
Routing through virtual paths in layered
telecommunication networks

Telenor

Tittel FoU-Notat
N78/95

Routing through virtual paths in layered
telecommunication networks

ISBN

ISSN 0803-5652

Project no TFN9506A

Program

Security gr. Open

No. of pages 25

Date 95.12.07

Author(s)

Geir Dahl, Alexander Martin, Mechthild Stoer

Subject headings

Logiske veier, ruting, optimering

Abstract

We study a network configuration problem in telecommunications where one wants to
set up logical paths in a capacitated network to accommodate given point-to-point traffic
demand. The problem is formulated as an integer linear programming model where 0-1
variables represent different paths. An associated integral polytope is studied and
different classes of facets are described. These results are used in a cutting plane
algorithm. Computational results for some realistic problems are reported.

Title (English)

Routing through virtual paths in layered telecommunication networks

©Telenor AS 1995

All rights reserved. No part of this publication reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without permission in writing from the
publisher.

Routing through virtual paths in layered
telecommunication networks

GeirDahl 2

Alexander Martin 3

Mechthild Stoer 4

Abstract

We study a network configuration problem in telecommunications
where one wants to set up paths in a capacitated network to accommo
date given point-to-point traffic demand. The problem is formulated
as an integer linear programming model where 0-1 variables represent
different paths. An associated integral polytope is studied and differ
ent classes of facets are described. These results are used in a cutting
plane algorithm. Computational results for some realistic problems
are reported.

1 Introduction

A major trend in telecommunications is increased flexibility in terms of net
work configuration and resource allocation. In particular communication
paths in networks may be set up on a temporary basis and controlled by
software in order to meet changing demands due to, e.g., data communica
tions or video applications. Such paths (often called virtual paths) have the
attractive feature of low processing time in the intermediate nodes. An im
portant problem area concerns the management of these capacitated paths,
and in this paper we are concerned with such a problem in a two-layered
network.

1 submitted to Operations Research.
2University of Oslo, P.O.Box 1080, Blindem, N-0316 Oslo, Norway. Email:

geird@ifi.uio.no.
3Konrad-Zuse-Zentrum für Informationstechnik, Heilbrunner Str. 10, D-10711 Berlin,

Germany. Email: martin@zib-berlin.de.
4Telenor Research and Development, P.O.Box 83, N-2007 Kjeller, Norway. Email:

stoer@nta.no.

1

mailto:geird@ifi.uio.no
mailto:martin@zib-berlin.de
mailto:stoer@nta.no

The model we study is as follows: One has given a set of point-to-point
traffic demands that need to be routed in a so-called pipe-network. Each edge
in this network is called an express pipe. It has a fixed, uniform capacity
measured in the same units as the traffic demands. Each express pipe corre
sponds to a path in an underlying physical transmission network. When an
express pipe is established, it uses resources in the transmission network, say,
a fiber pair in a fiber cable. For each edge in the transmission network, one
has therefore an upper bound on the number of pipes that can go through it.
The problem is now to select some of the given express pipes such that the
traffic can be routed upon them, taking into account express pipe capacity
and physical link capacity. Costs are associated with the establishment of ex
press pipes and with the routing. When we use the term "routing", we don't
mean dynamic routing at call setup time. We focus rather on the setup of
the express pipes which accommodate forecasted traffic and are not changed
every few minutes. We also assume that the set of pipes to choose from, is
given beforehand. Pipes are not generated dynamically in the course of the
algorithm.

One motivation for studying the routing and path-packing model comes
from routing and grouping in the PDH or SDH bandwidth hierarchy. There
traffic given in 2 Mbit/sec is switched onto systems of different fixed band-
widths. A model involving several levels of networks and an LP-based solu
tion method is described in [9].

Another application may be in ATM-networks. There traffic corresponds
to virtual circuits, which can be packed into virtual paths (our express pipes).
Our model should, however, be refined to capture this case. Especially do
virtual paths take many bandwidths (not just one as in our model) in the
physical network, the virtual paths don't "eat" capacity of the physical net
work in the formf of fiber but in the form of bandwidth, and our cost function
does not exactly model the gains (less call control in intermediate nodes)
versus the disadvantages (splitting of bandwidth) of setting up virtual paths.

[14] and [15] describe integer programming algorithms for routing (un-
splittable) demands in a capacitated network such as to maximize revenue
and route as many demands as possible. This is the bandwidth packing
problem. Our model is distinguished from theirs in that it involves the inter
mediate pipe layer, and the demand routing is modeled with flow variables
instead of path variables.

This paper is organized as follows. In Section 2 the integer linear pro-

2

gramming model for the mentioned problem is presented. The body of this
work is a polyhedral study which is found in Section 3. Various classes of
facet defining inequalities are introduced. These inequalities are used to find
stronger relaxations of the integer program, and in Section 4 we describe a
cutting plane algorithm using such relaxations. Separation heuristics and pri
mal heuristics are also discussed and computational results for some realistic
problems are reported.

We use fairly standard notation from graph theory and polyhedral theory,
see [4] and [18], respectively. However, a few notions need to be explained.
R w denotes the space of real vectors indexed by M (where M is some finite
set), and for x € R and S C M we let x(S) denote]C'esxi- By x € R
we denote the incidence vector of 5, and 1 is a suitable dimensioned vector
with l 's. Let G = {V,E) be an undirected graph without loops. The cut
8Q(W) induced by a subset W of V in the graph G is the set of edges with
one endnode in W and the other outside W. By G[VK] = (W,E[W]) we
denote the graph induced by node set W. For two nodes u and v, a uv-
path P is a sequence of consecutive nodes and edges connecting u and v
without repeating any nodes. A graph G is said to be 2-edge (or 2-node)
connected with respect to some given node set R, if between any two nodes
u,u € R there exist at least two edge- (or node-) disjoint uu-paths. When
aTx < a is a valid inequality for a polyhedron P we call each point x0 6 P
with aTXo = a a root (of the inequality aTx < a).

2 Mathematical model

In this section we give a mathematical formulation of the problem, describe
it as an integer linear programming model and introduce an associated poly-
tope corresponding to the feasible solutions. Some basic properties of these
polytopes are discussed.

The physical network of interest is modeled as an undirected graph N =
(V, L) with node set V corresponding to switching nodes and edge set I E L
corresponding to transmission lines (fiber cables). We call TV the physical
graph and its edges physical edges (links). The traffic demands are mod
eled by the demand graph D = (V,K) where each demand edge [uk,v]] € K
represents a traffic demand between the endnodes uk and vk of size dk. (TVP-

\ J XT

ically, there are several isolated nodes in the demand graph). The final in-

3

gredience of our model is the pipe graph 6 = (V, E) where each pipe (edge)
e = [u,v] € E corresponds to a uu-path in the physical graph N. A pipe
may then represent a transmission path in the telecommunication network
(possibly set up up for a limited time period) on which different traffic may
be routed. Note that G may contain many parallel edges. One may view the
whole network architecture as two-level hierarchical. Sometimes more than
two levels are of interest, but we do not treat this here.

The model also incorporates capacities in the following way. Each demand
should be routed in the pipe graph, i.e., each demand k = [u,v] uses some
uv-path ei,..., et of pipe edges in G. We assume that the capacity of each
pipe e G E is B > 0 meaning that the total demand that may be routed
on each pipe may not exceed B. Furthermore, the number of selected pipes
(in a feasible solution) containing a physical link / € L must not exceed the
capacity c; (we assume throughout that Q > 1). This may, e.g., correspond
to the situation where each pipe is allocated to an individual fiber on the
fiber cable / € L. Thus we have capacity constraints in both levels of the
network architecture, both for "embedding" demands (connections) in the
pipe graph, and for embedding pipes in the physical network.

The problem of interest is to select pipes that are to be used and to
determine on which path of the selected pipe set each of the demands should
be routed. The cost function is the sum of the costs ve for selecting a pipe
e and the costs w* for routing a demand k through pipe e. This problem of
finding a minimum cost pipe selection and routing is called the pipe selection
and routing problem PIPE.

We model mathematically the PIPE problem as the following integer
linear program

m m J2eeE ItVe + LtkeK iJeeE we Xe

subject to

(i) xk{8a{W)) > 1 for all W C V with u G W, v £ W,
k€ ;] (1)

(") HkeK ^kxe — eVe ^OT a^ e € -̂ >

("i) Ee:/€eJ/e < Cl .for all / € I ;

(iv) 0< x* < 1,0 < j/e < 1 for all k € K, e € E;

(v) X,, ye are integer for all k e K, e € E.

4

The 0-1 variable ye indicated whether pipe e € E is selected, and the variable
xk indicates if demand k E K uses ((s routed on) pipe e € E. Constraints (()
assures that xk is the incidence vector of a pipe set containing a u v -path
for each [u*,^] G K. This is due to Menger's connectivity theorem (see [12]
or [2]). Constraints (ii) and (iii) reflect the capacity constraints in the pipe
graph and the physical graph, respectively.
Remark. We shall assume throughout that the demand set K is partitioned
into two subsets K\ and K2 such that d = 1 for k € K\ and d = B for
k € K-i. (When B = 1, we let K\ =0 and K-i = K.) This is of interest in the
applications we consider. Furthermore, in our implementation and numerical
experiments we have restricted the attention to the parameter choice 7« = 7
for all e € E and uk — dkue.

The PIPE problem (1) can be shown to be iVP-hard as it contains the
path packing problem (see [8]) as a special case. This problem is to decide
if a given graph contains edge-disjoint paths each connecting a given pair of
nodes. Thus, finding a theoretically efficient algorithm for PIPE is (probably)
impossible. However, experience from other related problems ([7], [11], [15])
indicate that cutting plane algorithms may perform very well on practical
problem instances. Our goal is to find strong relaxations for the integer
program and use these to develop a cutting plane algorithm for PIPE.

We introduce a family of integer polytopes associated with the model
in (1):

Ps := conv{ (x, y) € R E x R | x,y satisfies (1) (i)-(v) }, (2)

where S = (N, G, D, B, d, c) specifies the instance and c = (c; : / € L) and
d = (d : k € K) are the capacity and demand vector, respectively. The
PIPE problem may be viewed as the LP problem

min{/(x,j/) y (xsy) € Ps}, (3)

where f(x,y) is the linear objective function in (1). In order to solve (1), or
produce good lower bounds, one needs to find a "sufficiently" good approxi
mation to a linear system of inequalities with solution set Ps- The polytope
Ps has a complicated polyhedral structure, and. an analysis of some of its
properties is made in the next section.

5

3 Polyhedral properties

The goal of this section is to establish a number of properties of the polytope
Ps- We study the dimension of Ps and additional classes of inequalities that
define facets of this polytope.

The problem of deciding whether Ps is nonempty (i.e., finding a feasible
solution in (1)) is iVP-complete. This follows from the fact that the special
case of deciding the existence of edge-disjoint paths between specified termi
nals is iVP-complete, see [8]. However, a criterion for fulldimensionality may
be stated as follows.

Proposition 4 Ps is fulldimeniionll if the PIPE instance 5(e) = (N, G \
{e},DB B, d, c') is feasible for each e € E, where cj = a for all I £ e and
cj = c\ — 1 for rll I I €.

Proof. Assume that 5(e) has a feasible solution for each e € E. Also assume
that Ps is contained in the hyperplane defined by the linear equation

J2 aeye + J2] £ bk
eJ

k
e £ =. (5)

Let e € E. By assumption there is a feasible solution (x,y) in (1) with
ye = 0 and with capacity function c'. Define y' € R by y'j = yj for / ^ e
and y'e = 1. For each / € e we then have]Ce':/6e' y'e> ^ ci + + 1 °ii ' n d t̂
follows that (x,y') is feasible. Thus both (x,y) and (x,y)) satisfy (5) and
this implies that ae = 0. As e was arbitrary, we get a — 0. Furthermore,
let x' be obtained from x by setting (x')e = 1 for some k. Then both (x, y')
and (x',y;) are feasible in (1) and therefore satisfy (5). This leads to be = 0
for all k € K and e € E. Thus a = 0 and 6 = 0, which contradicts that
the inequality in (5) defines a hyperplane. Therefore Ps is fulldimensional as
claimed. 0

We remaxk that in the case when L = E, a necessary condition for Ps
to be fulldimensional is that 5(e) = (N, G \ {e}, D, B, d, d) is feasible for all
e € . .

All the inequalities in (1) define facets of Ps whenever the pipe graph
is "dense" enough. We do not go into these details, but concentrate in the
following on finding strengthened formulations. Several classes of new facet
defining inequalities are introduced.

6

Knapsack inequalities

Each inequality in (1) (ii) may be viewed as a knapsack inequality. In fact,
using the linear transformation Te(y) = z where ze = 1 — ye for each e € E
we get the knapsack inequality

Yl Xe + B e Xe + Bz' ^ B- (6)

Each valid inequality for the knapsack polytope defined by (6) is also valid
for Ps when setting ze = 1 — ye.

For a study of different properties of knapsack polytopes, see [13] and
the references cited there. Based on the knapsack inequality we obtain the
following class of cover inequalities that are valid for Ps for each pipe edge
e € E:

A combinatorial interpretation of such an inequality is that if more than one
demand is routed on e, then all these demands are Äi-demands. In certain
special situations a complete linear description of knapsack polytopes has
been found, see [19]. It follows from the results of [19] that a complete
linear description of the knapsack polytope defined by (6) is given by the
inequalities (6), (7) and simple bounds.

Note that if \Ki\ < 5, then the knapsack inequality (1) (ii) is dominated
by the sum of cover inequalities. Under certain known conditions the cover
inequalities define facets of the knapsack polytope (see [13] for a general
discussion). With suitable additional assumptions on the PIPE instance S,
the cover inequalities also define facets of P$.

Strengthened cut inequalities

Consider a cut SQ(W) in the pipe graph, where W and V \ W is nonempty.
Let K' be the demands in Kx C\ SD(W.. Then

y(f>G(W)) - 2_j x (^ G (W)) > [l if l / l?] (8)
k&K2

is a valid inequality. To see this we add the inequalities

• x (6G(W)) > 1 for all k € K'

7

• Bye — I^bgXj xe — BYlk£K2 xe — 0 for a^ e € ^G(M^)

and divide the result by B. We can round the coefficients of the left-hand side
of this new inequality by adding an appropriate amount of xk > 0, and round
the right-hand side. The resulting valid inequality is (8) which we call the
strengthened cut inequality. These inequalities are also nonredundant
under reasonable conditions. To avoid technicalities, we will show this for
highly-connected graphs G and N.

Lemma 9 The strengthened cut inequality (8) defines a facet of P$ if the
following conditions are satisfied.

(i) \K\//B is not an integer.

(ii) There are at least max {\d(S£>(w))/B"\ + 1 | w € {u,i>}} parallel uv-
pipes between any u,v € V, u ^ v.

(iii) L = E.

Proof. First, Ps is full-dimensional, because the conditions of Proposition
4 are satisfied. Consider a facet defining inequality

] £ aeJ/e + Yl H aeXe ^ > (10)

such that each root of (8) satisfies (10) with equality. We will show that the
coefficients of this inequality are as in the strengthened cut inequality.

For any set F C 6Q(W) of cardinality t := ("(1 jB)d(6i)(W))~\ there exists
a feasible root solution in which ye = 1 for e € F and ye = 0 for e € 8G(W)\F,
and in which all demands in 6D(W) use at most three pipes, and all other
demands use at most one pipe. This is due to assumptions (ii) and (iii).
Since there is at least one pipe in each shore of the cut not used by such
a solution, one can prove that ae and ae = 0 for all e € .EfW] and all &.
Because of condition (i) one can also find sufficiently many routings of small
demands to prove ae = 0 for e € Sa(W). Now compare a root solution using
F C 8Q(W) with a root solution using F—{e} + {/} for arbitrary edges e € F
and / 6 8G(W) \ F. The routings in F — {e} are supposed to be the same in
both solutions, and e is supposed to carry only demands of K' = K\C\8D(W).

Note that, because of condition (i), K' is not empty! The comparison of the

8

two solutions proves that ae = aj. This is true for all e , / € SQ(W). NOW

compare a root solution using F C 8G(W) with the root solution in which
an arbitrary edge e € SG{W) \ F is added to i71, then t/e and some x\ for
& € K2 is set to 1, and all other variables stay the same. This proves that
a\ = — ae. Since e, k, and F were arbiirary, (10) has the same coefficients as
the strengthened cut inequality 8, hence it defines a facet. D

Note that condition (i) is also necessary for (8) to define a facet.

Remark. The strengthened cut inequalities may be generalized in the spirit
of the "flow-cutset inequalities" introduced in [3]. Let F be a subset of
SG(W). In the validity proof above add the inequalities xk(6a(W)) as before,
but now add the knapsack inequalities only for e G F. The resulting flow-
cutset inequality is

y(F) + £ J x (ÖG(W) \F) — 2_, x {Fx > \\K \/B~\ •

Hypomatchable inequalities

We introduce and study a large class of inequalities called hypomatchable
inequalities.

Consider an instance <S of PIPE with B > 2. Choose an odd number
of nodes V = {t>i, t>2,..., vn} C V, and demands ki, A;2, . . . , kn in K\ (not
necessarily distinct) such that demand jfc,- is incident to u,-. Lastly, choose
a set F C E[V] with the property that if &,- = kj then [u,-, Vj] is not in F.
Denote by K' the set of chosen demands with only one endpoint in V, and
denote by K" the set of chosen demands with two endpoihts in V. Let F'
be the set F together with all edges [ui,v,] with it, = kj.

Consider the inequality

V{F)- £ xk(F) + Y^,xki(sG(vi))F')+Y: X ! xe>\n/2/ l111
k£Ki i = l k£K" «€£:

«connects u .t»*

which we call a hypomatchable inequality, because, as we shall see later, the
inequality has a good chance to be facet-defining when (V',F') defines a
hypomatchable graph.

Lemma 12 The hypomatchable inequality (11) is valid for P$.

9

Proof. Add the valid degree and cover inequalities

• x '(Sa(vi)) > 1 for i = 1 , . . . , n and

• Ve - Xe' - YlktKi xe ^ 0 an<d

Ve - xe
3 - Sfceî 2 xe — 0 for each e = [ut-- Uj] € i*F

Divide both sides by two, and round up all coefficients on the left-hand side
by adding the corresponding nonnegativity constraints \x£ > 0. Since the
left-hand side takes integer values for all (x, y) € Ps, one can round up the
right-hand side to get a valid inequality, namely (11). D

As an illustration, consider a three-node example with nodes i>ivU22U3
and parallel pipes e,- and t\ both with endnodes u,- and Uj+i for i — 1,2,3
(we identify v4 and Vi). We also let L = E, B = 4. Demand k is parallel to
€k and d = 1 for k = 1,2,3. Let F := {ex,e^,e^} and define the fractional
solution (x,y) by xk = ye = 1/2 if e G F and xk = ye = 0 for e € £\F. This
solution corresponds to the nonintegral routing of each demand by splitting
the flow equally along the two paths between each pair of nodes on the
triangle. One can verify that (x,y) satisfies all the linear inequalities in (1)
as well as the knapsack and cover inequalities (6), (7), and the strengthened
cut inequalities (8). However, (x,y) violates the hypomatchable inequality
y{F) + Yil=i xki{8G{vi) \ F) >2.

We discuss conditions under which a hypomatchable inequality is nonre-
dundant. We introduce some convenient terminology. For a graph H =
(V, F) with an odd number of nodes, we call MCFa supermatching if all
nodes except one are incident to exactly one edge of M, and the last node is
incident to two edges of M. A supermatching of H has (\V\ -f l) /2 edges.

Consider a root (x,y) of a hypomatchable inequality (11), i.e., (x, y) is a
feasible solution of (1) that satisfies (11) with equality. Let M := {[i>t',Vj] €
F' | Xe' = 1 or XeJ = 1 } . It can be seen that there is at most one isolated
node in (V M) and that M is either a supermatching with fn/2]\ or a
matching with ln/2j edges.

A graph H is hypomatchable (see [10]) if H\{v} contains a perfect match
ing for each v € Vjif]. Examples of hypomatchable graphs include odd cycles
and the complete graph on an odd number of nodes.

Remark 13 Every hypomatchable graph is connected.

10

Theorem 14 A hypomatchable inequality (11) defines a facet of P$ if the
following conditions hold:

(i) L = E, K = K' U K";
(ii) G is a complete graph and \V'\ < \V\ — 11
(Hi) GF> = (V(F'),F') Iisypomatchable.

Proof. Since the conditions of Proposition 4 are satisfied, Ps is fulldimen-
sional.

Consider a facet defining inequality

]£ a=y<= + E E aexe > « (15)

such that each root of (11) satisfies (15) with equality. As Ps is fulldimen-
sional, it suffices to show that the two inequalities (11) and (15) are equal
up to a positive scalar multiple.

We first describe a basic construction of roots of (11). Let M be a match
ing of GF> of size [n/2j or a supermatching of GF> of size |"n/2]. Set ye = 1
for e € M and ye = 0 for e € F'\M. If Vi is incident to at least one edge in M,
route k{ such that xki(8a{vi) \ M) = 0. If u; is not incident to an edge in M
(there can be at most one such node) route &,• such that X**(5G(U,-) (F'F = 0.
With L = E and G complete it is always possible to find such a routing.
Then (x,y) is feasible and a root of (11).

For each e € E \ F' one can construct a root (x,y) of (11) with ye = 0
by choosing a supermatching in the basic root construction and avoiding e
in the routing. This works because of \V'\ < \V\ — 1. For each e 6 F' \ F
one can construct a root (x,y) of (11) with ye = 0 by choosing a maximum
matching M of Gp> that avoids e. That ii possible by condition (iii). By
comparing these solutions with the corresponding root solutions where ye is
set to 1, one proves that ae = 0 for each e € E \ F. Similarly, we derive
Og = 0 for e € E\ F and for those k 6 K whose coefficient in (11) is 0.

For given e = [u,-, vf\ € F choose a perfect matching of GF1 \{u,} and aug
ment it to a supermatching M by adding edge e. With the basic construction
one may now create a root with ye = 1, x** = 1 and no other demand using e.
By setting xe = 1 for some k ^ cc,- one obtains a new root. (Note that K
contains only small demands, because of the condition K = K1 U K")) This
proves ae = 0. Since e and k was arbitrary, and, moreover, &, ^ kj, one gets
ae = 0 for all e € .F1 and k € K.

11

{

For e = [Vi, vj] 6 F'FF one can similarly prove that a* = 0 for all k 4 ifct-

Thus, whenever in (11) a coefficient of some variable is zero, then the
corresponding coefficient m (15) is zero.

Let e = [vi,Vj] e F and / € 8G[Vi) \ F. We shall prove that ae = aj.
Pick a perfect matching M in GF' \ \Vi}- If / 6 F' augment this matching
by edge / . T he basic routing construction can be done such that demand &,•
is routed on edge / . Compare this solution to the one where demand ki uses
edge e instead of / . We get de = a/ for any e, / and &,• chosen as above. If
e € F' FF and / € Sa(v{) \ F', a similar construction shows a** = ak/\

Now let e, / , and g be three edges with endnode Vi. When e and / are
in F and g $• F we have shown ae = a*1 = aj. When e<EF,f€F'\F,
and g £ F' we have ae = aki = ak/. Note that e, / € F' \ F is not possible.
By Remark 13 Gf' is connected, and thus (15) is a scalar multiple of (11),
showing that (11) defines a facet of P$. D

We note that conditions (i) and (ii) are present only to simplify the proof.
Any one of them can be relaxed. Especially the restriction on the number
and size of demands is not necessary. Condition (iii) is probably necessary,
but we have not been able to prove this.

In our computations we have chosen F to be an odd cycle. We call this
subclass of (11) cycle inequalities.

The hypomatchable inequalities may be extended into larger classes of
facet defining inequalities using lifting techniques. The idea is to shrink
certain node sets in some PIPE instance and thereby obtain a "smaller"
related instance for which a hypomatchable inequality is valid. The lifted
inequality is obtained by letting all edges that were shrunk get a coefficient
zero. One can- show (under certain conditions on the subgraphs that are
shrunk) that a lifted hypomatchable inequality is nonredundant.

4 The cutting plane algorithm

In this section we describe the implementation of our cutting plane algorithm
for solving the PIPE problem. We assume that the reader is familiar with
the general outline of a cutting plane algorithm (see, for instance, [1] or [17]).
The following table presents the main steps of such a cutting plane algorithm.
We hereafter let V be the subset of V consisting of all endnodes of demand

12

edges (i.e., nodes uk and v for [u* u] € K).

1. Initialization
2. while branch-and-bound tree is not empty
3. select a leaf from the tree
4. do
5. solve the LP
6. separate inequalities and add them to the LP
7. while there are violated inequalities
8. call primal heuristic
9. branch if necessary
10. print best feasible solution and best lower bound
11. STOP.

In the Initialization phase we set up the first LP and initialize the branch-
and-bound tree with the root node representing the whole problem. As initial
cuts for the first LP we use the trivial inequalities 0 < X j < , , 0 < / / e < , , and
the degree constraints xk(8a(uk)) > 1 and x (6GvV)) > 1 for [u ,v] € K.
In addition, we add some of the strengthened cut inequalities in the following
way. For each node v € V , we check whether (d(Su(v)) modulo B) ^ 0. If
that is the case, we add the corresponding strengthened cut inequality to
the initial LP. If not, we try to extend the node set W = {v} in a greedy
like fashion (by checking all neighbouring nodes of W) until we find a set W
satisfying (d(6i)(W)) modulo B) ^ 0 (in this case we add the strengthened
cut inequality induced by W to the initial LP) or the list of neighbours is
empty.

This set of inequalities represents the first LP. For solving the linear
programs we use CPLEX1, a very fast and robust linear programming solver.
Step 6, separating inequalities, will be discussed in Subsection 4.1 in detail.
We add inequalities a (x,y) > a to the current LP, if the slack (= a —
a (xii/), where (x,y) is the current LP solution) is at least VIEPS, which
is set to 0.1 in our implementation. In order to keep the LPs of moderate
size, each inequality is assigned an "age" (at the beginning the age is set to
0). Each time the inequality is not tight at the current LP solution, the age
is increased by one. If the inequality gets too old, i.e., the age exceeds a

1 CPLEX is a registered trademark of CPLEX Optimization, Inc.

13

certain limit (in our implementation this limit is set to 8), the inequality is
eliminated from the LP.

If we do not find more violated inequalities and there is still a gap be
tween the current optimum LP objective function value and the best known
feasible solution, we call the primal heuristic (step 8). This procedure will
be described in Subsection 4.2. If (after a possible improvement of the best
feasible solution) there is still a gap between the current local lower bound
and the best solution, we branch on a variable that is closest to 0.5. In this
way, we create two new subproblems, one where the branching variable is
fixed to 0, and one, where it is fixed to 1. We add these two subproblems to
our branch-and-bound tree and continue with step 3. The strategy we use
to select the next leaf is best-first-search, i.e., we select a leaf with the worst
lower bound (equal to the global lower bound).

In principle, if we let this algorithm run forever, it will find an optimum
solution. But, "forever" really can mean forever. In the next section we will
see two examples where we cannot improve the gap between the best lower
and upper bound after hours of CPU time. Therefore, the algorithm has
an option to stop when a certain time limit or a certain number of branch-
and-bound nodes is exceeded. In this case, we print out the best feasible
solution and the global lower bound providing a solution guarantee for the
best solution.

4.1 Separation algorithms
In the following we discuss separation algorithms for the cut inequalities
(1) (i) and (8), the cover inequalities (7), and the cycle inequalities (11).
The separation problem for a class of inequalities can be stated as follows:

Separation problem. Given a vector (x,y) with x € R. , ,y € R and a
class of inequalities valid for Ps- Decide whether (x, y) satisfies all inequalities
of that class, and if not, find an inequality a (x,y) > a with a (x,y) < a.

Since we added to the initial LP all trivial inequalities, we can suppose
in the following that all components of the actual LP solution (x,y) are
nonnegative and less than or equal to 1.

C u t inequalities. In order to solve the separation problem for the cut in
equalities (1) (i) for a particular demand k € K, we have to decide whether

14

the minimum cut capacity between u and v is less than 1 where edge ca
pacities are given by x . This can be done using any max-flow algorithm. We
implemented the highest-label preflow push algorithm suggested by Goldberg
and Tarjan [5] (see also [2]). This algorithm runs in time 0(|V|2v/|i?|).

We also use our max-flow algorithm to find violated strengthened cut in
equalities (8). We assign each edge e € E the capacity max{0, ye—^ZkeKi 5e}>
and determine for each [u ,v] € K\ a minimum [u ,v --cut, 8G{W") say, for
W* C V. If |fo(W*) fl K\/lB is not integer, we add the corresponding
strengthened cut inequality in case it is violated.

Cover inequalities. Separating the cover inequalities (7) is easy. Since
there are linearly many (linear in the number of demands and edges, see
Section 3), we sequentially check all of them for possible violation. One
might think it is possible to store all cover inequalities explicitly in the LP,
but it turns out that the number of such inequalities may be very large (see
next section), though only a fraction of them is needed to solve the problem.

Cycle inequalities. We do not know whether the separation problem for
the cycle inequalities (11) can be solved in polynomial time (when F defines
a cycle), because we do not know how to find a low-weight cycle that only
contains terminal nodes for demands of value 1. In the following we present
a heuristic, where we first try to find a minimum cycle with respect to a
certain weight function, and then choose, if possible, for each node in the
cycle, the best demand of size 1.

Let us first describe the weight function according to which we want to
find a minimum cycle. Consider again (11) with F being a cycle with node
set {u i , . . . , vn}, n odd, and k\,..., kn demands of size 1 such that demand
ki has an endnode at node u,- (i = 1 , . . . , n). Since the objective function is
nonnegative, the optimum integer solution and also the current LP solution
certainly satisfy xk'(S(vi)) = 1. If we subtract this equation (for i = 1 , . . . n)
from the cycle inequality, we get

n

y(F) ~ 2_> x v-^1)— ẑ x ' (^G(U«) n f) + 2_, 2_, • xe > - L̂ J • (16)
fcg-K^ «=1 k£K" e€£:

e connects u ,v

Suppose for a moment that we do not have parallel edges, and all demands

15

k\,..., kn are different. If we choose as edge weights, for uv 6 E,

wuv := 0.5 + yuv— ^T x*Lv ~]C ^L'

then w(F) - 0.5 exactly coincides with the difference between the left- and
right-hand sides of (16), when F is an odd cycle and each node in the cycle
has exactly one incident demand of size 1. Thus, if w(F) < 0.5 and F is odd,
we have a violated cycle inequality, otherwise not. If there are parallel edges
{ e i , . . . , e p } , p > 2 , connecting nodes u and v, we aggregate these edges to a
single edge, uv say, and assign it the weight

wuv := 0.5 + J2 (ye. - J2 **i ~ 21 **) ,

where / := {i € { 1 , . . . ,p} | there exists some k € K\ with s*. > 0}.
Now we determine a minimum cycle F* with respect to edge weights w

(see below). Note that according to the definition of w, w(F*) — 0.5 is a
lower bound for the slack of the most violated cycle inequality. Thus, if
w(F*) > 0.5, there is no violated cycle inequality. Otherwise, if all nodes
in the cycle are incident to some demand of size 1 (otherwise the heuristic
fails), we run through all nodes of the cycle and determine for each node u,
the best possible demand k{, i.e., we choose

ki := argmin x (^G(U0 \ F*).

It might be that the cycle inequality that is defined by our choices F* and
ki,. •.p k\p*\ yields no longer a violated inequality, because the edge weights
wuv do not reflect the exact slack, when nodes have more than one incident
demand of size 1.

There remains the problem of finding a minimum cycle F* in an undi
rected graph G = (V,E) with edge weights wuv, uv € E, that can be neg
ative. If the edge weights are indeed arbitrary, the problem to determine a
minimum cycle is A/'P-complete. However, we can decide whether there is a
cycle of negative weight and if not, find a minimum cycle by transforming
the problem to a perfect matching problem (see [2]). Thus, we can decide
whether there exists a cycle of weight less than 0.5 which might give rise to a

16

violated inequality. Since a perfect matching algorithm is very time consum
ing and since such an algorithm might return just one cycle, we preferred to
implement the following heuristic. Starting from each node v € V, we deter
mine a shortest spanning tree by using Prim's algorithm ([16]) and check all
fundamental cycles whether their weight is less than 0.5. In case the cycle is
even, we contract one edge. This results in many violated cycle inequalities,
and for many instances this algorithm finds a cycle of weight less than 0.5
whenever there is one.

4.2 The primal heuristic
In step 8 of our branch-and-cut algorithm we call the primal heuristic. We
do that after the cutting plane phase for the current node is finished, i.e., we
have not found any more violated inequalities, and the current LP solution
is fractional. The idea of our primal heuristic is to fix a set of fractional
variables to zero or one, solve the LP again, and iterate this process until all
variables are integer. This heuristic idea, often used in general mixed integer
programming solvers, is sometimes called "plunging" or "diving", because
we "dive" deep into the branching tree and "plunge" for a feasible solution.
The tuning parameters of this heuristic are the order in which the fractional
variables should be fixed in one step and their number. We performed several
tests trying to give an answer to these two questions. It turned out that the
heuristic in general worked best when we just fix one fractional variable at a
time and choose a fractional variable that is close to one. Moreover, we fix
all variables that are 1 to value 1 for the rest of the heuristic.

. If the heuristic does not change the linear program (except for fixing vari
ables) it frequently ends with an integral solution that violates one of the cut
or cover constraints in (1), since not all of these constraints are contained in
the LP. Therefore we separate those inequalities for each fractional solution
appearing in the course of the heuristic. This unfortunately slows the heuris
tic down. In order to speed up the separation process in the heuristic, we
only add those cut inequalities (1) (i), knapsack inequalities (1) (ii) and cover
inequalities (7) that are violated by at least 0.5 (the usual violation epsilon
in the cutting plane phase is 0.1). Moreover, we restrict the number of times
the heuristic is called, depending on its success. More precisely, we calculate
(i) the ratio between the time spent in the heuristic and the total time, and
(ii) the ratio between the number of times the heuristic could improve the

17

best solution and the number of times the heuristic was called. If the "time"
ratio is less than the "success" ratio, we call the heuristic, otherwise not. The
results in the next section show that this strategy performs quite well, we
obtain reasonably good primal solutions by spending at most 30% (usually
less than 10%) of the total time in the heuristic.

5 Computational results

In this section we report on the test runs performed with our branch-and-cut
algorithm. The code is implemented in C, and all results were obtained on
a Sun SPARC 20 Model 71. The examples are modified real-world examples
with pipe capacity B = 4. Table 1 summarizes the data. Column 2 and 3
show the number of nodes and links of the physical network, Columns 4 and
5 contain the corresponding information for the pipe graph. Here, \V'\ is the
number of nodes incident to some demand edge. Columns 6 and 7 give the
number of demands of size 1 and 4.

The last column gives the number of 0/1 variables in our IP formulation.
The numbers range from about 250 for the smallest problem up to 25000
variables. The test series in Table 1 are based on two physical networks.
nw is an example approximating parts of the physical network in Norway.
All other examples whose name starts with "nw" are derived from nw. nw3
differs from nw in that it contains some further physical links, that some more
physical nodes are endnodes of demands, and that the set of possible express
pipes is extended. The remaining "nw"-examples are variations of these two
instances, where we wanted to test how sensible the solution is with respect
to changes in the input data. If the name contains the letters ".0", the link
capacities (of the example without ".0") are multiplied by ten in order to
see what influence the link capacities have on the solution. Examples ending
with ".p" have more express pipes than the corresponding example without
".p". The input pipes in the ".p"-examples were generated by finding for
each demand k a set of short ufcufc-paths (these were determined by adding
certain edges to shortest path trees). Example nwS.dl.p results from nwS.p
by changing the size of 9 demands from B to 1. The last three examples in
Table 1 are typical for local area networks. The demand graph of terbstar
consists of node-disjoint stars. The demands of terbco form a complete graph
between the root nodes of these stars, and the demand graph of terbstco is

18

the union of these two demand graphs.

Example

\v\

C
\V'\ \E\

Demands
size 1 size B

Variables

nw 27 44 5 22 2 8 242
nw.p 27 44 5 63 2 8 693
nw3 27 60 10 91 3 18 2002
nw3.p 27 60 10 191 3 18 4202
nw3.0 27 60 10 91 3 18 2002
nw3.0.p 27 60 10 191 3 18 4202
nw3.dl.p 27 60 10 191 12 9 4202
terbco 62 81 7 113 0 21 2486
terbstar 62 81 56 248 36 12 12152
terbstco 62 81 56 359 36 33 25130

Table 1: Input data

Unfortunately, the network planners could not give us any reasonable
numbers for the cost of installing the express pipes. Thus, we played with this
parameter a little bit and performed different tests varying the installation
cost 7 from 0 (which means that we get the express pipes for free) up to 10
which results in rather high express pipe costs compared to the routing costs.

An interpretation of 7 may be illustrated as follows. If we have the choice
between installing a new direct pipe for a demand of value 1 and using the
spare capacity of an existing path of "length" less than 7 in the physical
network, then the "long" path is preferred.

Table 2 through 5 summarize our tests. Column 2 gives the number of
inequalities of the initial LP, Columns 3 to 5 show the number of violated
cut (those of type (1) (i) and (8) together), cover and cycle inequalities. The
number of LPs solved (including those in the primal heuristic) and the num
ber of solved branch-and-bound nodes are presented in Columns 6 and 7.
Columns 8 and 9 show the global lower bound and the value of the best fea
sible solution after the algorithm stopped. The total time (in CPU seconds)
of the algorithm and the time spent in the heuristic are given in the last two
columns.

Looking at Table 2 with the results for 7 = 0 we see that we can solve

19

all problem instances in the root node, i.e., we do not. have to branch. Even
more, with the exception of terbstar and terbstco the solutions of the root
LPs are integer, since the primal heuristic has not been called. This indicates
that the inequalities we separate are indeed important to solve the problems.
Note that all ".p"-examples have lower objective function value than their
corresponding counter part without ".p". An interesting question is how the
number and variability of the express pipes influences the solutions. To com
pletely answer this question and to find the best feasible solution among all
possible express pipes, our algorithm must be embedded into a column gener
ation approach. In case the network planners do not impose any restrictions
on the set of express pipes, it will be a challenge for the future to integrate
the cutting plane and the column generation approach in order to obtain
the globally best solution. Whether the link capacities have an influence on
the quality of the solution, we cannot draw any conclusions from this test
set. For nwS the optimum is the same, for nwS.p we obtain a better solu
tion. A noteworthy fact is that all "nw"-examples are solved within seconds.
The "terb"-examples seem to be harder, but still our algorithm provides the
optimum solution after at most 25 minutes of CPU time.

For 7 = 1 (see Table 3) the results are basically the same with mostly
slightly higher running times. But, if we further increase 7 the situation
changes (Table 4 and 5). We still can solve all "nw"-examples within one
minute, but for terbstar and terbstco our algorithm gets stuck. We can give
a solution guarantee of 9% or less after about 3 hours of CPU time (which
might be acceptable in practice), but we almost cannot improve this gap any
further, even if we spent some more hours of CPU time. Since the express
pipes are very expensive, the algorithm tries to avoid using y-variables. What
is missing are further inequalities (like the hypomatchable inequalities) that
force the y-variables to one whenever the routing variables x are positive. If
network planners will indeed come up with such high express pipe installation
costs and they are really interested in finding the optimum solution more
research in this area will be necessary.

20

Example
init

Cuttin
knap

5 Plane
cuts

s
cycle

lps bab lb ub Times (sec)
Heur Total

nw 25 28 6 0 5 1 183 183 0.0 0.1

nw.p 25 71 0 0 11 1 156 156 0.0 0.2

nw3 52 125 30 18 8 1 287 287 0.0 0.6

nw3.p 51 224 3 17 19 1 243 243 0.0 1.7

nw3.0 52 63 33 4 12 1 287 287 0.0 0.5

nw3.0.p 51 46 1 4 4 1 227 227 0.0 0.4
nw3.dl.p 51 469 7 108 13 1 139 139 0.0 5.0
terbco 42 31 31 0 8 1 536 536 0.0 0.5
terbstar 150 1200 389 334 42 1 193 193 1.0 74.8
terbstco 192 3683 1194 1142 138 1 732 732 17.8 1483.0

Table 2: 7 = 0

Example
init

Cuttin
knap

g Plane
cuts

s
cycle

lps bab lb ub Time
Heur

s (sec)
Total

nw 25 24 7 0 6 1 197 197 0.0 0.1
nw.p 25 57 3 0 9 1 166 166 0.0 0.2
nw3 52 120 34 34 8 1 315 315 0.0 0.7
nw3.p 51 226 8 27 14 1 264 264 0.0 1.8
nw3.0 52 113 33 33 7 1 315 315 0.0 0.8
nw3.0.p 51 146 5 21 8 1 248 248 0.0 0.9
nw3.dl.p 51 532 14 112 29 1 156 156 0.1 8.6
terbco 42 47 32 0 10 1 557 557 0.0 0.6
terbstar 150 1385 384 511 23 1 241 241 0.6 107.0
terbstco 192 3431 1087 1056 93 1 801 801 2.5 1298.7

Table 3: 7 = 1

21

Example
init

Cuttin
knap

g Planes
cuts

s
cycle

Ips bab lb ub Times (sec)
Heur Total

nw 25 24 7 0 6 253 253 0.0 0.1
nw.p 25 60 3 0 10 206 206 0.0 0.2
nw3 52 130 31 28 9 427 427 0.0 0.9
nw3.p 51 295 9 50 19 348 348 0.0 4.2
nw3.0 52 137 35 38 9 427 427 0.0 1.9
nw3.0.p 51 235 6 46 20 332 332 0.0 2.5
nw3.dl.p 51 757 15 159 31 217 217 0.0 16.9

terbco 42 56 26 0 8 641 641 0.0 0.5
terbstar 150 7821

12821
26186

3417
5194
10967

3202

5138
11332

3064
4950
9679

697
1303
'2632

423
423
424

433
433
433

965.0
1386.9
1817.9

10003.3
20008.6
40014.0

terbstco 192 5365
7270

11938

1596
2295
4057

1833
2643
4885

1087
1976
3941

196
482
1126

1064
1065
1066

1077
1077
1077

1320.2
1894.6
2617.5

10141.5
20123.8
40000.8

Table 4: 7 = 5

Example
init

Cuttin
knap

5 Planes
cuts | cycle

Ips bab lb ub Time
Heur

s (sec)
Total

nw 25 25 9 0 7 323 323 0.0 0.1

nw.p 25 76 3 0 16 256 256 0.0 0.3

nw3 52 199 42 39 25 567 567 0.0 3.9

nw3.p 51 442 17 167 88 453 453 0.0 16.4

nw3.0 52 184 42 36 20 567 567 0.0 3.7

nw3.0.p 51 389 16 168 100 437 437 0.0 15.7

nw3.dl.p 51 1078 35 259 78 292 292 2.4 56.3

terbco 42 64 25 0 8 746 746 0.0 0.5

terbstar 150 4840
8732
15728

5024
10460
19508

1518
2883
5491

1582
2903
5084

81
193
383

626
629
632

678
678
675

1038.5
1464.9
2888.8

10002.3
20028.5
40007.1

terbstco 192 4976
6278
8773

1330
2813
5863

1085
1657
2575

777
1450

1 2375

17
58
127

1370
1374
1378

1424
1424
1424

4143.3
5438.5
7263.0

10096.8
20166.5
40060.3

Table 5: 7 = 10

22

6 Conclusions

Pipe selection and routing problems in telecommunications is a rather new
area for applied combinatorial optimization. There are many related prob
lems and models to the one in our study that call for analysis and algorithmic
development.

The results obtained in our study indicate that a cutting plane approach
may be attractive for solving certain real-world pipe selection and routing
problems. Further work could be directed towards solving problems with
larger pipe installation cost 7. This would require a further polyhedral study
of the polytope Ps and, for this, other inequalities derived from path packing
problems (see [6], [11]) may be of interest.

A very interesting area is to extend the problem by allowing (almost)
arbitrary express pipes and to modify the cutting plane algorithm by adding
a column generation scheme.

Acknowledgement . This research was financed by Telenor AS Research
and Development (Project number TFN9506A).

References

[1] D. Applegate, R.E. Bixby, V. Chvätal, W. Cook, Finding cuts in the
TSP, DIMACS Technical Report 95-05, March 1995.

[2] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network flows: theory, algo
rithms, and applications, Prentice-Hall, Englewood Cliffs, New Jersey,
1993.

[3] D. Bienstock, S. Chopra, O. Günlük, C-Y. Tsai, Minimum cost ca
pacity installation for multicommodity network flows, draft, Columbia
University, New York, January 1995.

[4] G. Chartrand and L. Lesniak, Graphs and digraphs. Wadsworth and
Brooks, California, 1986.

[5] A. V. Goldberg, R. E. Tarjan, A new approach to the maximum flow
problem, Journal of ACM 35, 921 - 940, 1988.

23

[6] M. Grötschel, A. Martin, R. Weismantel, Packing Steiner trees: polyhe
dral investigations, Preprint, Konrad-Zuse-Zentrum (ZIB), Berlin, SC
92-8, 1992, to appear in Mathemaiical Programming.

[7] M. Grötschel, A. Martin, R. Weismantel, Packing Steiner trees: a
cutting plane algorithm and computational results, Preprint, Konrad-
Zuse-Zentrum (ZIB), Berlin, SC 92-9, 1992, to appear in Mathematical
Programming.

[8] M. R. Kramer, J. van Leeuwen, The complexity of wire-routing and find
ing minimum area layouts for arbitrary VLSI circuits, in F. P. Preparata
(ed.), Advances in Computing Research, Vol. 2: VLSI theory, Jai Press,
London, 129 - 146, 1984.

[9J R. Lorentzen, Mathematical methods and algorithms in the network
utilization planning tool RUGINETT. Telektronikk 90 (4):73-82, 1994.
(Telenor Research, P.O.Box 83, 2007 Kjeller, Norway)

10] L. Lovasz and M. D. Plummer, Matching theory, North-Holland, 1986.

11] A. Martin, Packen von Steinerbäumen: Polyedrische Studien und An
wendungen, Ph.D.Thesis, Konrad-Zuse-Zentrum (ZIB), Berlin, TR 92-4,
1992.

12] K. Menger, Zur allgemeinen Kurventheorie, Fundamenta Mathematicae
10, 96-115, 1927.

13] G. Nemhauser and L.A. Wolsey, Integer and combinatorial ootimization
Wiley, 1988.

14] Kyungchul Park and Seokhoon Kang and Sungsoo Park, An integer
programming approach to the bandwidth packing problem, unpublished,
Dept. of Industrial Engineering, Korea Advanced Institute of Science
and Technology, Taejon, Korea, 1994.

15] M. Parker and J. Ryan, A Column Generation Algorithm for Bandwidth
Packing, Telecommunicaiions Systems 2, 185-195, 1994.

16] R. C. Prim, Shortest connection networks and some generalizations,
Bell System Technical Journal 36, 1389 - 1401, 1957.

24

*'

[17] M. Padberg, G. Rinaldi, A branch and cut algorithm for the resolution
of large-scale symmetric traveling salesman problems, SIAM Review 33,
60 - 100, 1991.

[18] A. Schrijver, Theory of linear and integer programming, Wiley, Chich
ester, 1986.

[19] R. Weismantel, On the 0/1 knapsack polytope, Konrad-Zuse-Zentrum
(ZIB), Berlin, Preprint SC 94-1, 1994.

25

