ek−1|2.
We fit alternative variance models of the form g(x, σ2, τ) to the above ”observations” zi

by minimization of the sum of squares

S(σ2, τ) = {
∑

i:ni≥2

(ni − 1)|s2i − g(xi, σ
2, τ)|2 +

∑
i:ni=1

|zi − g(xi, σ
2, τ)|2}. (2.16)

We consider six alternative variance models, which are especially useful and have been

proposed in the literature, see Carroll and Ruppert [7]:

(1) The first is the exponential model

g(x, σ2, τ) = σ2[fmo(x, ϑ̂mo) + a]τ (2.17)

where we apply the model fmo (mo = m̂ or m̃) chosen by the procedure which will be

described in Subsection 2.4 (using homogeneous variance). The constant a is chosen as

a := .1 ·maxi fmo(xi, ϑ̂mo)− 1.1 ·mini fmo(xi, ϑ̂mo).
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(2) As an alternative model in place of (2.17) one may fit the model

g(x, σ2, τ) = σ2exp[τfmo(x, ϑ̂mo)]. (2.18)

(3) Past experience (or the residuals after fitting by ordinary least squares) may suggest, that

the variances σ2
i do not vary monotonously with the mean f(xi), but behave approximately

like a unimodal function of f(xi) or shows the reverse behaviour. Then we could alternatively

fit a quadratic variance model

g(x, σ2, τ) = σ2 + τ1(fmo(x, ϑ̂mo)− f̄mo) + τ2(fmo(x, ϑ̂mo)− f̄mo)
2, (2.19)

where

f̄mo :=
1

k

k∑
i=1

fmo(xi, ϑ̂mo). (2.20)

(4) A bell-shaped variance model

g(x, σ2, τ) = σ2 + σ2τ
(
f̄ − fmo(x, ϑ̂mo)

)(
fmo(x, ϑ̂mo)− f

)
, (2.21)

f = mini fmo(x, ϑ̂mo), f̄ = maxi fmo(x, ϑ̂mo), has less parameters and may be useful e.g. for

count data.

(5) Sometimes also a simple linear model may be appropriate:

g(x, σ2, τ) = σ2 + τ(fmo(x, ϑ̂mo)− f̄mo). (2.22)

(6) In many cases a homogeneous variance estimate σ̂2 would be more accurate than a het-

eroscedastic estimate σ̂2i determined by a variance model, especially when the differences be-

tween the variances σ2
i are moderate or small. Thus we would fit a constant model g(x, σ2) ≡ σ2

to our observations (xi, zi) and obtain

σ̂2 =
1

n− q
{

∑
i:ni≥2

ni∑
j=1

|Yij − Ȳi|2 +
∑

i:ni=1

zi}, (2.23)

where q is the number of points xi with ni ≥ 2.

Unfortunately, some of the six models have the disadvantage of possibly leading to negative

estimates σ̂2
i := g(xi, σ̂

2, τ̂) for some design points xi. We replace the negative (and also very

small) estimates by some fixed small positive value, say by σ̂20 := 0.1σ̂2, where σ̂2 is the

homogeneous variance estimate (2.23). The variance estimate will be then

σ̄2
i := max{σ̂2

i , σ̂
2
0} for i = 1, . . . , k. (2.24)

For selecting a convenient variance model to calculate WLSE’s we refer to Subsection 2.4. For

the purpose of variance estimation we propose to choose among the six variance estimators σ̄2i
one with smallest value of the ”cross-validation” criterion

CV :=
1

n− q

k∑
i=1

wi|zi − σ̄2
−i|2. (2.25)

The weights wi are either ni − 1 (for ni ≥ 2) or 1 (for ni = 1), whereas the estimates σ̂2−i are

(essentially) estimators calculated by fitting the variance model leaving out the observations

Yhl entering in the calculation of zi (for details we refer to Bunke, Droge and Polzehl [6]).
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2.3 Variable Transformations

In several situations it may be advantageous to fit a regression model to transformed observa-

tions

Y T
ij := T [Yij] (i = 1, . . . , k; j = 1, . . . , ni) (2.26)

of the dependent variable, e.g. using a logarithmic transformation (T [y] = log y).

Such situations may be:

1. It is known, that a certain parametric model f(x, ϑ) gives a good fit to the transformed

observations Y T
ij and small residuals Y T

ij −f(xi, ϑ̂T ), where ϑ̂T denotes the ordinary least

squares estimate in such a fitting. In this case the inversely transformed model

fT−1(x, ϑ) := T−1[f(x, ϑ)] (2.27)

will be employed to estimate the regression function of the original observations by

fT−1(x, ϑ̂T )

or

2. The variances of the variables Yij are markedly heteroscedastic and the transformation

reduces or eliminates the heteroscedasticity: small differences Var YT
ij − Var Y T

h�.

We propose to use the OLSE, even if the variances of the original or of the transformed

observations are heteroscedastic. The basic idea is that the OLSE does not suffer from the

possibly pernicious influence of errors in estimating the variances on the otherwise higher

efficiency of the WLSE. Therefore it may happen in some cases, that the simple calculation of

an OLSE for conveniently transformed observations and a corresponding selected model leads

to a more accurate estimation of parameters (or of the regression function) or to a better

calibration than using a WLSE together with conveniently selected regression and variance

models .

With this transformation approach we have an alternative approach to parameter esti-

mation under heteroscedastic variances, which may (or may not) be better than the WLSE

approach discussed in Subsection 2.2. A choice between both should be done on the basis of

the corresponding cross-validation value, as it will be explained in Subsection 2.4. Always it

will be useful to compare the results of the analysis of the original observations with that of

transformed observations and to make a decision about a possible transformation using a data

dependent criterion.

The selection of a suitable transformation T is simplified, if T is restricted to a sufficiently

small but flexible class of transformations. Such a class is the class of (modified) Box-Cox-

transformations

Tλ(y) =

{
{(s−1[y + aλ])

λ − 1}/λ for λ �= 0

ln(s−1[y + ao]) for λ = 0
(2.28)

defined for real λ and convenient constants aλ and where

s2 :=
1

n

k∑
i=1

ni∑
j=1

|Yij − Ȳ |2, Ȳ :=
1

n

k∑
i=1

ni∑
j=1

Yij . (2.29)
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In many cases it will be sufficient to try some of the transformations given by a finite set of

different λ-values (including λ = 0 at least). A standard choice is:

λ = 0, 1/2, −1/2, 1, −1, 2, −2, (2.30)

The values of the constants sλ and aλ are specified to allow a certain range and nonlinearity

of the transformation (see Droge [8] and Bunke, Droge and Polzehl [5]).

We consider two main situations. If the objective is the estimation of the values of the true

regression function f or the prediction of values of the original dependent variable y (and not

a good fitting or prediction for any transformed dependent variable), these situations are:

Case A: The admitted models fm (perhaps only one!) are considered as very good ap-

proximations to the regression function.

Case B: It is not known, which models are good approximations to the regression function.

In the case A the fit to the transformed observations Y T
ij will be using the transformed

regression functions

fT,m(x, ϑ) := T [fm(x, ϑ)] (2.31)

and the corresponding LSE ϑ̂T,m minimizing

ST,m(ϑ) :=
∑
i,j

|Y T
ij − fT,m(xi, ϑ)|2. (2.32)

In the case B we have to replace in (2.32) the models fT,m by fm.

2.4 Model Selection Criteria

As discussed in Bunke, Droge and Polzehl [5, 6], using the residual sum of squares S(ϑ̂) or a vi-

sual impression from a graphical representation of the estimated regression curve together with

the observations may lead to ”overparametrized” models f(x, ϑ). Instead criteria incorporat-

ing the effects of variability of the parameter estimates in a given model should be employed.

In the following we present appropriately defined cross-validation criteria for the objectives

of estimation of the unknown regression function, prediction, calibration and estimation of a

parameter of the form

γ = γ[f(x1), . . . , f(xk)], (2.33)

see Bunke, Droge and Polzehl [5, 6] for a more detailed discussion. These cross-validation cri-

teria are used to assess the performance of a model for the respective objective. This allows to

compare different models in combination with a variance model or a Box-Cox-Transformation,

using a specified value λ, and to select a best model or a set of acceptable candidates.

We give the criteria for selection of a regression model m in combination with a transfor-

mation T = Tλ (case A, transformation of both the response variable Y and the regression

function fm). In case of using a variance model, no transformation is performed (transfor-

mation with λ = 1, aλ = 0, sλ = 1) and WLSE’s based on the variance model are used as
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parameter estimates instead of OLSE’s. For transformation case B fm(x, ϑ) has to be re-

placed by T−1[fm(x, ϑ)].

If the objective of the analysis is primarily the estimation of the regression function or

curve, that is, of the values of the regression function itself over a region X of interest (and

only secondarily the analysis of its properties and the estimation of some of its parameters),

then the weighted cross-validation criterion

C =
s∑

i=r

ci

ni∑
j=1

|Yij − fm(xi, ϑ̂
ij
T )|2 (2.34)

is a convenient criterion characterizing the performance of the model fm(x, ϑ). Here ϑ̂
i,j
T,m

denotes the OLSE under transformation (2.32) calculated from the n−1 observations left after

deleting the observation (xi, Yij). Its numerical calculation will be easy for well parameterized

models using ϑ̂ as a starting value. Further we assume in (2.34) that

ci = (s− r + 1)−1n−1
i

and that the values xr, xr+1, . . . , xs of the independent variable are in X , while the other values

are those (if any!) not contained in X . If the independent variable is univariate and its values

xi are ordered according to their magnitude and if X = [a, b] is an interval with

a ≤ xr < · · · < xs ≤ b, (2.35)

then we apply weights ci with

ci = di[2ni(b− a)]−1, (2.36)

di = xi+1 − xi−1 (r < i < s), (2.37)

dr = 2(xr+1 − xr), ds = 2(xs − xs−1). (2.38)

If the user would not like to specify the interval [a, b], then a = x1 and b = xk should be the

standard values. In the definition of the cross-validation criterion (2.34) we have introduced

weights in order to take into account the distances between the different design points as well

as the number of replications. A more detailed reasoning for choosing the weights just as in

(2.36) is given in Bunke, Droge and Polzehl [5, 6], where C is characterized as an estimate of

the mean squared error in estimating the values of the regression function. If the values xi

are equidistant and all contained in the interval [a, b] and if there are no replications (ni = 1),

then the weights are identical: ci = k−1 for i = 1, . . . , k.

The criterion (2.34) will also be convenient, if the estimated regression function will be

used to predict by fm(x, ϑ̂T,m) the future values Y ∗(x) of the dependent variable for given

values x in [a, b] of the explanatory variable, assuming, that their ”distribution” is represented

to a certain extend by the design points xr, . . . , xs.

For some models fm the estimates fm(xi, ϑ̂
i,j
T,m) may not be defined for some i, e.g. in the

exponential model (2.2) with ϑ1 > 0 and ϑ2 < 0, the value f(x, ϑ) tends to 0 for x ↓ xo = −ϑ3

(convergence from the right) while it tends to ∞ for x ↑ xo (convergence from the left). Such
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cases are not disturbing, if in place of C we always apply the following modified cross-validation

criterion (full cross-validation, see Bunke, Droge and Polzehl [6] and Droge [9]):

C̃ =
s∑

i=r

ci

ni∑
j=1

|Yij − ỹij|2, (2.39)

where

ỹij = fm(xi, ϑ̃
i,j
T,m) (2.40)

and where ϑ̃i,j
T,m is the OLSE under transformation (2.32) calculated under the substitution of

just the observation Yij by Ŷi = fm(xi, ϑ̂T,m).

In a calibration problem a modified cross-validation criterion could be adequate assuming

a calibration is demanded for observations Y of the dependent variable corresponding to a

unknown fixed value x of the explanatory variable. We assume the value Y to be in the

interval (ã, b̃) and estimate x by x̂m(Y, ϑ̂T,m), where the calibration function x̂m(Y, ϑ) is given

by the inverse of fm(x, ϑ) as a function of x. The criterion is:

CC =
1

N

k∑
i=1

∑
j∈Ji

|xi − x̂m(Yij, ϑ̂
i,j
T,m)|. (2.41)

Here Ji contains all indices j = 1, . . . , ni with ã < Yij < b̃ and N is the number of observations

Yij in the interval (ã, b̃). In case of a nonlinear model fm it may occur that the value of

x̂m(Yij , ϑ̂
i,j
T,m) is not defined. In such cases or if x̂m(Yij, ϑ̂

i,j
T,m) is outside of the interval [a, b] on

which the regression function fm(x, ϑ) is considered, we use in the definition of the criterion

the values of a or b instead of x̂m, depending on the monotonicity and the value of fm(x, ϑ̂T,m).

If the objective is to estimate a parameter of the form (2.33), then an adequate criterion

would be

CG =
1

nrs

s∑
i=r

ni∑
j=1

|γ[Ȳ1, . . . , Ȳk]− γ[fm(x1, ϑ̂
i,j
T,m), . . . , fm(xk, ϑ̂

i,j
T,m)]|, (2.42)

where

Ȳi =
1

ni

ni∑
j=1

Yij and nrs =
s∑

i=r

ni. (2.43)

(2.42) may be interpreted as a jackknife approximation to the mean absolute error for the

estimate γ̂ (see Bunke, Droge and Polzehl [5, 6]).

The criterion (2.42) is only sensible if all replication sizes ni are large or otherwise if the

parameter (2.33) involves weighted sums of many values f(xi).

2.5 Tools for Model Selection

We provide the Splus functions selectmv (selection of regression and variance models) and

selectmt (selection of regression models and transformations) to calculate the criteria given in

the last subsection for a given class of regression models. In both functions it is assumed that

the data and the class of regression functions are specified as described in Subsection 2.1. For

detailed information about parameters and the returned value we refer to the appendix.
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Figure 1: Esterase count data: Reference model and fitted variance models

Amount of esterase

O
bs

er
ve

d 
co

un
t

10 20 30 40 50

0
20

0
40

0
60

0
80

0
10

00

•

•

•
•••
••••
••
••
•
••

•
•
•

•
•
•

•

•

•

•
•
•

••

•

••
•
•
•

••

•
•

•

•
•
••

•

•
•
•

•

•

•••

•
•

•
•

••

•

•

•
•

•

•

•
•
•

•

•

•

•

•

••

•

•

•
••

•
•

•

•

•
•

•

•
•

•

•

•
•

•
•

•

•

•

••

•

•

•

•

•

•
•

•

•

•

•

Reference model

•
•
•
••••••••••••

•••
••

•

•

•

•

•••
•
•

••
•
••

•

•

•••••

•

•••

•

••
•

•

•

••

•
•

•
•

•

•

•

•••
••••
•
•

•

••
•

•

•
•

•
•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

Fitted values

V
ar

ia
nc

e 
es

t.

200 400 600 800

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

z ~ sigma2 * fw^tau
z ~ sigma2 * exp(fw * tau)
quadratic
linear
bell-shaped
homogeneous

Fitted variance models

Table 1: Values of the cross-validation criterion CV and of the parameter estimates

for all variance models.

Variance CV -value Values of the estimates for

model (2.25) σ2 τ (τ1) τ2

(2.17) 432615620 9.79 1.208

(2.18) 458925519 5257.6 0.00237

(2.19) 447790756 12288. 39.331 0.010239

(2.22) 412023686 12675 40.986

(2.21) 462674900 10818 0.017683

homogeneous 453078924 12610.

To illustrate the model selection process performed by the two functions we reconsider our

example. We assume that our main interest is in calibration, i.e. in estimating the amount of

enzyme esterase corresponding to a newly observed value of the response variable.

To select a combination of regression and variance model suitable for calibration we apply

selectmv as follows:

esterase.vcal <- selectmv(esterase, fktlesterase, graph=T)

In a first step candidates for the reference regression models required in the variance modelling

12



Table 2: Values of the cross-validation criteria C and CC for all combinations

of a regression and a variance model.

Regression Variance model

model crit. (2.17) (2.18) (2.19) (2.22) (2.21) homogeneous

(2.2) C 15859 15919 15861 15853 15812 15860

CC 3.87 3.87 3.868 3.869 3.836 3.835

(2.3) C 16173 16200 16174 16176 16003 16058

CC 3.911 3.865 3.912 3.929 3.822 3.815

(2.4) C 15910 15951 15912 15911 15852 15892

CC 3.853 3.832 3.852 3.861 3.785 3.784

(2.5) C 16406 16439 16406 16405 16219 16281

CC 3.939 3.894 3.94 3.956 3.868 3.856

(2.6) C 17089 17032 17088 17098 16444 16515

CC 4.15 4.162 4.151 4.149 4.318 4.3

(2.7) C 15873 15961 15873 15861 15868 15917

CC no explicit inverse model

(2.8) C 15813 15862 15815 15810 15878 15903

CC 4.458 4.641 4.457 4.514 6.908 6.679

(2.9) C 15933 15975 15935 15933 15871 15913

CC 3.854 3.833 3.853 3.861 3.788 3.786

(2.10) C 16188 16219 16189 16190 16027 16083

CC 3.914 3.868 3.914 3.931 3.828 3.821

(2.11) C 16200 16234 16201 Inf 16049 16105

CC 3.915 3.871 Inf Inf 3.835 3.827

(2.12) C 15997 16070 15998 15988 16274 16278

CC 3.861 3.876 3.859 3.859 3.874 3.877

(2.1) C 16469 16560 16471 16437 16380 16435

CC 3.973 3.974 3.973 3.978 4.139 4.115

(see Subsection 2.2) are specified interactively using graphical menus provided by selectmv. The

reference models m∗ (employed in the definition of residuals (2.15)) and m0 (used as arguments

of the variance models (2.17) - (2.22)) are chosen as the models minimizing the residual sum

of squares (1.3) and the cross-validation criterion (2.34, without transformation) and found to

be (2.12) and (2.2), respectively.

The variance models introduced in Subsection 2.2 are analyzed. The fits of the variance

models are illustrated as, for our example, in Figure 1. The left hand panel exhibits the fit of

the reference model m∗ together with pointwise one-sigma regions based on the six different

variance models. The right hand panel shows the fit of the variance models to the z-values.

The values of the criterion for variance estimation (2.25) are given in Table 1.
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Figure 2: Plot of the best combination of regression and variance model (Prediction)
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Figure 3: Plot of the best combination of regression and variance model (Calibration)
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Table 3: Values of the cross-validation criteria C and CC for all combinations

of a regression model and Box-Cox-transformation.

Regression λ value in Tλ

model crit. 2 1 .5 .25 0 -.5 -1 -2

(2.2) C 16778 15860 15891 Inf 17020 17557 16901 16733

CC 3.615 3.835 3.874 Inf 4.21 4.432 4.388 4.388

(2.3) C Inf 16058 16258 16240 Inf Inf Inf Inf

CC Inf 3.815 3.983 4.092 Inf Inf Inf Inf

(2.4) C Inf 15892 15839 Inf 16101 16502 16669 16547

CC Inf 3.784 3.875 Inf 4.057 4.262 4.308 4.324

(2.5) C 22648 16281 16489 16151 16489 16499 16564 16567

CC 3.678 3.856 4.006 4.067 4.162 4.293 4.292 4.267

(2.6) C Inf 16515 17228 21306 43448 20343 18374 17794

CC Inf 4.3 4.214 4.121 3.992 4.087 4.143 4.153

(2.7) C Inf 15917 15955 Inf 18383 19990 18874 18157

CC no explicit inverse model

(2.8) C Inf 15903 15781 16255 17051 16444 16563 16700

CC Inf 6.679 7.329 17.6 18.26 5.371 4.53 4.554

(2.9) C 16994 15913 15876 15891 16136 16496 16647 16671

CC 3.611 3.786 3.877 3.941 4.056 4.257 4.305 4.322

(2.10) C Inf 16083 16267 16377 16629 16862 17015 16978

CC Inf 3.821 3.984 4.096 4.182 4.297 4.316 4.305

(2.11) C 18867 16105 16235 Inf Inf Inf Inf Inf

CC 3.643 3.827 3.986 Inf Inf Inf Inf Inf

(2.12) C 17500 16278 15884 15809 16110 16523 16611 16968

CC 4.375 3.877 3.887 3.956 4.086 4.279 4.325 4.425

(2.1) C 16928 16435 16093 15750 15734 15961 16070 15980

CC 4.92 4.115 3.967 4.036 4.153 4.345 4.398 4.371

Based on this information the set of regression and variance models and the criterion of

interest have to be selected interactively using menus provided by selectmv. The function will

analyze the specified combinations of regression and variance models providing values of the

chosen criterion and graphical displays of the fitted regression function, observations, residuals

(shown as points), cross-validated residuals (imaginable as the centres of the octagons) and

one-sigma regions based on the truncated variance estimate σ̄ with smallest value of criterion

(2.25) (see Figure 2 for the best model w.r.t. criterion C and Figure 3 for the best model w.r.t.

criterion CC). The returned object esterase.vcal is a list with class-attribute ”nlsobjlist” or-

dered by the values of the criterion and containing the information for the single combinations

of regression and variance model as components (with class-attribute ”nlsobj”). The results
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reported in Table 2 for both the cross validation criterion C for prediction and the calibration

criterion CC clearly indicate, that variance modelling and use of WLSE leads to an improve-

ment if the objective is prediction or estimation of the regression function while for calibration

an OLSE should be preferred.

Alternatively we could look for a Box-Cox-transformation and regression model suitable

for prediction or calibration. This is done calling:

esterase.tpred <- selectmt(esterase, fktlesterase,

lambda = c(2,1,.5,0,-.5,-1,-2), graph=T)

esterase.tcal <- selectmt(esterase, fktlesterase,

lambda = c(2,1,.5,0,-.5,-1,-2), graph=T)

and selecting the class of models and the appropriate criteria from the menus provided. Table

3 contains the corresponding results for both criteria using transformation case A. Pairs of

(m, λ) for which the minimization algorithm (internal function do nls from Splus) failed to

produce reasonable estimates or failed in the cross-validation cycle are indicated by an Inf-value

for the criteria in Table 3. Such a failure is notified at calculation time.

We see that for both purposes, calibration and prediction, transformation does a slightly

better job than variance modelling, again leading to different models and transformations for

both objectives. Notice that model (2.1), which was utilized in Carroll and Ruppert [7] for

calibration, performs best for prediction, but with logarithmic transformation of both response

and regression function. In the transformation case B (parameter case = ”B” in the call of

selectmt) and λ = 0 with model

f(x, ϑ) = ϑ2 log(x− ϑ1) (2.44)

leads to the same results. The best pair (m, λ) for calibration is model (2.9) with λ = 2.

3. Accuracy statistics, prediction and calibration intervals

Parameter estimates, predictions or calibration values are only of value, if they are comple-

mented by an assessment of their accuracy. Therefore we offer functions to calculate estimates

of accuracy characteristics like the standard deviation, the bias or the relative mean absolute

errors of an estimator, of a predictor or of a calibration value. Also functions to construct

confidence, prediction and calibration intervals are provided. These functions are based on the

”moment oriented bootstrap” procedures introduced in Subsection 3.1 .

We assume, that a transformation T = Tλ of the observations and a model fT,m have been

chosen and a corresponding OLSE ϑ̂ := ϑ̂T,m is used as a parameter estimate. The accuracy

assessments are realized for the estimates, predictions or calibrations based on model m and

transformation T taken as fixed. The presentation is for the case A (see Subsection 2.3). It

covers also the case B, replacing in this case fT,m by fm in all expressions.

The presented bootstrap procedures can also be applied when a model fm for the regres-

sion function and a variance model are selected and if corresponding WLSE’s are used for
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the original observations (without any transformation). In this case we have to take λ = 1

(identical transformation) and to replace the OLSE ϑ̂T,m by the WLSE ϑ̂m.

3.1 Bootstrap sampling

The bootstrap is a resampling method that tries to mimic the (unknown) distribution of the

observations by generating artificial independent ”bootstrap” samples from the fitted model.

The estimates are repeatedly calculated for these bootstrap samples. The accuracy of the

original estimate is inferred from the empirical distribution of these bootstrap estimates. To

generate the bootstrap samples we exploit the following moment oriented bootstrap procedure.

We first search for a transformation T∗ and a corresponding model fT∗,m∗ (see (2.31))

with the aim of having a distribution (of the transformed observations YT∗
ij ) being as near as

possible to a normal distribution. This is accomplished by a maximum likelihood choice of

T∗, m∗ following Bunke [4]. We have to maximize a ”normal likelihood” or equivalently to

minimize

L(T,m) = n ln

⎡⎣∑
i,j

|Y T
ij − fT,m(xi, ϑ̂T,m)|2

⎤⎦+ 2nλ ln s− 2(λ− 1)
∑
i,j

ln(Yij + αλ) : (3.1)

L(T∗, m∗) = min
T,m

L(T,m) (3.2)

We estimate the variances VarY T∗
ij using the approach of Subsection 2.2 for the transformed

observations Y T∗
ij . Let σ̂2

i be the estimate of the variance Var Y T∗
ij provided by the variance

model minimizing the criterion (2.25) (with truncation at 0). We then generate B bootstrap

samples

Y T∗,b
ij := fT∗,m∗(xi, ϑ̂T∗,m∗) + εbij (j = 1, . . . , ni; i = 1, . . . , k; b = 1, . . . , B), (3.3)

where εbij are independent realizations of a normal distribution with zero mean and variance

σ̃2
i := max{0, σ̂2

i }. It is clear that if fT∗,m∗ is only a rough approximation to the unknown

true regression function (in comparison with the variability of the observations), then it makes

sense to take the alternative procedure obtained by replacing fT∗,m∗(xi, ϑ̂T∗,m∗) by Ȳ T∗
i =

1/ni
∑ni

j=1 Y
T∗
ij . This would avoid biases due to an incorrect model m∗.

For each bootstrap sample (3.3) we calculate the corresponding OLSE ϑ̂b
T,m =: ϑ̂b by

minimization of

Sb(ϑ) :=
k∑

i=1

ni∑
j=1

(
Y T,b
ij − fT,m(xi, ϑ)

)2
. (3.4)

The bootstrap sampling and the calculation of the OLSE for each bootstrap sample is done

by the function sensitive. The function uses the information obtained for a single model in

combination with a transformation (m, λ) (or m in combination with a variance model) in

the analyses done with function selectmt (selectmv) and adds information about the bootstrap

samples, the OLSE for the bootstrap samples, fitted values, and the variance model utilized

to generate the εbij.
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To provide confidence, prediction and calibration intervals we have to assess the variability

of the bootstrap estimates. This is achieved by a double bootstrap procedure applying the

technique described above to each bootstrap sample instead of the original sample. This is

carried out by the function dblbootstrap which adds parameter estimates obtained from the

second level (double) bootstrap samples and the parameter estimates for the variance model

(obtained from the bootstrap samples and used to generate the second level (double) bootstrap

samples) to the information about the model.

For our example this would be performed by the following calls:

esterase.tpredbest <- sensitive(esterase.tpred[[1]])

esterase.tpredbest <- dblbootstrap(esterase.tpredbest)

to get the bootstrap and double bootstrap statistics for the best model for prediction and

esterase.tcalbest <- sensitive(esterase.tcal[[1]])

esterase.tcalbest <- dblbootstrap(esterase.tcalbest)

for the best model for calibration purposes.

The model fT∗,m∗ is chosen from the set of models fT,m spezified in the preceeding call of

function selectmt. In our example this leads to λ∗ = .25 and m∗ as model (2.12).

3.2 Accuracy Statistics and Confidence Intervals

The accuracy of an estimate η̂ = η(ϑ̂, fm(x1, ϑ̂), . . . , fm(xk, ϑ̂)) of a one dimensional parameter

η = η(ϑ, f(x1), . . . , f(xk)) can be assessed based on the estimates computed from the bootstrap

samples by the functions sensitive and dblbootstrap. The variance of η̂ is estimated by

V̂ar η̂ :=
1

B − 1

B∑
b=1

(η̂b − 1

B

B∑
d=1

η̂d)2, (3.5)

where η̂b = η(ϑ̂b, fm(x1, ϑ̂
b), . . . , fm(xk, ϑ̂

b)), while the standard deviation of η̂ is assessed by

σ̂η̂ := V̂ar η̂
1/2

. (3.6)

The bias Bias η̂ = Eη̂ − η is estimated by

B̂ias(η̂) =
1

B

B∑
b=1

η̂b − η̂, (3.7)

and the mean absolute relative error MARE = |η|−1E|η̂ − η| by

̂MARE (η̂) =
1

B

B∑
b=1

|η̂b − η̂|
|η̂| . (3.8)

Simple confidence intervals for η of approximate confidence (1− α) are given by

IB :=
[
bα/2, b1−α/2

]
, (3.9)
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where bα denotes the α-quantile of the empirical distribution of the bootstrap estimates

η̂b (b = 1, . . . , B). Such quantiles are easily determined, while the following improved confi-

dence intervals require considerably more computation time, being based on a double bootstrap

procedure. We estimate the standard error of η̂ for each of the bootstrap samples (3.3) using

the double bootstrap estimates calculated by function dblbootstrap and applying the formula

(3.6). We apply these estimates σ̂bη̂ in a pivot statistics S. Let aα denote the α-quantile of the

empirical distribution of the pivot values

Sb =
η̂b − η̂

σ̂b
η̂

. (3.10)

The improved (1− α)-confidence intervals are then given by

ĨB :=
[
η, η̄

]
=

[
η̂ − a1−α/2σ̂η̂, η̂ − aα/2σ̂η̂

]
. (3.11)

The function confpar allows to compute estimates of the standard deviation, bias, MARE

and simple (if parameter nb2 = NULL) or improved confidence intervals for the parameters

involved in the model as well as for functions to compute η supplied either to selectmv (selectmt)

or to confpar (using the parameter fpar).

Let us reconsider our example. If we are interested in the accuracy of parameter estimates

and of the estimate of the linear slope

γ =

∑k
i=1 f(xi)(xi − x)∑k

i=1(xi − x)2
with x =

1

k

k∑
i=1

xi (3.12)

corresponding to the best model for prediction the call would be:

lslope <- function(x, y, ...)

{

xmean <- mean(x)

sum(y * (x - xmean))/sum((x - xmean)^2)

}

attr(lslope, "doc") <- "linear slope"

esterase.tpredbest_confpar(esterase.tpredbest, nb2=20, fpar=lslope)

leading to the following results:

lbound < value < ubound rel. error bias st.dev.

p1 -30.051 -23.861 -16.473 0.087843 0.26241 4.1042

p2 15.164 16.730 18.099 0.035471 -0.16574 0.7684

Statistics for fpar

lbound < value < ubound rel. error bias st.dev.

15.164 16.730 18.099 0.035471 -0.16574 0.7684
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3.3 Prediction and Calibration Intervals

For the construction of prediction and calibration intervals we consider the mean Ȳ (x) of l

uncorrelated (future) values Yj(x), j = 1, . . . , l, of the dependent variable for a fixed value

x of the explanatory variable. We estimate the variance of the transformed variable T∗(Yj(x))

by

σ̃2(x) := max{0, g(x, σ̂2, τ̂)} (3.13)

where g(x, σ2, τ) is the variance model minimizing the criterion (2.25) as in Subsection 3.1,

again based on the transformed observations Y T∗
ij . For the bootstrap procedure we generate

independent standard normally distributed values uba (a = 1, . . . , r; b = 1, . . . , B). A simple

prediction interval for the (future) mean Ȳ (x), with approximate coverage probability 1 − α,

may be calculated with the α-quantiles cα of the empirical distribution of the pivot values

Sb
a = fT∗,m(x, ϑ̂b)− σ̃(x)√

l
uba (3.14)

These (1− α)-prediction intervals are:

IP (x) :=
[
T−1

∗ (cα/2), T
−1
∗ (c1−α/2)

]
. (3.15)

Improved intervals are based on a double bootstrap procedure and on the α-quantiles dα of

the empirical distribution of the pivot values

Sb
a =

fT∗,m(x, ϑ̂b)− fT∗,m(x, ϑ̂)− σ̃(x)√
l
uba

(σ̃2b(x)/l+ σ̂2b
m (x))1/2

. (3.16)

Here σ̃2b(x) is the truncated estimate of the variance Var T∗(Y (x)) obtained for the bootstrap

sample {Y T∗,b
ij } using function dblbootstrap. The term σ̂2bm(x) in (3.16) is the estimate of the

variance of the predictor η̂b := fT∗,m(x, ϑ̂b) calculated by double bootstrap.

The improved (1− α)-prediction interval is

ĨP (x) :=
[
IP , ĪP

]
=

[
T−1

∗ (f(x)), T−1
∗ (f̄(x))

]
, (3.17)

where

f (x) = fT∗,m(x, ϑ̂) + dα/2
{
σ̃2(x)/l+ σ̂2

m(x)
}1/2

, (3.18)

f̄ (x) = fT∗,m(x, ϑ̂) + d1−α/2

{
σ̃2(x)/l+ σ̂2

m(x)
}1/2

, (3.19)

and where σ̂2
m(x) is the estimate of the variance of the predictor η̂ := fT∗,m(x, ϑ̂) obtained

from the bootstrap estimates ϑ̂b.

The calculation of prediction intervals can be performed using the function predict.nlsobj.

For our example improved bootstrap prediction intervals for the mean of 4 replications of the

response at points x = (10, 20, 30, 40, 50) are calculated by:

esterase.tpredbest <- predict(esterase.tpredbest, nb2=20,

additional = seq(10,50,10), replications = 4)
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The results are presented as

Pointwise prediction and confidence intervals

x lbound(y) < lbound(f) < f(x) < ubound(f) < ubound(y)

10 97.39 132.00 143.44 152.83 205.74

20 220.89 282.39 310.73 332.95 420.09

30 352.84 433.49 478.03 515.89 621.78

40 491.53 583.97 645.33 697.42 813.97

50 639.65 734.47 812.63 878.65 1003.70

and added to the object esterase.tpredbest.

For calibration intervals we use the calibration values defined by the inverse f−1
m (., ϑ) of the

regression function fm(., ϑ). That is the calibration value corresponding to the mean y := Ȳ (x)

of l uncorrelated observations Yj(x) of the dependent variable (for an unknown fixed value of

the explanatory variable) would be:

x̂ = f−1
m (y, ϑ̂). (3.20)

Assuming that fm(x, ϑ) is monotonously increasing in x, a simple (1− α)-calibration interval

is given by

IC(y) :=
[
f−1
T∗,m(gα/2, ϑ̂), f

−1
T∗,m(g1−α/2, ϑ̂)

]
, (3.21)

where gα denotes the α-quantile of the empirical distribution of the pivot values

Sb
a = fT∗,m(x̂, ϑ̂b)− σ̃(x̂)√

l
uba. (3.22)

Improved (1− α)-calibration intervals are given by a double bootstrap procedure, namely by

ĨC(y) :=
[
IC , ĪC

]
=

{
x : T∗(y) + h̃α/2{σ̃2(x̂)/l+ σ̂2

m(x̂)}1/2 <
< fT∗,m(x, ϑ̂) < T∗(y) + h̃1−α/2{σ̃2(x̂)/l+ σ̂2

m(x̂)}1/2
}
. (3.23)

Here hα denotes the α-quantiles of the empirical distribution of the pivot values

Sb
a =

fT∗,m(x̂, ϑ̂b)− T∗(y)− σ̃(x̂)√
l
uba

{σ̃2b(x̂ba)/l+ σ̂2b
m (x̂ba)}1/2

, (3.24)

where x̂ba = f−1
T∗,m(T∗(y) +

σ̃(x̂)√
l
uba, ϑ̂

b).

Calibration intervals and calibration values can be obtained using the function calibrate.

Confidence intervals for values of the inverse of the regression function are defined by (3.21

and 3.23) for l = ∞. These intervals are calculated by function calibrate if a value <

1 is specified for the parameter replications. For our example improved bootstrap confi-

dence intervals for the inverse of the regression function f−1(y) at the eight values y =

(50, 150, 250, 350, 450, 550, 650, 750) are calculated by:

esterase.tcalbest <- calibrate(esterase.tcalbest, nb2 = 20,

additional = seq(50,750,100), replications = 0)
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The results are presented in the form

Calibration intervals

y lbound(y) < finv(y) < ubound(y)

50 3.1000 5.8231 10.177

150 7.0351 11.1010 13.348

250 12.2530 15.5170 17.602

350 17.4260 19.8940 22.537

450 21.6380 24.6010 27.046

550 26.0870 29.9890 31.556

650 33.5700 36.5580 36.924

750 42.7070 45.2140 45.710

and added to the object esterase.tcalbest.

4. Presentation of Results

The results computed at any stage of the analysis are contained in objects of class ”fktlist”

(for the description of the class of regression models used in the analysis), ”nlsobj” (for results

corresponding to a single model) and ”nlsobjlist” for lists consisting of components of class

”nlsobj” (created by functions selectmv and selectmt). We provide generic functions to print

and plot the objects obtained during the analyses. In both cases the information contained in

the object is analyzed and printed or displayed in an appropriate way. We illustrate this using

our example.

print(esterase.tcalbest, graph=T)

creates the plot shown in Figure 4. The calibration intervals are displayed as horizontal bars

in the left hand panel together with the observations and the fitted curve. The information

to print (contained in the object esterase.tcalbest), i.e. model description (including transfor-

mation), data, parameter estimates, values of the criteria computed and calibration intervals,

can be selected interactively using menus and is provided in standardized form.

plot(esterase.tpredbest, transformed=T, cvres=T, additional=T)

will create the graphical display, shown in Figure 5, containing the main information obtained

in the analysis of the best model for prediction. Model description, parameter estimates and

computed criteria are given as headings of the plots. The left hand panel shows a plot (under

transformation) of the data, fitted curve and prediction intervals (vertical bars) at the design

points provided in the call of predict. The right hand panel shows a plot of both residuals and

cross-validated residuals under transformation (visualized as in Figures 2 and 3). Prediction

intervals are shown as vertical bars. If a best variance model with respect to criterion (2.25)

was selected, pointwise one-sigma regions (like those in Figures 2 and 3) based on this variance

model are displayed together with the residuals.
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Figure 4: Plot generated by print(esterase.tcalbest, graph=T).
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Figure 5: Plot generated by plot(esterase.tpredbest, transformed=T, cvres=T, additional=T)
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print(esterase.vpred)

creates an overview about the information contained in the list esterase.vpred, giving the values

of the criteria computed for the models analyzed in the corresponding call of function selectmv,

while

plot(esterase.vpred)

successively displays plots for the analyzed models.
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A Appendix

calibrate

DESCRIPTION

Computes bootstrap calibration intervals in a nonlinear regression model with transfor-

mation or variance modelling

USAGE

calibrate(model, nb=200, nb2=NULL, nb3=-1, design=F, additional=NULL,

coverage = 0.9, replications=1, graph=F, display=NULL, useymean=F)

REQUIRED ARGUMENTS

model object of class ”nlsobj” (component of the list returned by function selectmv or

selectmt) containing a description of a regression model (with variance model or

transformation) and corresponding estimates.

OPTIONAL ARGUMENTS

nb number of bootstrap samples

nb2 number of samples in second level bootstrap. If NULL double bootstrap is not

performed and only the simple bootstrap intervals are computed (leading to asymp-

totically less efficient but less time consuming statistics).

nb3 number of independent standard normally distributed values uba ( for each bootstrap

sample b) used in the definition of the bootstrap calibration intervals. If nb3 < 1

the sample size is used instead of nb3.

design : logical flag: if TRUE, calibration intervals are calculated corresponding to

the values of the response f(xi, theta) (xi design points in the region of interest

model$A <= f(xi, theta) <= model$B of the calibration criteria CC).

additional additional vector of responses for which calibration values and intervals are

calculated.

coverage coverage probability of the calibration intervals

replications number of replications; responses given in parameter additional or used if

design = T are considered as a mean of ”replications” observations.

If replications < 1; responses given in parameter additional or used if design = T

are considered as obtained without error (as a mean of infinitely many observations).

graph logical flag: if TRUE, the results are plotted.

display display to be used (”-display hostname:0.0” , be sure to allow access before).
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useymean logical flag: if FALSE, fitted values from the reference model are used to

generate bootstrap samples; if TRUE, bootstrap samples are generated based on

the vector of means of the observed responses at the design points (instead of fitted

values from the reference model).

VALUE

The parameter model is returned with the following components added (or updated):

coveragec coverage probability of the calculated calibration intervals.

replicationsc value of parameter replications

ycal fitted values at design points (larger than model$A and smaller thanmodel$B, used

if design = T ).

xhat calibration values (values of inverse regression function) for ycal.

lowcalconfp lower bounds of calibration intervals for ycal.

upcalconfp upper bounds of calibration intervals for ycal.

additionalcal vector provided by parameter additional.

xcaladd calibration values (values of inverse regression function) for additionalcal.

lowcaladdp lower bounds of calibration intervals for additionalcal.

upcaladdp upper bounds of calibration intervals for additionalcal.

If the function sensitive is called by the function calibrate, the following components are

added:

tvartyp number of variance model used to generate bootstrap samples (selected by cross-

validation; in the transformed space in case of transformation with λ �= 1).

tvarpar parameters of variance model used to generate bootstrap samples (calculated in

the transformed space in case of transformation with λ �= 1).

trefvar homogeneous variance estimate (under transformation if λ �= 1).

tvcv vector of values obtained for cross-validation criterion for variance estimation (for

all variance models; calculated in the transformed space if λ �= 1).

bootstrap matrix of parameter estimates obtained from the bootstrap samples.

yboot bootstrap samples

fwboot fitted values obtained from the bootstrap samples

useymean logical flag given by parameter useymean

If the function dblbootstrap is called by the function calibrate, the following components

are added:

double array of parameter estimates obtained from second level bootstrap samples (dou-

ble bootstrap).
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bsvarpar matrix of parameters of the variance model used to generate second level boot-

strap samples; obtained from the bootstrap samples.

bsrefvar vector of homogeneous variance estimates obtained from the bootstrap samples.

SIDE EFFECTS

If the object given by parameter model does not contain appropriate information about

the bootstrap samples and estimates (bootstrap estimates not computed in advance or

number of bootstrap samples less than nb ormodel$useymean �= useymean) the function

sensitive is called to (re)calculate the bootstrap estimates. If nb2 �= NULL and model

does not contain appropriate information about double bootstrap samples and estimates

(double bootstrap estimates not computed in advance or number of double bootstrap

samples less than nb2 or the function sensitive has been called by calibrate) the function

dblbootstrap is called to (re)do the second level bootstrap.

DETAILS

The function computes calibrations and simple (nb2 == NULL) or improved bootstrap

calibration intervals based on the results obtained in the model selection process using

the functions selectmv or selectmt.

REFERENCES

O. Bunke, B. Droge and J. Polzehl (1995). Model selection, transformations and variance

estimation in nonlinear regression. Discussion paper No. 95-52, Sonderforschungsbereich

373, Humboldt-Universität, Berlin.

see also

selectmv, selectmt, nlsobj, predict.nlsobj, confpar, nlsobjlist, plot.nlsobj, print.nlsobj,

plot.nlsobjlist, print.nlsobjlist

EXAMPLES

# generate the data of example 2

x <- c(0, 0, 0, 0, 0, 0, 0, 0, 0.02, 0.02, 0.02, 0.02,

0.04, 0.04, 0.04, 0.04, 0.06, 0.06, 0.06, 0.06,

0.08, 0.08, 0.08, 0.08, 0.1, 0.1, 0.1, 0.1, 0.2,

0.2, 0.2, 0.2, 0.4, 0.4, 0.4, 0.4, 0.6, 0.6, 0.6,

0.6, 0.8, 0.8, 0.8, 0.8, 1, 1, 1, 1, 1.5, 1.5, 1.5,

1.5, 2, 2, 2, 2, 4, 4, 4, 4, Inf, Inf, Inf, Inf)

logx <- log(x,10)

logx[logx == -Inf] <- -3

logx[logx == Inf] <- 2

# use -3 and 2 as codes for -Inf and Inf
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y <- c(2868, 2785, 2849, 2805, 2779, 2588, 2701, 2752,

2615, 2651, 2506, 2498, 2474, 2573, 2378, 2494,

2152, 2307, 2101, 2216, 2114, 2052, 2016, 2030,

1862, 1935, 1800, 1871, 1364, 1412, 1377 1304,

910, 919, 855, 875, 702, 701, 689, 696, 586,

596, 561, 562, 501, 495, 478, 493, 392, 358,

399, 394, 330, 351, 343, 333, 250, 261, 244,

242, 131, 135, 134, 133)

example2 <- list( x = logx, y = y, xname = "log-dose",

yname = "response")

# regression models, from catalog used in example 2

# indicator functions are used to identify -3 as -Inf

# and 2 as Inf

model1 <- yr ~ p1 * exp( - exp(p2 - p3 * xr)) *

I((-3 < xr) & (xr < 2)) + I(xr <= -3) * p1

model2 <- yr ~ p1 + p2/(1 + exp(p3 - p4 * xr)) *

I((-3 < xr) & (xr < 2)) + I(xr <= -3) * p2

model3 <- yr ~ p1 + p2/(1 + exp(p3 - p4 * xr))^p5 *

I((-3 < xr) & (xr < 2)) + I(xr <= -3) * p2

model4 <- yr ~ p1/(1 + exp(p2 - p3 * xr)) *

I((-3 < xr) & (xr < 2)) + I(xr <= -3) * p1

model5 <- yr ~ p1/(1 + exp(p2 - p3 * xr))^(1/p4) *

I((-3 < xr) & (xr < 2)) + I(xr <= -3) * p1

model6 <- yr ~ p1 + p2 * exp( - exp(p3 - p4 * xr)) *

I((-3 < xr) & (xr < 2)) + I(2 <= xr) * p2

# inverse models (to be used for calibration)

invmod1 <- xr ~ (p2 - log(log(p1/yr)))/p3

invmod2 <- xr ~ (p3 - log(p2/(yr - p1) - 1))/p4

invmod3 <- xr ~ (p3 - log((p2/(yr - p1))^(1/p5) - 1))/p4

invmod4 <- xr ~ (p2 - log(p1/yr - 1))/p3

invmod5 <- xr ~ (p2 - log((p1/yr)^p4 - 1))/p3

invmod6 <- xr ~ (p3 - log(log(p2/(yr - p1))))/p4

# now create the list of models

model1 <- list(fkt = model1[[3]], inv = invmod1[[3]],

p = 3, name = "Gompertz")

model2 <- list(fkt = model2[[3]], inv = invmod2[[3]],

p = 4, name = "Logistic")

model3 <- list(fkt = model3[[3]], inv = invmod3[[3]],

p = 5, name = "Richards")

model4 <- list(fkt = model4[[3]], inv = invmod4[[3]],

p = 3, name = "(1.36)")
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model5 <- list(fkt = model5[[3]], inv = invmod5[[3]],

p = 4, name = "(1.42)")

model6 <- list(fkt = model6[[3]], inv = invmod6[[3]],

p = 4, name = "(1.43)")

fktlistex2 <- list(model1, model2, model3, model4,

model5, model6)

# all other models from the catalog given in the

# references are to restrictive

fktlistex2 <- parinit( example2, fktlistex2, graph=T)

# now select a combination of regression and

# Box-Cox-Transformation

example2.tresults <-selectmt(example2, fktlistex2as,

lambda=c(-2,-1,-.5,0,.5,1,2), a=-2.99,b=1.99,A=200,B=2500,graph=T)

# select all models and the calibration criteria CC

# from the menu displayed

#

# now compute calibration intervals for the values of

# the response given in the argument additional

example2.besttcal <- calibrate(example2.tresults[[1]],nb2=20,

design=F, additional=seq(200,2700,500))

# display the results for the best model

plot(example2.besttcal,additional=T)

# plot results in the transformed space

plot(example2.besttcal, additional=T, transformed=T))

confpar

DESCRIPTION

Compute accuracy statistics and confidence intervals for the parameters in a nonlinear

regression model.

USAGE

confpar(model, nb=200, nb2=NULL, coverage=.9, fpar=NULL, useymean=F)

REQUIRED ARGUMENTS

model object of class ”nlsobj” (component of the list returned by function selectmv or

selectmt) containing a description of a regression model (with variance model or

transformation) and corresponding estimates.
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OPTIONAL ARGUMENTS

nb number of bootstrap samples

nb2 number of samples in second level bootstrap. If NULL double bootstrap is not

performed and only the simple bootstrap intervals are computed (leading to asymp-

totically less efficient but less time consuming statistics).

coverage coverage probability of the confidence intervals.

fpar function with arguments x (design), fw (values of the regression function at

(design, par)), par (parameters); used to calculate a parameter of interest.

useymean logical flag: if FALSE, fitted values from the reference model are used to

generate bootstrap samples; if TRUE, bootstrap samples are generated based on

the vector of means of the observed responses at the design points (instead of fitted

values from the reference model).

VALUE

The parameter model is returned with the following components added (or updated):

coverage coverage probability of confidence intervals calculated by confpar.

parstats confidence intervals, estimates of relative absolute error, bias and standard de-

viation of the parameter estimates.

fpar function provided in parameter fpar.

fparvalue estimate of fpar(x, fw, par)

fparstats confidence intervals, estimates of mean absolute relative error, bias and stan-

dard deviation of the estimated function fpar(x, fw, par).

If the function sensitive is called by the function confpar, the following components are

added:

tvartyp number of variance model used to generate bootstrap samples (selected by cross-

validation; in the transformed space in case of transformation with λ �= 1).

tvarpar parameters of variance model used to generate bootstrap samples (calculated in

the transformed space in case of transformation with λ �= 1).

trefvar homogeneous variance estimate (under transformation if λ �= 1).

tvcv vector of values obtained for cross-validation criterion for variance estimation (for

all variance models; calculated in the transformed space if λ �= 1).

bootstrap matrix of parameter estimates obtained from the bootstrap samples.

yboot bootstrap samples

fwboot fitted values obtained from the bootstrap samples

useymean logical flag given by parameter useymean
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If the function dblbootstrap is called by the function confpar, the following components

are added:

double array of parameter estimates obtained from second level bootstrap samples (dou-

ble bootstrap).

bsvarpar matrix of parameters of the variance model used to generate second level boot-

strap samples; obtained from the bootstrap samples.

bsrefvar vector of homogeneous variance estimates obtained from the bootstrap samples.

SIDE EFFECTS

If the object given by parameter model does not contain appropriate information about

the bootstrap samples and estimates (bootstrap estimates not computed in advance or

number of bootstrap samples less than nb ormodel$useymean �= useymean) the function

sensitive is called to (re)calculate the bootstrap estimates. If nb2 �= NULL and model

does not contain appropriate information about double bootstrap samples and estimates

(double bootstrap estimates not computed in advance or number of double bootstrap

samples less than nb2 or the function sensitive has been called by confpar) the function

dblbootstrap is called to (re)do the second level bootstrap.

DETAILS

The function computes bootstrap confidence intervals, bootstrap estimates of mean ab-

solute relative error, bias and standard deviation of estimates of the parameters in the

model and of parameters calculated by the function fpar and the optional parameter fg

in the call of selectmv or selectmt. The analysis is based on the results obtained in the

model selection process using the functions selectmv or selectmt.

REFERENCES

O. Bunke, B. Droge and J. Polzehl (1995). Model selection, transformations and variance

estimation in nonlinear regression. Discussion paper No. 95-52, Sonderforschungsbereich

373, Humboldt-Universität, Berlin.

see also

selectmv, selectmt, nlsobj, predict.nlsobj, calibrate, nlsobjlist, plot.nlsobj, print.nlsobj,

plot.nlsobjlist, print.nlsobjlist

EXAMPLES

# generate the data of example 2

x <- c(0, 0, 0, 0, 0, 0, 0, 0, 0.02, 0.02, 0.02, 0.02,

0.04, 0.04, 0.04, 0.04, 0.06, 0.06, 0.06, 0.06,

0.08, 0.08, 0.08, 0.08, 0.1, 0.1, 0.1, 0.1, 0.2,

0.2, 0.2, 0.2, 0.4, 0.4, 0.4, 0.4, 0.6, 0.6, 0.6,
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0.6, 0.8, 0.8, 0.8, 0.8, 1, 1, 1, 1, 1.5, 1.5, 1.5,

1.5, 2, 2, 2, 2, 4, 4, 4, 4, Inf, Inf, Inf, Inf)

logx <- log(x,10)

logx[logx == -Inf] <- -3

logx[logx == Inf] <- 2

# use -3 and 2 as codes for -Inf and Inf

y <- c(2868, 2785, 2849, 2805, 2779, 2588, 2701, 2752,

2615, 2651, 2506, 2498, 2474, 2573, 2378, 2494,

2152, 2307, 2101, 2216, 2114, 2052, 2016, 2030,

1862, 1935, 1800, 1871, 1364, 1412, 1377 1304,

910, 919, 855, 875, 702, 701, 689, 696, 586,

596, 561, 562, 501, 495, 478, 493, 392, 358,

399, 394, 330, 351, 343, 333, 250, 261, 244,

242, 131, 135, 134, 133)

example2 <- list( x = logx, y = y, xname = "log-dose",

yname = "response")

# regression models, from catalog used in example 2

# indicator functions are used to identify -3 as -Inf

# and 2 as Inf

model1 <- yr ~ p1 * exp( - exp(p2 - p3 * xr)) *

I((-3 < xr) & (xr < 2)) + I(xr <= -3) * p1

model2 <- yr ~ p1 + p2/(1 + exp(p3 - p4 * xr)) *

I((-3 < xr) & (xr < 2)) + I(xr <= -3) * p2

model3 <- yr ~ p1 + p2/(1 + exp(p3 - p4 * xr))^p5 *

I((-3 < xr) & (xr < 2)) + I(xr <= -3) * p2

model4 <- yr ~ p1/(1 + exp(p2 - p3 * xr)) *

I((-3 < xr) & (xr < 2)) + I(xr <= -3) * p1

model5 <- yr ~ p1/(1 + exp(p2 - p3 * xr))^(1/p4) *

I((-3 < xr) & (xr < 2)) + I(xr <= -3) * p1

model6 <- yr ~ p1 + p2 * exp( - exp(p3 - p4 * xr)) *

I((-3 < xr) & (xr < 2)) + I(2 <= xr) * p2

# inverse models (to be used for calibration)

invmod1 <- xr ~ (p2 - log(log(p1/yr)))/p3

invmod2 <- xr ~ (p3 - log(p2/(yr - p1) - 1))/p4

invmod3 <- xr ~ (p3 - log((p2/(yr - p1))^(1/p5) - 1))/p4

invmod4 <- xr ~ (p2 - log(p1/yr - 1))/p3

invmod5 <- xr ~ (p2 - log((p1/yr)^p4 - 1))/p3

invmod6 <- xr ~ (p3 - log(log(p2/(yr - p1))))/p4

# now create the list of models

model1 <- list(fkt = model1[[3]], inv = invmod1[[3]],

p = 3, name = "Gompertz")
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model2 <- list(fkt = model2[[3]], inv = invmod2[[3]],

p = 4, name = "Logistic")

model3 <- list(fkt = model3[[3]], inv = invmod3[[3]],

p = 5, name = "Richards")

model4 <- list(fkt = model4[[3]], inv = invmod4[[3]],

p = 3, name = "(1.36)")

model5 <- list(fkt = model5[[3]], inv = invmod5[[3]],

p = 4, name = "(1.42)")

model6 <- list(fkt = model6[[3]], inv = invmod6[[3]],

p = 4, name = "(1.43)")

fktlistex2 <- list(model1, model2, model3, model4,

model5, model6)

# all other models from the catalog given in the

# references are to restrictive

fktlistex2 <- parinit( example2, fktlistex2, graph=T)

fgammaint <- function(x, y, ...)

# function to approximate the area under the curve

{

k <- length(x)

sum((y[-1] + y[ - k]) * diff(10^x))/2

}

# now select a combination of regression and

# variance model

example2.vresults <-selectmv(example2, fktlistex2as,

a=-2.99, b=1.99, fg=fgammaint, graph=T)

# select all models, all variance models and the parameter

# estimation criteria CG from the menu displayed

# now compute accuracy statistics for model parameters and

# fgammaint(...) for the best model

example2.bestvpar <- confpar(example2.vresults[[1]],nb2=20)

# display the results for the best model

print(example2.bestvpar,graph=T)

dblbootstrap

DESCRIPTION

Compute second level (double) bootstrap estimates for a nonlinear regression model

USAGE

dblbootstrap(model, nb2=20)
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REQUIRED ARGUMENTS

model object of class ”nlsobj” (object returned by function sensitive) containing a de-

scription of a regression model (with variance model or transformation) and corre-

sponding estimates (including first level bootstrap estimates).

OPTIONAL ARGUMENTS

nb2 number of samples in second level bootstrap.

VALUE

The parameter model is returned with the following components added (or updated):

double array of parameter estimates obtained from second level bootstrap samples (dou-

ble bootstrap).

bsvarpar matrix of estimated parameters of the variance model used to generate second

level bootstrap samples ( obtained from bootstrap samples).

bsrefvar vector of homogeneous variance estimates obtained from the bootstrap samples.

SIDE EFFECTS

The function assumes to find information added by function sensitive. If there was no

preceding call of function sensitive this is notified and the parameter model is returned

unchanged.

REFERENCES

O. Bunke, B. Droge and J. Polzehl (1995). Model selection, transformations and variance

estimation in nonlinear regression. Discussion paper No. 95-52, Sonderforschungsbereich

373, Humboldt-Universität, Berlin.

see also

sensitive, selectmv, selectmt, nlsobj, predict.nlsobj, calibrate, confpar, nlsobjlist,

plot.nlsobj, print.nlsobj, plot.nlsobjlist, print.nlsobjlist

nlsobj

DESCRIPTION

This is an object of class ”nlsobj”. The model choice functions selectmt (selection of

models with transformation) and selectmv (selection of models with variance estimation)

create a list of class ”nlsobjlist”. The components of this list are object of class ”nl-

sobj” containing the results calculated for a single model. The functions sensitive (first
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level bootstrap), dblbootstrap (second level (double) bootstrap), confpar (accuracy statis-

tics and confidence intervals of parameters), predict.nlsobj (prediction and confidence

intervals) and calibrate (calibration intervals) use the information about a single model

contained in this object and add their results as additional components. The object is a

list consisting of the following components:

STRUCTURE

Model description (returned from selectmv or selectmt)

name name of the regression model

formula the formula used to evaluate the model.

invfkt the formula used to evaluate the calibrations (if calibration is performed).

fgamma the formula used to evaluate the parameter function in criterion CG (if criterion

CG is used).

a lower bound of x in the definition of the cross-validation criteria.

b upper bound of x in the definition of the cross-validation criteria.

A lower bound of y in the definition of the calibration criterion (if calibration was

performed).

B upper bound of y in the definition of the calibration criterion (if calibration was

performed).

case transformation case used in function selectmt; ”A” if transformation of both re-

sponse variable and regression function, or ”B” if only transformation of the re-

sponse variable (see references).

lambda exponent λ used in Box-Cox-transformation (if transformation is performed).

nr position of the model in the list fktl provided to selectmt or selectmv.

Description of data returned by selectmv or selectmt

x values of the explanatory variable (ordered with replications).

y values of the response variable (ordered according to x).

xname label to be used for explanatory variable.

yname label to be used for response variable.

xk vector of ordered design points (without replications).

ni vector of number of replications at the design points xk.

xm vector of first positions of components of xk in vector x (xk == x[xm]).

k number of different design points.

xo vector of positions of components of x in vector xk (x == xk[xo]).

yq vector of means of observed responses at design points xk.
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Results returned from selectmv or selectmt

res vector of residuals.

par parameter estimates.

fw vector of fitted values.

alpha shift parameter used in Box-Cox-transformation (if transformation is performed).

scale scale parameter used in Box-Cox-transformation (if transformation is performed).

rss residual sum of squares.

rssl residual sum of squares under transformation (case = ”A” and lambda �= 1).

rescv vector of cross-validated residuals (for a <= x <= b if cross-validation was per-

formed).

parcv matrix of parameter estimates from cross-validation steps performed.

cv value of the cross-validation Criteria C or C-tilde (if cross-validation was per-

formed).

xcal vector of calibration values (values of inverse regression function for observations

y of the response variable; if calibration was performed).

xcalcv vector of cross-validated calibration values (for a <= x <= b, A <= y <= B; if

calibration was performed).

cvcal value of the calibration criterion CC (if calibration was performed).

rescal calibration residuals.

gvalue estimated value of the parameter function fgamma.

cvpar value of the criterion CG (if estimation of a parameter function was performed).

refmodstar formula used to evaluate the reference model m∗ (best fitting model) in the

calculation of the residuals ei in the variance estimation procedure.

refparstar parameter estimates used within refmodstar.

reflambdastar lambda value of optimal transformation T∗ (minimizing the expression

(3.1)) (if transformation was performed) .

ccode return code from do nls.

ccodecv maximal return code from do nls in the cross-validation steps (if cross validation

was performed).

Description of the variance estimation (returned from selectmv)

vartyp number of variance model used in WLSE.

varpar vector of estimated parameters of variance model used in WLSE.

bestvartyp number of best variance model according to the cross-validation criterion for

variance estimation.
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bestvarpar vector of estimated parameters of the best variance model according to the

cross-validation criterion for variance estimation.

refmod formula for evaluating the reference model used to calculate the functional values

employed as arguments in the variance models.

refpar parameter estimates used within refmod.

refvar homogeneous variance estimate.

vcv vector of values obtained for cross-validation criterion for variance estimation. Inf

values correspond to variance models excluded from the analysis using the param-

eter vmodels of function selectmv.

Components added by function sensitive

tvartyp number of variance model used to generate bootstrap samples (selected by cross-

validation; in the transformed space in case of transformation with λ �= 1).

tvarpar parameters of variance model used to generate bootstrap samples (calculated in

the transformed space in case of transformation with λ �= 1).

trefvar homogeneous variance estimate (under transformation if λ �= 1).

tvcv vector of values obtained for cross-validation criterion for variance estimation (for

all variance models; calculated in the transformed space if λ �= 1). Inf values cor-

respond to variance models excluded from the analysis using the parameter vmodels

of function sensitive.

bootstrap matrix of parameter estimates obtained from the bootstrap samples.

bsrefpar matrix of parameter estimates for the reference model m0 obtained from the

bootstrap samples. Computed in case of variance modelling. If transformation is

used the reference model m0 is assumed to coincide with the model under consid-

eration, i.e. bsrefpar would duplicate the information contained in bootstrap.

yboot matrix of bootstrap samples

fwboot matrix of fitted values obtained from the bootstrap samples.

alphastar shift parameter used in Box-Cox-transformation with λ∗

alphastarb vector of shift parameters used for bootstrap samples in Box-Cox-transformations

with λ∗

alphab vector of shift parameters used for bootstrap samples in Box-Cox-transformations

with λ

scaleb vector of scale parameters used for bootstrap samples in Box-Cox-transformations

(independent of lambda)

useymean logical flag: if FALSE, fitted values from the reference model were used to

generate bootstrap samples; if TRUE, bootstrap samples were generated based on

the vector of means of the observed responses at the design points (instead of fitted

values from the reference model).
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Components added by function dblbootstrap

double array of parameter estimates obtained from second level bootstrap samples (dou-

ble bootstrap).

bsvarpar matrix of estimated parameters of the variance model used to generate second

level bootstrap samples ( obtained from bootstrap samples).

bsrefvar vector of homogeneous variance estimates obtained from the bootstrap samples.

Components added by function predict.nlsobj

coveragep coverage probability of the prediction intervals and confidence intervals for

values of the regression function.

replicationsp number of replications; prediction intervals were computed for the mean of

”replicationsp” future values of the response variable at a given design point.

additional additional vector of design points for which prediction and confidence intervals

are calculated.

lowconf vector of lower confidence bounds for values of the regression function at the

design points xk.

upconf vector of upper confidence bounds for values of the regression function at the

design points xk.

lowconfp vector of lower prediction bounds at the design points xk.

upconfp vector of upper prediction bounds at the design points xk.

lowadd vector of lower confidence bounds for values of the regression function at the

additional design points.

upadd vector of upper confidence bounds for values of the regression function at the

additional design points.

fwadd vector of fitted values at the additional design points.

lowaddp vector of lower prediction bounds at the additional design points.

upaddp vector of upper prediction bounds at the additional design points.

Components added by function calibrate

coveragec coverage probability of the calculated calibration intervals.

replicationsc number of replications; responses used for calibration are considered as a

mean of ”replications” observations.

ycal vector of fitted values at design points (larger than A and smaller than B).

xhat vector of calibration values (values of inverse regression function) for ycal.

lowcalconfp vector of lower bounds of calibration intervals for ycal.

upcalconfp vector of upper bounds of calibration intervals for ycal.
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additionalcal vector of additional values of the response variable for which calibration

values and intervals were calculated.

xcaladd vector of calibration values (values of inverse regression function) for addition-

alcal.

lowcaladdp vector of lower bounds of calibration intervals for additionalcal.

upcaladdp vector of upper bounds of calibration intervals for additionalcal.

Components added by function confpar

coverage coverage probability of confidence intervals calculated by confpar.

parstats confidence intervals, estimates of relative absolute error, bias and standard

deviation of the parameter estimates.

fpar function provided to confpar with arguments x (design), fw (values of the regres-

sion function at (design, par)), par (parameters); used to calculate a parameter of

interest.

fparvalue estimate of fpar(x, fw, par)

fparstats confidence intervals, estimates of mean absolute relative error, bias and stan-

dard deviation of the estimated function fpar(x, fw, par).

DETAILS

Objects of class ”nlsobj” are created as components of the returned list by the functions

selectmv (model selection with variance estimation) and selectmt (model selection with

transformation). They contain all results of global interest calculated for a single regres-

sion model (in combination with a variance model or using a Box-Cox transformation

with fixed λ). The information contained in the object is used by the functions sensitive,

dblbootstrap, predict.nlsobj, calibrate and confpar, which themselves add their results to

the object. There are generic functions print.nlsobj and plot.nlsobj to print or plot the

results obtained so far in a standardized way.

see also

selectmt, selectmv, sensitive, dblbootstrap, predict.nlsobj, calibrate, confpar, print.nlsobj,

plot.nlsobj

nlsobjlist

DESCRIPTION

This is an object of class ”nlsobjlist”. It is created by the model choice functions selectmt

(selection of models with transformation) or selectmv (selection of models with variance

estimation). The components of the list are objects of class ”nlsobj” containing the results
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belonging to single models (regression function and transformation or variance model)

considered in the process of model choice. The components are ordered by the value

of the selected criteria. There are generic functions print.nlsobjlist and plot.nlsobjlist to

display the the results in a standardized way.

see also

selectmt, selectmv, sensitive, dblbootstrap, predict.nlsobj, calibrate, confpar, print.nlsobj,

plot.nlsobj, print.nlsobjlist, plot.nlsobjlist

parinit

DESCRIPTION

Interactive tool to obtain initial parameter estimates for a list of nonlinear regression

models

USAGE

parinit(data, fktl=fktlist, lambda=1, steps=10, simp=100, graph=F, display=NULL,

case=”A”)

REQUIRED ARGUMENTS

data regression data; list with numerical components $x (values of the explanatory vari-

able) and $y (values of the response variable), character components $xname and

$yname (will be used in summaries and plots as labels for $x and $y). $x and $y

have to be of the same length.

fktl list specifying the class of models under consideration. The components of the list

contain the description of the regression models contained in the class. The single

model is specified using a list with components $fkt (containing an expression

(third element of a formula object) used to compute the regression model, with

the explanatory variable denoted by xr and parameters denoted by p1, p2, . . .), $p

(number of parameters), $inv (containing an expression (third element of a formula

object) used to compute the inverse of the regression model, with dependent variable

denoted by yr and parameters denoted by p1, p2, . . .) and $name (character string

used as a name of the model). (see example) Standard: fktlist (a list of sigmoidal

and asymptotic models with class attribute ”fktlist”)

OPTIONAL ARGUMENTS

lambda exponent λ used in Box-Cox-transformation.

steps maximal number of attempts to solve the Hartley-Booker-Equations.

simp influences the number of iterations in stochastic search (positive numeric)
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graph logical flag: if TRUE, the actual fit and residuals are plotted in a graphics window

to assist in the decision process. Graphics menus are used.

display display to be used in case of graph = T (”-display hostname:0.0” , be sure to

allow access before)

case transformation case to be used ; ”A” if transformation of both response variable

and regression function, or ”B” if only transformation of the response variable (see

references).

VALUE

list of regression models. The list consists of descriptions of all regression models con-

tained in the list provided by parameter fktl and accepted in the preselection process

performed by parinit. The components of the list contain the description of the re-

gression models given with parameter fktl with initial parameter estimates (component

$par), value of lambda (component $lambda) and case (component $case) used for trans-

formation and the internal return code from do nls (component $ccode) added. The class

attribute of the list is set to ”fktlist”.

SIDE EFFECTS

The function parinit should be used before calling to the functions selectmv and selectmt.

Function selectmt assumes that initial estimates have been computed using digestible

values of case and lambda.

DETAILS

The function supports several strategies to find initial estimates for the regression prob-

lems defined by data and fktl. At first a subclass of models can be selected (models

deleted here will not be in the returned list). The models in this class are successively

analyzed. Starting parameters are generated automatically if not contained in the model

description. Based on status information obtained for the actual parameter values, a cy-

cle of stochastic searchs is started as long as the user decides that further improvement

is necessary. New starting values can be provided as a guess or generated. The pa-

rameter estimates can be accepted or in case of missing flexibility the model can be

deleted. To obtain improvements of the initial estimates the Hartley-Booker-Equations

(obtained by grouping the data to form p clusters) may be solved by a combination of

stochastic search and numerical minimization. Then the original problem is analyzed

using stochastic search and numerical minimization of the least squares criteria.

see also

print.fktlist, selectmt, selectmv
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EXAMPLES

# construct a list of models:

model1 <- list(fkt = (yr ~ p1 - p2 * exp( - p3 * xr^p4))[[3]],

p=4, inv = (xr ~ (log(p2/(p1 - yr))/p3)^(1/p4))[[3]],

name="Weibull (1.7)")

model15 <- list(fkt =

(yr ~ p1 + p2 * (1 - exp( - p3 * xr))^p4)[[3]], p=4,

inv = (xr ~ - log(1 - ((yr - p1)/p2)^(1/p4))/p3)[[3]],

name="(1.44)")

fktl <- list(model1, ..., model15)

# generate the data of Example 1

x <- c( 9, 14, 21, 28, 42, 57, 63, 70, 79)

y <- c( 8.93, 10.80, 18.59, 22.33, 39.35, 56.11, 61.73,

64.62, 67.08)

example1 <- list( x = x, y = y, xname =

"Time after pasture", yname = "Yield")

# complete fktl by initial parameter estimates, use

# graphical display

fktlneu <- parinit(example1, fktl = fktl, graph = T)

# print the result of the initialization

print(fktlneu)

plot.nlsobj

DESCRIPTION

Generic function to plot the results for a single model (in combination with transfor-

mation or variance model) obtained by the functions selectmv, selectmt, predict.nlsobj,

calibrate and confpar.

USAGE

plot.nlsobj(nlsobj, display=NULL, additional=F, design=T, vertical=F, transformed=F,

cvres=F)

REQUIRED ARGUMENTS

nlsobj object of class ”nlsobj” (see nlsobj for a detailed description).

OPTIONAL ARGUMENTS

display display to be used (”-display hostname:0.0” , be sure to allow access before).
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additional logical flag: if TRUE, prediction, confidence and calibration intervals (if

computed) at the points provided to the argument additional in the preceding calls

of the functions predict.nlsobj and calibrate are displayed.

design logical flag: if TRUE, prediction, confidence and calibration intervals (if com-

puted) at the design points (for the fitted values in case of calibration) are displayed.

vertical logical flag: determines vertical or horizontal arrangement of plots.

transformed logical flag: if TRUE, results under transformation are plotted

cvres logical flag: if TRUE, cross-validated residuals are plotted additionally (symbol:

octagon; color: 2)

see also

nlsobj, selectmv, selectmt, nlsobjlist, plot.nlsobjlist, print.nlsobj, print.nlsobjlist, conf-

par, predict.nlsobj, calibrate

plot.nlsobjlist

DESCRIPTION

Generic function to plot the results returned by function selectmv or selectmt. The

function realizes successive calls of plot.nlsobj for the models analyzed by selectmv or

selectmt.

USAGE

plot.nlsobjlist(nlsobjlist, display=NULL, transformed=F, cvres=F)

REQUIRED ARGUMENTS

nlsobjlist list of class ”nlsobjlist” returned by function selectmv or selectmt. The com-

ponents of the list are objects of class ”nlsobj” containing the results of a single

model.

OPTIONAL ARGUMENTS

display display to be used (”-display hostname:0.0” , be sure to allow access before).

transformed logical flag: if TRUE, results under transformation are plotted

cvres logical flag: if TRUE, cross-validated residuals are plotted additionally (symbol:

octagon; color: 2)
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DETAILS

The function creates menus containing information about names of the regression models

and the value of lambda or the number of the variance model used for each of the

components of the list nlsobjlist created by function selectmt or selectmv. The menu

entries are ordered by the values of criterion used in the analysis. The single models to

plot can be selected successively.

see also

nlsobj, selectmv, selectmt, print.nlsobjlist

predict.nlsobj

DESCRIPTION

Compute bootstrap prediction and confidence intervals in a nonlinear regression model

with transformation or variance modelling

USAGE

predict.nlsobj(model, nb=200, nb2=NULL, nb3=-1, design=F, additional=NULL,

coverage=.9, replications=1, graph=F, display=NULL, useymean=F)

REQUIRED ARGUMENTS

model object of class ”nlsobj” (component of the list returned by function selectmv or

selectmt) containing a description of a regression model (with variance model or

transformation) and corresponding estimates.

OPTIONAL ARGUMENTS

nb number of bootstrap samples

nb2 number of samples in second level bootstrap. If NULL double bootstrap is not

performed and only the simple bootstrap intervals are computed (leading to asymp-

totically less efficient but less time consuming statistics).

nb3 number of independent standard normally distributed values uba ( for each bootstrap

sample b) used in the definition of the bootstrap prediction intervals. If nb3 < 1

the sample size is used instead of nb3.

design logical flag: if TRUE, prediction and confidence intervals are calculated at design

points xi with if model$a <= xi <= model$b (design points in the region of interest

in the cross-validation criteria C and C-tilde).

additional additional vector of design points for which prediction and confidence intervals

are calculated.
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coverage coverage probability of the prediction and confidence intervals

replications number of replications; prediction intervals are computed for the mean of

”replications” future values of the response variable at a given design point.

graph logical flag: if TRUE, the results are plotted.

display display to be used (”-display hostname:0.0” , be sure to allow access before).

useymean logical flag: if FALSE, fitted values from the reference model are used to

generate bootstrap samples; if TRUE, bootstrap samples are generated based on

the vector of means of the observed responses at the design points (instead of fitted

values from the reference model).

VALUE

The parameter model is returned with the following components added (or updated):

coveragep coverage probability of prediction and confidence intervals calculated by func-

tion predict.nlsobj

replicationsp number of replications; prediction intervals were computed for the mean of

replicationsp future values of the response variable at a given design point.

additional additional vector of design points for which prediction and confidence intervals

are calculated.

lowconf vector of lower confidence bounds for values of the regression function at the

design points xk (ordered design points without replications).

upconf vector of upper confidence bounds for values of the regression function at the

design points xk.

lowconfp vector of lower prediction bounds at the design points xk.

upconfp vector of upper prediction bounds at the design points xk.

lowadd vector of lower confidence bounds for values of the regression function at the

additional design points .

upadd vector of upper confidence bounds for values of the regression function at the

additional design points .

fwadd vector of fitted values at the additional design points.

lowaddp vector of lower prediction bounds at the additional design points.

upaddp vector of upper prediction bounds at the additional design points.

If the function sensitive is called by the function predict.nlsobj the following components

are added:

tvartyp number of variance model used to generate bootstrap samples (selected by cross-

validation; in the transformed space in case of transformation with λ �= 1).
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tvarpar parameters of variance model used to generate bootstrap samples (calculated in

the transformed space in case of transformation with λ �= 1).

trefvar homogeneous variance estimate (under transformation if λ �= 1).

tvcv vector of values obtained for cross-validation criterion for variance estimation (for

all variance models; calculated in the transformed space if λ �= 1).

bootstrap matrix of parameter estimates obtained from the bootstrap samples.

yboot bootstrap samples

fwboot fitted values obtained from the bootstrap samples

useymean logical flag given by parameter useymean

If the function dblbootstrap is called by the function predict.nlsobj, the following compo-

nents are added:

double array of parameter estimates obtained from second level bootstrap samples (dou-

ble bootstrap).

bsvarpar matrix of parameters of the variance model used to generate second level boot-

strap samples; obtained from the bootstrap samples.

bsrefvar vector of homogeneous variance estimates obtained from the bootstrap samples.

SIDE EFFECTS

If the object given by parameter model does not contain appropriate information about

the bootstrap samples and estimates (bootstrap estimates not computed in advance or

number of bootstrap samples less than nb ormodel$useymean �= useymean) the function

sensitive is called to (re)calculate the bootstrap estimates. If nb2 �= NULL and model

does not contain appropriate information about double bootstrap samples and estimates

(double bootstrap estimates not computed in advance or number of double bootstrap

samples less than nb2 or the function sensitive has been called by calibrate) the function

dblbootstrap is called to (re)do the second level bootstrap.

REFERENCES

O. Bunke, B. Droge and J. Polzehl (1995). Model selection, transformations and variance

estimation in nonlinear regression. Discussion paper No. 95-52, Sonderforschungsbereich

373, Humboldt-Universität, Berlin.

see also

selectmv, selectmt, nlsobj, calibrate, confpar, nlsobjlist, plot.nlsobj, print.nlsobj,

plot.nlsobjlist, print.nlsobjlist
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EXAMPLES

# generate the data of example 2

x <- c(0, 0, 0, 0, 0, 0, 0, 0, 0.02, 0.02, 0.02, 0.02,

0.04, 0.04, 0.04, 0.04, 0.06, 0.06, 0.06, 0.06,

0.08, 0.08, 0.08, 0.08, 0.1, 0.1, 0.1, 0.1, 0.2,

0.2, 0.2, 0.2, 0.4, 0.4, 0.4, 0.4, 0.6, 0.6, 0.6,

0.6, 0.8, 0.8, 0.8, 0.8, 1, 1, 1, 1, 1.5, 1.5, 1.5,

1.5, 2, 2, 2, 2, 4, 4, 4, 4, Inf, Inf, Inf, Inf)

logx <- log(x,10)

logx[logx == -Inf] <- -3

logx[logx == Inf] <- 2

# use -3 and 2 as codes for -Inf and Inf

y <- c(2868, 2785, 2849, 2805, 2779, 2588, 2701, 2752,

2615, 2651, 2506, 2498, 2474, 2573, 2378, 2494,

2152, 2307, 2101, 2216, 2114, 2052, 2016, 2030,

1862, 1935, 1800, 1871, 1364, 1412, 1377 1304,

910, 919, 855, 875, 702, 701, 689, 696, 586,

596, 561, 562, 501, 495, 478, 493, 392, 358,

399, 394, 330, 351, 343, 333, 250, 261, 244,

242, 131, 135, 134, 133)

example2 <- list( x = logx, y = y, xname = "log-dose",

yname = "response")

# regression models, from catalog used in example 2

# indicator functions are used to identify -3 as -Inf

# and 2 as Inf

model1 <- yr ~ p1 * exp( - exp(p2 - p3 * xr)) *

I((-3 < xr) & (xr < 2)) + I(xr <= -3) * p1

model2 <- yr ~ p1 + p2/(1 + exp(p3 - p4 * xr)) *

I((-3 < xr) & (xr < 2)) + I(xr <= -3) * p2

model3 <- yr ~ p1 + p2/(1 + exp(p3 - p4 * xr))^p5 *

I((-3 < xr) & (xr < 2)) + I(xr <= -3) * p2

model4 <- yr ~ p1/(1 + exp(p2 - p3 * xr)) *

I((-3 < xr) & (xr < 2)) + I(xr <= -3) * p1

model5 <- yr ~ p1/(1 + exp(p2 - p3 * xr))^(1/p4) *

I((-3 < xr) & (xr < 2)) + I(xr <= -3) * p1

model6 <- yr ~ p1 + p2 * exp( - exp(p3 - p4 * xr)) *

I((-3 < xr) & (xr < 2)) + I(2 <= xr) * p2

# inverse models (to be used for calibration)

invmod1 <- xr ~ (p2 - log(log(p1/yr)))/p3

invmod2 <- xr ~ (p3 - log(p2/(yr - p1) - 1))/p4
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invmod3 <- xr ~ (p3 - log((p2/(yr - p1))^(1/p5) - 1))/p4

invmod4 <- xr ~ (p2 - log(p1/yr - 1))/p3

invmod5 <- xr ~ (p2 - log((p1/yr)^p4 - 1))/p3

invmod6 <- xr ~ (p3 - log(log(p2/(yr - p1))))/p4

# now create the list of models

model1 <- list(fkt = model1[[3]], inv = invmod1[[3]],

p = 3, name = "Gompertz")

model2 <- list(fkt = model2[[3]], inv = invmod2[[3]],

p = 4, name = "Logistic")

model3 <- list(fkt = model3[[3]], inv = invmod3[[3]],

p = 5, name = "Richards")

model4 <- list(fkt = model4[[3]], inv = invmod4[[3]],

p = 3, name = "(1.36)")

model5 <- list(fkt = model5[[3]], inv = invmod5[[3]],

p = 4, name = "(1.42)")

model6 <- list(fkt = model6[[3]], inv = invmod6[[3]],

p = 4, name = "(1.43)")

fktlistex2 <- list(model1, model2, model3, model4,

model5, model6)

# all other models from the catalog given in the

# references are to restrictive

fktlistex2 <- parinit( example2, fktlistex2, graph=T)

# now select a combination of regression and

# variance model

example2.vresults <-selectmv(example2, fktlistex2as,

a=-2.99, b=1.99, graph=T)

# select all models, variance models and the cross-

# validation criteria C or C-tilde from the menus displayed

#

# now compute predictions, prediction and confidence

# intervals for the values of the explanatory variable

# given in the argument additional

example2.bestvpred <- predict(example2.vresults[[1]], nb2=20,

design=F, additional=seq(-3,2,.5))

# display the results for the best model

plot(example2.bestvpred,additional=T)

# plot results in the transformed space

plot(example2.bestvpred, additional=T, transformed=T))

48



print.fktlist

DESCRIPTION

Formats and prints the information contained in the description of a class of nonlinear

regression models. This method is automatically called by print when an object of class

”fktlist” is given.

USAGE

print.fktlist(fktlist)

REQUIRED ARGUMENTS

fktlist list specifying the class of regression models under consideration. The components

of the list contain the description of the regression models contained in the class. A

single regression model is specified using a list with components $fkt (containing an

expression (third element of a formula object) used to compute the regression model,

with the explanatory variable denoted by xr and parameters denoted by p1, p2, . . .),

$p (number of parameters), $inv (containing an expression (third element of a

formula object) used to compute the inverse of the regression model, with dependent

variable denoted by yr and parameters denoted by p1, p2, . . .), $name (character

string used as a name of the model), $par (initial parameter estimates obtained by

function parinit), $case and $lambda (the characterization of the transformation

used in function parinit) and $ccode (the return code from the last call of do nls

performed for the model in function parinit).

see also

parinit, selectmv, selectmt

EXAMPLES

# construct a list of models:

model1 <- list(fkt = (yr ~ p1 - p2 * exp( - p3 * xr^p4))[[3]],

p=4, inv = (xr ~ (log(p2/(p1 - yr))/p3)^(1/p4))[[3]],

name="Weibull (1.7)")

model15 <- list(fkt =

(yr ~ p1 + p2 * (1 - exp( - p3 * xr))^p4)[[3]], p=4,

inv = (xr ~ - log(1 - ((yr - p1)/p2)^(1/p4))/p3)[[3]],

name="(1.44)")

fktl <- list(model1, ..., model15)

# print the current list

print(fktlneu)

# generate the data of Example 1
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x <- c( 9, 14, 21, 28, 42, 57, 63, 70, 79)

y <- c( 8.93, 10.80, 18.59, 22.33, 39.35, 56.11, 61.73,

64.62, 67.08)

example1 <- list( x = x, y = y, xname =

"Time after pasture", yname = "Yield")

# complete fktl by initial parameter estimates, use

# graphical display

fktlneu <- parinit(example1, fktl = fktl, graph = T)

# print the result of the initialization

print(fktlneu)

print.nlsobj

DESCRIPTION

Generic function to print the results for a single model (in combination with transfor-

mation or variance modelling) obtained by the functions selectmv, selectmt, confpar,

predict.nlsobj and calibrate.

USAGE

print.nlsobj(nlsobj, graph=F, display=NULL)

REQUIRED ARGUMENTS

nlsobj object of class ”nlsobj” (see nlsobj for a detailed description).

OPTIONAL ARGUMENTS

graph logical flag: if TRUE, the results will be displayed using the function plot.nlsobj.

Graphics menus are used in this case to select the range of information to be printed.

display display to be used (”-display hostname:0.0” , be sure to allow access before).

see also

nlsobj, selectmv, selectmt, nlsobjlist, plot.nlsobj, plot.nlsobjlist, print.nlsobjlist,

predict.nlsobj, calibrate, confpar
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print.nlsobjlist

DESCRIPTION

Generic function to print the results returned by selectmv or selectmt. The results are

given as a table containing a model identifier and the values of the criteria computed

by selectmv or selectmt. The models are ordered by the criteria selected in selectmv or

selectmt.

USAGE

print.nlsobjlist(nlsobjlist)

REQUIRED ARGUMENTS

nlsobjlist list of class ”nlsobjlist” returned by function selectmv or selectmt. The com-

ponents of the list are objects of class ”nlsobj” containing the results of a single

model.

see also

selectmv, selectmt, nlsobj.object

selectmt

DESCRIPTION

Menu program for model selection and variable transformation

USAGE

selectmt(data, fktlist=fktlist, lambda=1, fg=NULL, a=min(data$x), b=max(data$x),

case=”A”, A=min(data$y), B=max(data$y), graph=F, display=NULL)

REQUIRED ARGUMENTS

data regression data; list with numerical components $x (values of the explanatory vari-

able) and $y (values of the response variable), character components $xname and

$yname (will be used in summaries and plots as labels for $x and $y). $x and $y

have to be of the same length.

fktlist list specifying the class of regression models under consideration. The components

of the list contain the description of the regression models contained in the class. A

single regression model is specified using a list with components $fkt (containing an

expression (third element of a formula object) used to compute the regression model,

with the explanatory variable denoted by xr and parameters denoted by p1, p2, . . .),
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$p (number of parameters), $inv (containing an expression (third element of a

formula object) used to compute the inverse of the regression model, with dependent

variable denoted by yr and parameters denoted by p1, p2, . . .), $name (character

string used as a name of the model), $par (initial parameter estimates obtained by

function parinit), $case and $lambda (the characterization of the transformation

used in function parinit). fktlist can be generated from a simpler standard form

using the function parinit (see example).

OPTIONAL ARGUMENTS

lambda vector of parameters lambda used in Box-Cox-transformations. Each pair of

lambda and regression function defines a transformation model. Standard value

lambda = 1 (with case = ”A”) stands for no transformation.

fg the formula to evaluate the parameter function in criterion CG, standard name

fgamma.

a lower bound for x in the definition of the cross-validation criteria C and C-tilde,

standard min(data$x).

b upper bound for x in the definition of the cross-validation criteria C and C-tilde,

standard max(data$x).

case character (value ”A” or ”B”); transformation case; ”A” specifies transformation of

both response variable and regression function, ”B” calls for transformation of the

response variable only (see references).

A lower bound for y in the definition of the calibration criterion, standardmin(data$y).

B upper bound for y in the definition of the calibration criterion, standardmax(data$y).

graph logical flag: if TRUE, the results for the analyzed models are plotted. Graphics

menus are used.

display display to be used (”-display hostname:0.0” , be sure to allow access before).

VALUE

the returned object is a list of class ”nlsobjlist”. The components of the list are objects of

class ”nlsobj” containing the results belonging to single models (regression function and

transformation) considered in the process of model choice. The components are ordered

by the value of the selected criteria. Results can be displayed using print(returnedobject)

and plot(returnedobject) (for results of all analyzed models), or print(returnedobject[[i]])

and plot(returnedobject[[i]]) for a more detailed information about the i − th model

(ordered by the value of the model selection criteria).

SIDE EFFECTS

the function assumes that initial estimates have been computed by function parinit using

digestible values of case and lambda (same specification of case, same value of lambda if
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case = ”B”). In case of indigestible transformations this will be notified and an empty

object will be returned.

DETAILS

The function allows model selection among a class of nonlinear regression models. The

class of regression models can be defined using the parameter fktlist. Initial parameter

estimates can be obtained and included into fktlist using the function parinit. The

models to be analyzed can be selected from this list interactively. The function provides

the following criteria for model selection:

• Residual Sum of Squares,

• cross-validation criterion C (Prediction),

• full cross-validation criterion C-tilde (Prediction),

• Calibration-criterion CC and

• Parameter estimation criterion CG.

The Box-Cox-transformations can be performed for both case ”A” and case ”B” by

specifying the lambda and case parameters. If case = ”B” is specified only a single λ-

value can be used. If graph = T graphics menus are used and a graphical representation

of the analyzed models is provided. Results will be ordered by the value of the selected

criteria.

REFERENCES

O. Bunke, B. Droge and J. Polzehl (1995). Model selection, transformations and variance

estimation in nonlinear regression. Discussion paper No. 95-52, Sonderforschungsbereich

373, Humboldt-Universität, Berlin.

see also

parinit, selectmv, nlsobj, nlsobjlist, plot.nlsobjlist, print.nlsobjlist, plot.nlsobj,

print.nlsobj, confpar, predict.nlsobj, calibrate

EXAMPLES

# construct a list of models:

model1 <- list(fkt = (yr ~ p1 - p2 * exp( - p3 * xr^p4))[[3]],

p=4, inv = (xr ~ (log(p2/(p1 - yr))/p3)^(1/p4))[[3]],

name="Weibull (1.7)")

model15 <- list(fkt =

(yr ~ p1 + p2 * (1 - exp( - p3 * xr))^p4)[[3]], p=4,

inv = (xr ~ - log(1 - ((yr - p1)/p2)^(1/p4))/p3)[[3]],

name="(1.44)")

fktl <- list(model1, ..., model15)
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# generate the data of Example 1

x <- c( 9, 14, 21, 28, 42, 57, 63, 70, 79)

y <- c( 8.93, 10.80, 18.59, 22.33, 39.35, 56.11, 61.73, 64.62, 67.08)

example1 <- list( x = x, y = y, xname =

"Time after pasture", yname = "Yield")

# complete fktl by initial parameter estimates, use

# graphical display

fktlneu <- parinit(example1, fktl = fktl, graph = T)

# analyze the specified class of models using

# transformation case A and lambda values

# -2, -1, -.5, 0, .5, 1 and 2 . Allow graphics.

example1.tresults <- selectmt(example1, fktlneu,

lambda=c(-2,-1,-.5,0,.5,1,2), graph=T)

# display the results

plot(example1.tresults)

# print the values of the criteria for all models and

# transformations considered

print(example1.tresults)

# print detailed results for the best model with respect

# to the selected criteria

print(example1.tresults[[1]])

selectmv

DESCRIPTION

Menu program for model selection and variance estimation

USAGE

selectmv(data, fktlist=fktlist, vmodels=NULL, fg=NULL, a=min(data$x),

b=max(data$x), A=min(data$y), B=max(data$y), graph=F, display=NULL)

REQUIRED ARGUMENTS

data regression data; list with numerical components $x (values of the explanatory vari-

able) and $y (values of the response variable), character components $xname and

$yname (will be used in summaries and plots as labels for $x and $y). $x and $y

have to be of the same length.

fktlist list specifying the class of regression models under consideration. The components

of the list contain the description of the regression models contained in the class. A

single regression model is specified using a list with components $fkt (containing an

54



expression (third element of a formula object) used to compute the regression model,

with the explanatory variable denoted by xr and parameters denoted by p1, p2, . . .),

$p (number of parameters), $inv (containing an expression (third element of a

formula object) used to compute the inverse of the regression model, with dependent

variable denoted by yr and parameters denoted by p1, p2, . . .), $name (character

string used as a name of the model), $par (initial parameter estimates obtained by

function parinit), $case and $lambda (the characterization of the transformation

used in function parinit; case = ”A” or lambda = 1 is required). fktlist can be

generated from a simpler standard form using the function parinit (see example).

OPTIONAL ARGUMENTS

vmodels integer vector, restricts the analysis to the variance models specified by their

number. If NULL; all six variance models are used.

fg the formula to evaluate the parameter function in criterion CG, standard name

fgamma.

a lower bound for x in the definition of the cross-validation criteria C and C-tilde,

standard min(data$x).

b upper bound for x in the definition of the cross-validation criteria C and C-tilde,

standard max(data$x).

A lower bound for y in the definition of the calibration criterion, standardmin(data$y).

B upper bound for y in the definition of the calibration criterion, standardmax(data$y).

graph logical flag: if TRUE, the results for the analyzed models are plotted. Graphics

menus are used.

display display to be used (”-display hostname:0.0” , be sure to allow access before).

VALUE

the returned object is a list of class ”nlsobjlist”.The components of the list are objects of

class ”nlsobj” containing the results belonging to single models (regression function and

variance model) considered in the process of model choice. The components are ordered

by the value of the selected criteria. Results can be displayed using print(returnedobject)

and plot(returnedobject) (for results of all analyzed models), or print(returnedobject[[i]])

and plot(returnedobject[[i]]) for a more detailed information about the i − th model

(ordered by the value of the model selection criteria).

SIDE EFFECTS

the function assumes that initial estimates have been computed by function parinit with

specified transformation case = ”A” or lambda = 1 (case = ”A” and lambda = 1 (no

transformation) should be preferred). In case of indigestible values of case and lambda

(in fktlist) this will be notified and an empty object will be returned.
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DETAILS

The function allows model selection among a class of nonlinear regression models. The

class of regression models can be defined using the parameter fktlist. Initial parameter

estimates can be obtained and included into fktlist using the function parinit. The

models to be analyzed can be selected from this list interactively. The function provides

the following criteria for model selection:

• Residual Sum of Squares,

• cross-validation criterion C (Prediction),

• full cross-validation criterion C-tilde (Prediction),

• Calibration-criterion CC and

• Parameter estimation criterion CG.

The function allows to chose between 6 variance models (see references) for both the

purpose of variance estimation and selection of an appropriate WLSE. Results for the

analyzed combinations of regression and variance models will be ordered by the value of

the selected criteria.

REFERENCES

O. Bunke, B. Droge and J. Polzehl (1995). Model selection, transformations and variance

estimation in nonlinear regression. Discussion paper No. 95-52, Sonderforschungsbereich

373, Humboldt-Universität, Berlin.

see also

parinit, selectmt, nlsobj, nlsobjlist, plot.nlsobjlist, print.nlsobjlist, plot.nlsobj,

print.nlsobj, confpar, predict.nlsobj, calibrate

EXAMPLES

# construct a list of models:

model1 <- list(fkt = (yr ~ p1 - p2 * exp( - p3 * xr^p4))[[3]], p=4,

inv = (xr ~ (log(p2/(p1 - yr))/p3)^(1/p4))[[3]],

name="Weibull (1.7)")

model15 <- list(fkt = (yr ~ p1 + p2 * (1 - exp( - p3 * xr))^p4)[[3]],

p=4, inv = (xr ~ - log(1 - ((yr - p1)/p2)^(1/p4))/p3)[[3]],

name="(1.44)")

fktl <- list(model1, ..., model15)

# generate the data of Example 1

x <- c( 9, 14, 21, 28, 42, 57, 63, 70, 79)

y <- c( 8.93, 10.80, 18.59, 22.33, 39.35, 56.11, 61.73, 64.62, 67.08)

example1 <- list( x = x, y = y, xname =

56



"Time after pasture", yname = "Yield")

# complete fktl by initial parameter estimates, use

# graphical display

fktlneu <- parinit(example1, fktl = fktl, graph = T)

# analyze the specified class of regression and variance models

example1.vresults <- selectmv(example1, fktlneu, graph=T)

# display the results

plot(example1.vresults)

# print the values of the criteria for all models and

# variance models considered

print(example1.vresults)

# print detailed results for the best model with respect

# to the selected criteria

print(example1.vresults[[1]])

sensitive

DESCRIPTION

Compute bootstrap estimates for a nonlinear regression model

USAGE

sensitive(model, nb=200, vmodels=NULL, useymean=F, graph=F, display=NULL)

REQUIRED ARGUMENTS

model object of class ”nlsobj” (component of the list returned by function selectmv or

selectmt) containing a description of a regression model (with variance model or

transformation) and corresponding estimates.

OPTIONAL ARGUMENTS

nb number of bootstrap samples

vmodels integer vector, restricts the choice of a variance model used to generate the

bootstrap errors εbij to the models specified in this parameter. If NULL; all six

variance models are analyzed.

useymean logical flag: if FALSE, fitted values from the reference model are used to

generate bootstrap samples; if TRUE, bootstrap samples are generated based on

the vector of means of the observed responses at the design points (instead of fitted

values from the reference model).

graph logical flag: if TRUE, the choice of variance models for the bootstrap resampling

is illustrated.
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display display to be used (”-display hostname:0.0” , be sure to allow access before).

VALUE

The object model is returned with the following components added (or updated):

tvartyp number of variance model used to generate bootstrap samples (selected by cross-

validation; in the transformed space in case of transformation with λ �= 1).

tvarpar parameters of variance model used to generate bootstrap samples (calculated in

the transformed space in case of transformation with λ �= 1).

trefvar homogeneous variance estimate (under transformation if λ �= 1).

tvcv vector of values obtained for cross-validation criterion for variance estimation (for

all variance models; calculated in the transformed space if λ �= 1). Inf values corre-

spond to variance models excluded from the analysis using the parameter vmodels.

bootstrap matrix of parameter estimates obtained from the bootstrap samples.

bsrefpar matrix of parameter estimates for the reference model m0 obtained from the

bootstrap samples. Computed in case of variance modelling. If transformation is

used the reference model m0 is assumed to coincide with the model under consid-

eration, i.e. bsrefpar would duplicate the information contained in bootstrap.

yboot matrix of bootstrap samples

fwboot matrix of fitted values obtained from the bootstrap samples.

alphastar shift parameter used in Box-Cox-transformation with λ∗

alphastarb vector of shift parameters used for bootstrap samples in Box-Cox-transformations

with λ∗

alphab vector of shift parameters used for bootstrap samples in Box-Cox-transformations

with λ

scaleb vector of scale parameters used for bootstrap samples in Box-Cox-transformations

(independent of lambda)

useymean logical flag: if FALSE, fitted values from the reference model were used to

generate bootstrap samples; if TRUE, bootstrap samples were generated based on

the vector of means of the observed responses at the design points (instead of fitted

values from the reference model).

DETAILS

The function performs the bootstrap sampling as described in Subsection 3.1. The set of

competitive variance models (compared by criterion (2.25)) can be restricted by use of

the parameter vmodels if the function is called directly rather than by functions calibrate,

confpar or predict.nlsobj.

If for a bootstrap sample numerical instabilities are recognized in the calculation of the

parameter estimates stochastic search will be performed in advance to the call of do nls.

Numerical problems are notified and should lead to a critical revision of the results.
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O. Bunke, B. Droge and J. Polzehl (1995). Model selection, transformations and variance

estimation in nonlinear regression. Discussion paper No. 95-52, Sonderforschungsbereich
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see also

selectmv, selectmt, nlsobj, dblbootstrap, nlsobjlist, plot.nlsobj, print.nlsobj, plot.nlsobjlist,

print.nlsobjlist, predict.nlsobj, calibrate, confpar
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