
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Heilbronner Str. 10, D-10711 Berlin - Wilmersdorf

Wolfram Koepf

E�cient Computation of

Orthogonal Polynomials

in Computer Algebra

Preprint SC 95–42 (December 1995)

E�cient Computation of

Orthogonal Polynomials

in Computer Algebra

Wolfram Koepf

koepf@zib-berlin.de

� Introduction

Orthogonal polynomials can be calculated by computation of determinants, by the use of
generating functions, in terms of Rodrigues formulas, by iterating recurrence equations, calcu-
lating the polynomial solutions of differential equations, through closed form representations
and by other means.
In computer algebra systems all these methods can be implemented. Depending on the appli-
cation one might need

1. one (or many) of these polynomials in any form or specifically in expanded form,

2. the exact rational value of one of these polynomials at a certain rational point,

3. or a decimal approximation of the value of one of these polynomials at a certain point.

In this article, we give an overview about the efficiency of the above methods in Maple,
Mathematica, and REDUCE. As a noncommercial package we include the MuPAD system.
MuPAD is freely distributed for non-commercial use within the scientific community.
Primarily we study the implementation of the Chebyshev polynomials of the first kind as an
example case.
First, we consider the builtin implementations of the Chebyshev polynomials in these systems.
Next we study the classical algorithms beginning with the slow ones, and leading to the efficient
ones. Finally, we finish with a new algorithm based on a divide and conquer approach which
has a remarkable complexity.
In particular, we will show that

• to obtain the expanded form of one of the Chebyshev polynomials an iterative use of its
power series representation is most efficient,

• for numerical purposes (both rationally exact, and decimal approximation) a divide and
conquer approach that is available for Chebyshev polynomials is much preferable. This
approach, however, is not efficient if the expanded form of the polynomial is needed.

We present all algorithms as short Maple programs. The other implementations of this article
may be obtained from the author.

1

� The Chebyshev Polynomials

The Chebyshev polynomials Tn(x) of the first kind are defined by

Tn(cos t) = cos(nt) , hence Tn(x) = cos(n arccos x) . (1)

They form a family of polynomials that are orthogonal with respect to the scalar product

〈f, g〉 :=
∫ 1

−1
f(x) g(x)

dx√
1− x2

with the weight function (1− x2)−1/2, and with the standardization T0 = 1 and

〈Tn, Tn〉 =
∫ 1

−1
T 2
n(x)

dx√
1− x2

= π (n ≥ 1) .

n Kbytes

10 0.04 kB
100 3.6 kB

1000 153 kB
2000 528 kB
3000 1364 kB

Table 1: The size of Tn(x)

Tn(x) form polynomials with integer coefficients whose size grows rapidly with increasing n.
The coefficient of xn equals 2n−1, for example. Hence the expanded polynomials need a lot of
storage space. Table 1 shows the byte sizes of Tn(x) in input form.
The Chebyshev polynomials have the nice property Tn(1) = 1. This can be used to check the
accuracy of the numerical computations. For further details about these (and other families
of orthogonal) polynomials we refer the reader to [2], §22, [6], [7] and [8].
All timings are given in CPU-seconds truncated to three digits, and were calculated on a SUN
Sparc 10 with 85 MByte memory under SunOS 4.1.3 with the versions Maple V.3, Mathematica
2.2, REDUCE 3.61 and MuPAD 1.2.2. We issued the statements in separate sessions to avoid
the influence of memory configurations, in particular the use of remember tables. The × sign
in our tables indicates that there was no response within one hour CPU-time, or memory
overflow occurred. Numerical calculations were done with 16 significant digits if not stated
otherwise.
The Chebyshev and other classical families of orthogonal polynomials are accessible in Maple
(orthopoly[T]), Mathematica (ChebyshevT), REDUCE (load specfn; ChebyshevT) and
MuPAD (orthpoly::chebyshev1).
Table 2 shows the calculation times of Tn(x) by the builtin procedures. All four systems give
the ouput as expanded polynomials. Tables 3–4 show the calculation times of Tn(1) in exact
and approximate modes, respectively. Note that REDUCE with on rounded did not calculate
accurate approximations for large n, indicated in Table 4 by the symbol �. This bug is fixed
by now.2

1All REDUCE calculations had been done with lisp supersparc(); to have access to the Super-Sparc
hardware arithmetic.

2A corresponding patch is available via anonymous ftp from ftp.zib-berlin.de in the directory
pub/redlib/patches.

2

n Maple Mathematica REDUCE MuPAD

10 0.00 0.01 0.05 0.14
100 0.20 0.11 0.83 4.10
500 28.50 3.43� 41.3 116.00

1000 347.00 16.10� 288.00 506.00
5000 � 647.00� � �

Table 2: Builtin Chebyshev Polynomials: Calculation of Tn(x)

Note that the invocation of the calculation Tn(x) has quite different consequences in the four
systems:

Maple calculates all consecutive Chebyshev polynomials Tk(x) (k = 0, . . . , n) in ex-
panded form if Tn(x0) is issued for some x0, and puts these in memory by the remember
function. Hence the computation times are almost equal in any of the three different
situations.

This procedure has the obvious advantage that all computed functions are immediately
available afterwards. On the other hand, as a disadvantage the memory is full as soon as
one has issued a single computation with high enough n ∈ N even if only this particular
result is needed.

Mathematica calculates a particular Tn(x) if issued, and uses no remember tables.
For numerical computations, both exact and approximate, Mathematica uses a different
algorithm which is much faster.

REDUCE calculates a single Tn(x) if issued, and uses no remember tables.

MuPAD also calculates a single Tn(x) if issued, and uses no remember tables.

n Maple Mathematica REDUCE MuPAD

10 0.02 0.00 0.05 0.12
100 0.28 0.00 0.40 4.34
500 27.90 0.00 5.28 121.00

1000 353.00 0.01 24.90 514.00
5000 � 0.08 � �

10� � 0.13 � �

10� � 1.28 � �

10� � 12.83 � �

10� � 127.00 � �

Table 3: Builtin Chebyshev Polynomials: Calculation of Tn(1)

As a consequence of these considerations, Mathematica seems to have the most efficient builtin
implementation of the Chebyshev (and other families of orthogonal) polynomials. On the other
hand, as we will see, appropriate implementations enable Maple, REDUCE and MuPAD to
calculate Tn(x) for large n much faster than Mathematica.

3with the setting $RecursionLimit=Infinity. If the user doesn’t redefine $RecursionLimit, for n ≥ 494
no results are obtained.

3

Maple uses the three-term recurrence equation to obtain the polynomial list. Table 8 of § 6

n Maple Mathematica REDUCE MuPAD

10 0.00 0.01 0.05 0.07
100 0.31 0.03 � 4.71
500 28.70 0.11 � 125.00

1000 347.00 0.21 � 510.00
5000 � 1.03 � �

10� � 2.05 � �

10� � 21.00� � �

10� � 210.00� � �

Table 4: Builtin Chebyshev Polynomials: Approximation of Tn(1)

gives a fair comparison for this approach between the four systems, which shows that for large
n ∈ N Mathematica is faster for this approach and can compute a larger list than Maple.
However, since the memory and storage requirements are so immense, we think that an efficient
computation of a single Tn(x) is the most important task. Hence we are mainly interested
to compare the efficiency of the computation of Tn(x) for large n (as large as the computer
memory of today’s computers allow), and we do not deal with the computation of lists of all
Tk(x) (k = 0, . . . , n), but mainly with the computation of a single Tn(x).
In the following sections, we will consider the efficiency of different approaches to calculate
Tn(x).

� Determinants

The Chebyshev polynomials have the representation

Tn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 0 · · · 0
−1 2x −1 0 · · · 0
0 −1 2x −1 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · −1 2x −1
0 0 · · · 0 −1 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
as the determinant of an n× n (almost) band-matrix. In Maple, this is given as

with(linalg):

ChebyshevT:=proc(n,x)

local f,A;

A:=band([-1,2*x,-1],n);

A[1,1]:=x;

RETURN(det(A));

end:

The codes in Mathematica, REDUCE and MuPAD can be defined analogously.

4Mathematica computes the wrong result 0.0.

4

All classical families of orthogonal polynomials have similar representations. Expanding the
above determinant yields the well-known three-term recurrence equation for Tn(x) which we
consider in § 6.
To calculate Tn(x) via the above determinant is inherently ineffective since the computation
of determinants of large matrices is very expensive. Obviously the special structure of the
Chebyshev polynomials is not sufficiently utilized by this approach.

n Maple Mathematica REDUCE� MuPAD

10 0.45 0.16 0.03 21.00�

50 230.00 � 3.07 �

100 � � 47.00 �

150 � � 208.00 �

200 � � 646.00 �

Table 5: Determinant Computation of Tn(x)

For the sake of completeness, we give the timings for the determinant approach in Table 5.
Determinant computations are very slow in Maple, Mathematica, and MuPAD, whereas RE-
DUCE calculates T1000(1) in 78 seconds by this approach.7 Tn(x) cannot be computed for
generic x with any of the four systems for n ≥ 300.

� Generating Functions

The function

F (z) =
1

2

(
1 − z2

1 − 2xz + z2
+ 1

)
=

∞∑
n=0

Tn(x) z
n

is the generating function of the Chebyshev polynomials. By Taylor’s theorem, one can there-
fore compute Tn(x) as

Tn(x) =
F (n)(0)

n!
.

In Maple this is given as

ChebyshevT:=proc(n,x)

local F,z,Dn;

F:=(1-x*z)/(1-2*x*z+z^2);

Dn:=diff(F,z$n);

RETURN(subs(z=0,Dn)/n!)

end:

Note that other than the determinant approach the generating functions approach in principle
is capable to calculate the polynomial system iteratively.
Table 6 gives the timings for the calculation of a single Tn(x) with this approach. REDUCE
brings each iterated derivative of F (z) to a rational normal representation which is quite
expensive. Maple and Mathematica do not use such normal representations, hence they are
much faster. On the other hand, Maple fails very soon because of memory overflow: the

5with on cramer;.
6MuPAD’s output is not in normalized polynomial form. This normalization can be done by normal, but needs

extra time.
7this time with off cramer;.

5

iterated derivatives are too large objects. This is even worse if one defines
F:=((1-z^2)/(1-2*x*z+z^2)+1)/2,
and hence in this case the timings are worse, too.
The generating functions approach is little better than the determinant approach in computer
algebra systems without rational normal representation, but still is quite inefficient.

n Maple Mathematica REDUCE� MuPAD�

10 0.03 0.38 0.22 1.88
50 0.93 9.70 111.00 �

100 4.38 38.30 � �

200 25.20 160.00 � �

300 � 371.00 � �

400 � 682.00 � �

500 � 1101.00 � �

Table 6: Generating Function Computation of Tn(x)

� Rodrigues Formulas

The Chebyshev polynomials have the Rodrigues representation

Tn(x) =
(−1)n 2n n!

(2n)!

√
1 − x2

dn

dxn
(1 − x2)n−1/2 .

In Maple this is given as

ChebyshevT:=proc(n,x)

normal((-2)^n*n!/(2*n)!*sqrt(1-x^2)*diff((1-x^2)^(n-1/2),x$n))

end:

All classical families of orthogonal polynomials have a similar Rodrigues representation. The
complexity is comparable to the one of the last section.
The iterated derivatives of (1−x2)n−1/2, however, are simpler functions than the derivatives of
F (z) so that the timings are better. In particular, this time the rational normal representation
in REDUCE is useful since it keeps the memory size small, see Table 7.

n Maple Mathematica REDUCE MuPAD

10 0.05 0.15 0.05 2.12
100 3.70 13.60 3.85 24.90
200 23.98 60.10 19.60 127.00
300 85.60 138.00 49.80 409.00
400 � 254.00 103.00 838.00
500 � 431.00 190.00 �

1000 � 2000.00 1375.00�	 �

Table 7: Rodrigues Formula Computation of Tn(x)

8with off exp;.
9MuPAD’s output is not in normalized polynomial form. This normalization can be done by normal, but needs

extra time.
10with set heap size 3000000;.

6

� Recurrence Equations

Now, we start to discuss the methods that are more efficient. The first such method is the use
of the recurrence equation

Tn(x) = 2xTn−1(x) − Tn−2(x) (2)

with the initial functions
T0(x) = 1 and T1(x) = x .

Note that via (1) this recurrence equation is equivalent to the trigonometric identity

cos(nt) = 2 cos t cos((n− 1)t) − cos((n− 2)t) .

n Maple Mathematica REDUCE MuPAD

10 0.01 0.05 0.02 0.05
100 0.31 2.31 1.17 3.55
500 29.10 53.60 28.20�� 90.30

1000 344.00 173.00 � �

2000 � 1246.00 � �

Table 8: Recursive Computation of Tn(x)

With remember, we can use (2) recursively by the Maple procedure

ChebyshevT:=proc(n,x)

option remember;

if n=0 then 1 elif n=1 then x

else expand(2*x*ChebyshevT(n-1,x)-ChebyshevT(n-2,x))

fi

end:

The remember option gives recursive programs linear complexity since all calculations are done
exactly once.
Table 8 shows the timings for this approach. REDUCE generates variable stack overflow.12

The timings for Maple are comparable to those in Table 2, since this is Maple’s builtin strat-
egy. As already mentioned, the remember feature has the disadvantage that all previously
calculated Tk(x) have to be stored. Therefore the memory requirements are immense.
One might have the idea to use the recurrence equation without expanding intermediate
results. Indeed, this decreases the cost by the cost of the expansion, but it generates so huge
expressions that it turns out not to be a good idea at all, and the resulting expression is
difficult to handle even for small n. Already T20 needs more than 80kB of storage space with
this approach, compare Table 1. Their complicated nested structure makes any evaluation of
these objects very time consuming.
The following iterative approach

ChebyshevT:=proc(n,x)

local T,i;

if n=0 then 1 elif n=1 then x else

T[-2]:=1; T[-1]:=x;

11with set bndstk size(100000); lisp setq(simplimit!∗,100000);.
12A forthcoming version of REDUCE will include a remember option like the other systems.

7

for i from 2 to n do

T[0]:=expand(2*x*T[-1]-T[-2]);

T[-2]:=T[-1]; T[-1]:=T[0];

od;

fi;

RETURN(T[0]);

end:

remembers only the last two polynomials and does therefore not generate memory overflow.
Hence the timings are much better.

n Maple Mathematica REDUCE MuPAD

10 0.01 0.05 0.00 0.07
100 0.26 2.16 0.44 4.74

1000 189.00 216.00 39.30 544.00
2000 1246.00 1087.00 207.00 2814.00
3000 � 2442.00 554.00 �

4000 � � 1177.00 �

Table 9: Iterative Computation of Tn(x)

This is until now by far the most successful approach. All the systems do rather well, with
REDUCE being most successful. On the other hand, with none of the systems one can
calculate T10000(x) using this approach. In the following sections, we consider methods with
which this is possible.

� Di�erential Equations

The Chebyshev polynomial Tn(x) is the unique polynomial solution of the differential equation

(1 − x2) f ′′(x) − x f ′(x) + n2 f(x) = 0 (3)

with the initial value

Tn(0) =

⎧⎨
⎩

0 if n is odd

(−1)n/2 if n is even
.

In [1] a very efficient algorithm to calculate the polynomial and rational solutions of certain
operator equations was published, in particular for linear ordinary differential equations with
polynomial coefficients like (3).
Using the Maple implementation ratlode of this algorithm, written by M. Bronstein, and
available in the Maple share library [3], one gets the timings of Table 10.

n Maple

10 0.50
100 0.60
1000 7.36

10000 612.00

Table 10: Differential Equations Computation of Tn(x)

8

The results are again given as expanded polynomials.13

Note that this algorithm is the first one to break the complexity barrier in calculating Tn(x)
for n ≥ 10000. Moreover T1000(x) is calculated in no more than a few seconds!
In the next section, we will see that with a more direct approach even better timings are
possible.

	 Series Representations

Since Tn(x) for fixed n ∈ N is a polynomial, any closed form series representation might be
helpful to calculate it. Several closed form series representations for Tn(x) are known of which
we only utilize the Taylor expansion at x = 0

Tn(x) =
n

2

[n/2]∑
k=0

(−1)k
(n− k − 1)!

k! (n− 2 k)!
(2x)n−2k . (4)

This representation has the advantage over others that is contains only [n/2] summands rather
than n. It corresponds exactly to the expanded polynomial which was the output of the
preceding algorithms anyway.
Representation (4) can be calculated by the Maple procedure14

ChebyshevT:=proc(n,x)

local k,result;

if n=0 then RETURN(1) fi;

if n=1 then RETURN(x) fi;

result:=0;

for k from 0 to n/2 do

result:=result+n/2*(-1)^k*(n-k-1)!/k!/(n-2*k)!*(2*x)^(n-2*k)

od;

RETURN(result);

end:

This implementation yields the timings of Table 11.

n Maple Mathematica REDUCE MuPAD

10 0.03 0.01 0.03 0.08
100 0.28 0.33 0.37 0.38

1000 703.00 36.60 40.00 71.80
2000 � 335.00 251.00 626.00
3000 � 1348.00 789.00 2340.00
4000 � 3406.00 1791.00 �

Table 11: Series Computation of Tn(x)

The timings are worse than the timings of the last section. This behaviour is due to the fact
that the calculation of the coefficients

ak =
n

2

(n− k − 1)!

k! (n− 2 k)!
(−1)k (2x)n−2k

13The algorithm expands in powers of x− a for a certain a. It turns out that in the current situation a = 0
is chosen.

14If one uses the sum command for large n, then Maple tries to find a closed form for the sum, without
success, hence we use a for loop. Maple’s timings are much better with the add procedure of Maple V.4.

9

of Tn(x) =
[n/2]∑
k=0

ak is rather expensive: For any k = 0, . . . , [n/2] large factorials have to be

calculated in both numerator and denominator, and finally the fraction has to be converted to
lowest terms. Since the coefficients ak are integers, this procedure has a large overhead which
can be omitted if one calculates ak iteratively. Since the term ratio is given by

ak
ak−1

= −(n− 2 k + 2) (n− 2 k + 1)

4 k x2 (n− k)
, (5)

the series computation (4) can be done alternatively by the Maple procedure

ChebyshevT:=proc(n,x)

local k,tmp,result;

if n=0 then RETURN(1) fi;

if n=1 then RETURN(x) fi;

tmp:=(2*x)^n/2;

result:=tmp;

for k from 1 to n/2 do

tmp:=-tmp/4/k*(n-2*k+2)*(n-2*k+1)/x^2/(n-k);

result:=result+tmp

od;

RETURN(result);

end:

Note that this approach can always be used if polynomials are given as hypergeometric series,
which applies to all classical orthogonal polynomials.
It turns out that this implementation by far is the most efficient way to calculate the expanded
polynomial Tn(x) for large n ∈ N. Maple, REDUCE as well as MuPAD are very efficient in
doing so, and leave Mathematica far behind them.
On the other hand, the timings of Tables 2 and 12 suggest that this is exactly the way how
Mathematica’s builtin implementation calculates the Chebyshev polynomials.15

n Maple Mathematica REDUCE MuPAD

10 0.00 0.01 0.03 0.02
100 0.05 0.25 0.18 0.13

1000 3.00 16.50 3.38 3.91
10000 304.00 3027.00 203.00 500.00
20000 1761.00 � 816.00 2282.00
25000 2851.00 � 1278.00�� �

Table 12: Iterative Series Computation of Tn(x)

The given iterative algorithm gives a clue why the algorithm of Abramov, Bronstein and
Petkovšek [1] presented in the last section is so fast: Their algorithm is based on the iterative
computation of series representations, and it calculates Tn(x) similarly as considered here.

 Divide and Conquer Approach

In this section, we leave the road of trying to find the polynomials in expanded form. Since
(4) forms an alternating series with huge integer coefficients, by cancellation it cannot be used

15Actually, Mathematica seems to calculate ak recursively rather than iteratively by means of (5) since
$RecursionLimit is involved.

10

for numerical purposes when using decimal representations of fixed precision, and it is rather
inefficient when using exact integer arithmetic.
We will find a way to calculate Tn(x) very efficiently in a non-expanded form which furthermore
yields also an efficient representation for numerical purposes. Therefore we utilize the formula
(see e.g. [2], (22.7.24))

2Tn(x)Tm(x) = Tn+m(x) + Tn−m(x) (n > m) . (6)

Using (6) for m = n and m = n− 1, we get the Maple implementation

ChebyshevT:=proc(n,x)

option remember;

if n=0 then 1

elif n=1 then x

elif type(n,even) then 2*ChebyshevT(n/2,x)^2-1

else 2*ChebyshevT((n-1)/2,x)*ChebyshevT((n+1)/2,x)-x

fi

end:

This is a typical divide and conquer approach since the problem of size n is carried out by the
computation of (at most) 2 subproblems of size n/2. With this approach it is necessary to
use the remember feature since otherwise intermediate computations have to be carried out
several times, resulting in exponential complexity. On the other hand for n = 1015, e.g., only
50 iterations are necessary.
Table 13 shows the timings for this approach.

n Maple Mathematica REDUCE�� MuPAD

1000 0.00 0.05 21.40 0.04
10� 0.03 0.10 � 0.07
10� 0.03 0.16 � 0.11
10�
 0.06 0.21 � 0.15
10�� 0.05 0.25 � 0.20

Table 13: Divide and Conquer Computation of Tn(x)

The efficiency of the method is due to the fact that it yields very small representations of
Tn(x) for large n. For T1000(x), we have for example

T1000(x) = 2
(
2
(
2
(
2
(
2
(
2(

2
(
2 (2x (2x2 − 1) − x)

(
2 (2x2 − 1)2 − 1

)
− x

)
y − x

)
(2 y2 − 1) − x

)2 − 1
) (

2
(
2(

2
(
2 (2x (2x2 − 1) − x)

(
2 (2x2 − 1)2 − 1

)
− x

)
y − x

)
(2 y2 − 1) − x

) (
2 (2 y2 − 1)2 − 1

)
− x

)
− x

)2 − 1
)2 − 1

)2 − 1

where y is an abbreviation for

y = 2
(
2 (2x2 − 1)2 − 1

)2 − 1 .

17with off exp;.

11

This obviously is a very compact way to write T1000(x), compare with Table 1. Note that
expansion of these expressions cannot be done with similar efficiency as the direct approach
that we considered in the preceding section.
REDUCE’s internal representation makes many evaluations of the expressions computed nec-
essary, hence the timings are bad.
Note that the given representations furthermore enable the fast rationally exact calculation
of Tn(x0) for x0 ∈ Q, and not too large n ∈ N, compare Table 16, e.g.18

T100

(
1

4

)
=

2512136227142750476878317151377

2535301200456458802993406410752
.

Tables 14–15 give the timings of the exact and approximative calculations of Tn(1) with the
current approach.
These show that this is a very efficient way to calculate the Chebyshev polynomials accurately,
in particular with rationally exact results. On the other hand, the complexity of the calculation
depends heavily on the complexity of the output. Since Tn(1) = 1 was very simple, the
calculation was done almost instantly. If we calculate Tn(x0) for rational x0 �= 1, then the
result typically is a rational number with huge numerators and denominators. Hence the
timings are much slower in these cases, the reason of which is the complexity of the result and
not of the algorithm, though.

n Maple Mathematica REDUCE MuPAD

1000 0.03 0.05 0.06 0.04
10� 0.03 0.10 0.20 0.08
10� 0.03 0.18 0.40 0.11
10�
 0.05 0.21 0.71 0.17
10�� 0.06 0.25 0.96 0.19

Table 14: Divide and Conquer Computation of Tn(1)

n Maple Mathematica�� REDUCE MuPAD

1000 0.03 0.06 0.08 0.03
10� 0.01 0.16 0.27 0.08
10� 0.05 0.20 0.56 0.10
10�
 0.05 0.28 1.12 0.17
10�� 0.06 0.31 1.61 0.20

Table 15: Divide and Conquer Approximation of Tn(1)

In Table 16, we present the timings for the calculation of Tn(1/4), and in Table 17, the number
of digits of both numerators and denominators of the corresponding results are given.
Furthermore, the method gives a very fast algorithm to compute high precision approximations
for high n, e.g.20

T1015(0.25) = 0.7208079782290876405505238094892534183987994968000... .

Note that the algorithm is much faster than Mathematica’s builtin approach, see Tables 3–4.

18The numerators and denominators of T1000(x0) are too large to be presented here, compare Table 17.
19Mathematica returns the wrong result 0.0 for n ≥ 109.
20Try to calculate this with any other method!

12

n Maple Mathematica REDUCE MuPAD

1000 0.03 0.05 0.27 0.07
10� 0.48 0.13 10.10 1.85
10� 39.70 2.08 � 179.00
10� � 76.10 � �

Table 16: Divide and Conquer Computation of Tn(1/4)

n numer. digits denom. digits

1000 300 301
10� 3010 3010
10� 30103 30103
10� 301029 301030

Table 17: Numerator and Denominator Size of Tn(1/4)

How accurate are these computations? Table 18 gives the number of correct digits of the
calculations of Tn(0.25), done with a precision of 16 digits, and the system specific approximate
modes (evalf in Maple, N in Mathematica, on rounded in REDUCE, and float in MuPAD).

n Maple Mathematica REDUCE MuPAD

1000 14 15 18 18
10� 11 11 15 15
10� 7 8 11 11
10�
 5 6 9 10
10�� 1 3 6 5

Table 18: Accuracy of Approximations of Tn(0.25)

The table shows that the presented divide and conquer algorithm is rather well-conditioned
(see e.g. [4]), hence the algorithm can be applied for quite large n ∈ N, up to n = 106, say,
without any further precautions.
Unfortunately, such a divide and conquer approach is not available for all classical orthogonal
polynomials. The Chebyshev polynomials of the second type Un(x), however, can be calculated
in a similar way by the identities (see e.g. [2], (22.6.26), (22.6.28))

2Tn(x)Um−1(x) = Un+m−1(x) + Um−n−1(x) (m > n)

for m = n+ 1 and
2Tn(x)Un−1(x) = U2n−1(x) .

These give the Maple implementation

ChebyshevU:=proc(n,x)

option remember;

if n=0 then 1

elif n=1 then 2*x

elif type(n,even) then 2*ChebyshevT(n/2,x)*ChebyshevU(n/2,x)-1

else 2*ChebyshevU((n-1)/2,x)*ChebyshevT((n+1)/2,x)

fi

end:

13

�� Conclusion

Our article presents algorithms for the computation of orthogonal polynomials, especially
Chebyshev polynomials, with which one can break the complexity barrier, and receive results
that are not available with previously implemented algorithms.
Our considerations show:

1. The efficieny of a specific method does not only depend on the underlying algorithm,
but also heavily on the specifics of the computer algebra system used. Here in particular
the internal representation plays an important role, but also the efficiency of utilized
subalgorithms (determinant computation in Table 5, computation of factorials of large
integers in Table 11, . . .) is an issue.

2. Efficient symbolic and efficient numeric computation mostly require different algorithms.

3. Remember options can enhance efficiency in specific situations, but often iterative pro-
grams are more adequate and faster since memory should be used carefully in computer
algebra to avoid overflow.

4. For the computation of numerical values of the Chebyshev polynomials, both rationally
exact, and decimal approximation, the presented divide and conquer algorithm is most
efficient. The same applies to the computation of Tn(x) and Un(x) if the expanded form
is not required.

5. If the expanded form of an orthogonal polynomial is needed, then the iterative use of the
closed form series representation is most efficient. This applies also to the computation
of orthogonal polynomials for which no divide and conquer approach is available.

Acknowledgments

I would like to thank Peter Deuflhard who initiated my studies on the given topic for his
encouragement and support, and Winfried Neun for his help with REDUCE.

14

References

[1] Abramow, S. A., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear oper-
ator equations. Proc. of ISSAC 95, ACM Press, New York, 1995, 290–296.

[2] Abramowitz, M., Stegun, I. A. (1964). Handbook of Mathematical Functions. Dover
Publ., New York.

[3] Bronstein, M.: ratlode. Maple share library, 1995.

[4] Deuflhard, P., Homann, A.: Numerical Analysis. A First Course in Scientific Computa-
tion. Walter de Gruyter, Berlin–New York, 1995.

[5] Melenk, H.: The complexity barrier in REDUCE – a case study. Konrad-Zuse-Zentrum
für Informationstechnik Berlin (ZIB), Technical Report TR 94–06, 1994.

[6] Rivlin, Th. J.: The Chebyshev Polynomials. Pure & Applied Mathematics. John Wiley
& Sons, New York–London–Sydney–Toronto, 1974.

[7] Szegö, G.: Orthogonal Polynomials. Amer. Math. Soc. Coll. Publ. Vol. 23, New York
City, 1939.

[8] Tricomi, F. G.: Vorlesungen über Orthogonalreihen. Grundlehren der Mathematischen
Wissenschaften 76, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955.

15

