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Routing through virtual paths in layered 
telecommunication networks 

GeirDahl 2 

Alexander Martin 3 

Mechthild Stoer 4 

Abstract 

We study a network configuration problem in telecommunications 
where one wants to set up paths in a capacitated network to accommo
date given point-to-point traffic demand. The problem is formulated 
as an integer linear programming model where 0-1 variables represent 
different paths. An associated integral polytope is studied and differ
ent classes of facets are described. These results are used in a cutting 
plane algorithm. Computational results for some realistic problems 
are reported. 

1 Introduction 

A major trend in telecommunications is increased flexibility in terms of net
work configuration and resource allocation. In particular communication 
paths in networks may be set up on a temporary basis and controlled by 
software in order to meet changing demands due to, e.g., data communica
tions or video applications. Such paths (often called virtual paths) have the 
attractive feature of low processing time in the intermediate nodes. An im
portant problem area concerns the management of these capacitated paths, 
and in this paper we are concerned with such a problem in a two-layered 
network. 
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The model we study is as follows: One has given a set of point-to-point 
traffic demands that need to be routed in a so-called pipe-network. Each edge 
in this network is called an express pipe. It has a fixed, uniform capacity 
measured in the same units as the traffic demands. Each express pipe corre
sponds to a path in an underlying physical transmission network. When an 
express pipe is established, it uses resources in the transmission network, say, 
a fiber pair in a fiber cable. For each edge in the transmission network, one 
has therefore an upper bound on the number of pipes that can go through it. 
The problem is now to select some of the given express pipes such that the 
traffic can be routed upon them, taking into account express pipe capacity 
and physical link capacity. Costs are associated with the establishment of ex
press pipes and with the routing. When we use the term "routing", we don't 
mean dynamic routing at call setup time. We focus rather on the setup of 
the express pipes which accommodate forecasted traffic and are not changed 
every few minutes. We also assume that the set of pipes to choose from, is 
given beforehand. Pipes are not generated dynamically in the course of the 
algorithm. 

One motivation for studying the routing and path-packing model comes 
from routing and grouping in the PDH or SDH bandwidth hierarchy. There 
traffic given in 2 Mbit/sec is switched onto systems of different fixed band-
widths. A model involving several levels of networks and an LP-based solu
tion method is described in [9]. 

Another application may be in ATM-networks. There traffic corresponds 
to virtual circuits, which can be packed into virtual paths (our express pipes). 
Our model should, however, be refined to capture this case. Especially do 
virtual paths take many bandwidths (not just one as in our model) in the 
physical network, the virtual paths don't "eat" capacity of the physical net
work in the formf of fiber but in the form of bandwidth, and our cost function 
does not exactly model the gains (less call control in intermediate nodes) 
versus the disadvantages (splitting of bandwidth) of setting up virtual paths. 

[14] and [15] describe integer programming algorithms for routing (un-
splittable) demands in a capacitated network such as to maximize revenue 
and route as many demands as possible. This is the bandwidth packing 
problem. Our model is distinguished from theirs in that it involves the inter
mediate pipe layer, and the demand routing is modeled with flow variables 
instead of path variables. 

This paper is organized as follows. In Section 2 the integer linear pro-
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gramming model for the mentioned problem is presented. The body of this 
work is a polyhedral study which is found in Section 3. Various classes of 
facet defining inequalities are introduced. These inequalities are used to find 
stronger relaxations of the integer program, and in Section 4 we describe a 
cutting plane algorithm using such relaxations. Separation heuristics and pri
mal heuristics are also discussed and computational results for some realistic 
problems are reported. 

We use fairly standard notation from graph theory and polyhedral theory, 
see [4] and [18], respectively. However, a few notions need to be explained. 
R w denotes the space of real vectors indexed by M (where M is some finite 
set), and for x € R and S C M we let x(S) denote ]C'esxi- By x € R 
we denote the incidence vector of 5, and 1 is a suitable dimensioned vector 
with l 's. Let G = {V,E) be an undirected graph without loops. The cut 
8Q(W) induced by a subset W of V in the graph G is the set of edges with 
one endnode in W and the other outside W. By G[VK] = (W,E[W]) we 
denote the graph induced by node set W. For two nodes u and v, a uv-
path P is a sequence of consecutive nodes and edges connecting u and v 
without repeating any nodes. A graph G is said to be 2-edge (or 2-node) 
connected with respect to some given node set R, if between any two nodes 
u,u € R there exist at least two edge- (or node-) disjoint uu-paths. When 
aTx < a is a valid inequality for a polyhedron P we call each point x0 6 P 
with aTXo = a a root (of the inequality aTx < a). 

2 Mathematical model 

In this section we give a mathematical formulation of the problem, describe 
it as an integer linear programming model and introduce an associated poly-
tope corresponding to the feasible solutions. Some basic properties of these 
polytopes are discussed. 

The physical network of interest is modeled as an undirected graph N = 
(V, L) with node set V corresponding to switching nodes and edge set I E L 
corresponding to transmission lines (fiber cables). We call TV the physical 
graph and its edges physical edges (links). The traffic demands are mod
eled by the demand graph D = (V,K) where each demand edge [uk,v]] € K 
represents a traffic demand between the endnodes uk and vk of size dk. (TVP-

\ J XT 

ically, there are several isolated nodes in the demand graph). The final in-
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gredience of our model is the pipe graph 6 = (V, E) where each pipe (edge) 
e = [u,v] € E corresponds to a uu-path in the physical graph N. A pipe 
may then represent a transmission path in the telecommunication network 
(possibly set up up for a limited time period) on which different traffic may 
be routed. Note that G may contain many parallel edges. One may view the 
whole network architecture as two-level hierarchical. Sometimes more than 
two levels are of interest, but we do not treat this here. 

The model also incorporates capacities in the following way. Each demand 
should be routed in the pipe graph, i.e., each demand k = [u,v] uses some 
uv-path ei,..., et of pipe edges in G. We assume that the capacity of each 
pipe e G E is B > 0 meaning that the total demand that may be routed 
on each pipe may not exceed B. Furthermore, the number of selected pipes 
(in a feasible solution) containing a physical link / € L must not exceed the 
capacity c; (we assume throughout that Q > 1). This may, e.g., correspond 
to the situation where each pipe is allocated to an individual fiber on the 
fiber cable / € L. Thus we have capacity constraints in both levels of the 
network architecture, both for "embedding" demands (connections) in the 
pipe graph, and for embedding pipes in the physical network. 

The problem of interest is to select pipes that are to be used and to 
determine on which path of the selected pipe set each of the demands should 
be routed. The cost function is the sum of the costs ve for selecting a pipe 
e and the costs w* for routing a demand k through pipe e. This problem of 
finding a minimum cost pipe selection and routing is called the pipe selection 
and routing problem PIPE. 

We model mathematically the PIPE problem as the following integer 
linear program 

m m J2eeE ItVe + LtkeK iJeeE we Xe 

subject to 

(i) xk{8a{W)) > 1 for all W C V with u G W, v £ W, 
k€ ; ] (1) 

(") HkeK ^kxe — eVe ^OT a^ e € -̂ > 

("i) Ee:/€eJ/e < Cl .for all / € I ; 

(iv) 0< x* < 1,0 < j/e < 1 for all k € K, e € E; 

(v) X,, ye are integer for all k e K, e € E. 
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The 0-1 variable ye indicated whether pipe e € E is selected, and the variable 
xk indicates if demand k E K uses ((s routed on) pipe e € E. Constraints (() 
assures that xk is the incidence vector of a pipe set containing a u v -path 
for each [u*,^] G K. This is due to Menger's connectivity theorem (see [12] 
or [2]). Constraints (ii) and (iii) reflect the capacity constraints in the pipe 
graph and the physical graph, respectively. 
Remark. We shall assume throughout that the demand set K is partitioned 
into two subsets K\ and K2 such that d = 1 for k € K\ and d = B for 
k € K-i. (When B = 1, we let K\ =0 and K-i = K.) This is of interest in the 
applications we consider. Furthermore, in our implementation and numerical 
experiments we have restricted the attention to the parameter choice 7« = 7 
for all e € E and uk — dkue. 

The PIPE problem (1) can be shown to be iVP-hard as it contains the 
path packing problem (see [8]) as a special case. This problem is to decide 
if a given graph contains edge-disjoint paths each connecting a given pair of 
nodes. Thus, finding a theoretically efficient algorithm for PIPE is (probably) 
impossible. However, experience from other related problems ([7], [11], [15]) 
indicate that cutting plane algorithms may perform very well on practical 
problem instances. Our goal is to find strong relaxations for the integer 
program and use these to develop a cutting plane algorithm for PIPE. 

We introduce a family of integer polytopes associated with the model 
in (1): 

Ps := conv{ (x, y) € R E x R | x,y satisfies (1) (i)-(v) }, (2) 

where S = (N, G, D, B, d, c) specifies the instance and c = (c; : / € L) and 
d = (d : k € K) are the capacity and demand vector, respectively. The 
PIPE problem may be viewed as the LP problem 

min{/(x,j/) y (xsy) € Ps}, (3) 

where f(x,y) is the linear objective function in (1). In order to solve (1), or 
produce good lower bounds, one needs to find a "sufficiently" good approxi
mation to a linear system of inequalities with solution set Ps- The polytope 
Ps has a complicated polyhedral structure, and. an analysis of some of its 
properties is made in the next section. 
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3 Polyhedral properties 

The goal of this section is to establish a number of properties of the polytope 
Ps- We study the dimension of Ps and additional classes of inequalities that 
define facets of this polytope. 

The problem of deciding whether Ps is nonempty (i.e., finding a feasible 
solution in (1)) is iVP-complete. This follows from the fact that the special 
case of deciding the existence of edge-disjoint paths between specified termi
nals is iVP-complete, see [8]. However, a criterion for fulldimensionality may 
be stated as follows. 

Proposition 4 Ps is fulldimeniionll if the PIPE instance 5(e) = (N, G \ 
{e},DB B, d, c') is feasible for each e € E, where cj = a for all I £ e and 
cj = c\ — 1 for rll I I €. 

Proof. Assume that 5(e) has a feasible solution for each e € E. Also assume 
that Ps is contained in the hyperplane defined by the linear equation 

J2 aeye + J2 ] £ bk
eJ

k
e £ =. (5) 

Let e € E. By assumption there is a feasible solution (x,y) in (1) with 
ye = 0 and with capacity function c'. Define y' € R by y'j = yj for / ^ e 
and y'e = 1. For each / € e we then have ]Ce':/6e' y'e> ^ ci + + 1 °ii ' n d t̂ 
follows that (x,y') is feasible. Thus both (x,y) and (x,y)) satisfy (5) and 
this implies that ae = 0. As e was arbitrary, we get a — 0. Furthermore, 
let x' be obtained from x by setting (x')e = 1 for some k. Then both (x, y') 
and (x',y;) are feasible in (1) and therefore satisfy (5). This leads to be = 0 
for all k € K and e € E. Thus a = 0 and 6 = 0, which contradicts that 
the inequality in (5) defines a hyperplane. Therefore Ps is fulldimensional as 
claimed. 0 

We remaxk that in the case when L = E, a necessary condition for Ps 
to be fulldimensional is that 5(e) = (N, G \ {e}, D, B, d, d) is feasible for all 
e € . . 

All the inequalities in (1) define facets of Ps whenever the pipe graph 
is "dense" enough. We do not go into these details, but concentrate in the 
following on finding strengthened formulations. Several classes of new facet 
defining inequalities are introduced. 
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Knapsack inequalities 

Each inequality in (1) (ii) may be viewed as a knapsack inequality. In fact, 
using the linear transformation Te(y) = z where ze = 1 — ye for each e € E 
we get the knapsack inequality 

Yl Xe + B e Xe + Bz' ^ B- (6) 

Each valid inequality for the knapsack polytope defined by (6) is also valid 
for Ps when setting ze = 1 — ye. 

For a study of different properties of knapsack polytopes, see [13] and 
the references cited there. Based on the knapsack inequality we obtain the 
following class of cover inequalities that are valid for Ps for each pipe edge 
e € E: 

A combinatorial interpretation of such an inequality is that if more than one 
demand is routed on e, then all these demands are Äi-demands. In certain 
special situations a complete linear description of knapsack polytopes has 
been found, see [19]. It follows from the results of [19] that a complete 
linear description of the knapsack polytope defined by (6) is given by the 
inequalities (6), (7) and simple bounds. 

Note that if \Ki\ < 5, then the knapsack inequality (1) (ii) is dominated 
by the sum of cover inequalities. Under certain known conditions the cover 
inequalities define facets of the knapsack polytope (see [13] for a general 
discussion). With suitable additional assumptions on the PIPE instance S, 
the cover inequalities also define facets of P$. 

Strengthened cut inequalities 

Consider a cut SQ(W) in the pipe graph, where W and V \ W is nonempty. 
Let K' be the demands in Kx C\ SD(W.. Then 

y(f>G(W)) - 2_j x ( ^ G ( W ) ) > [ l if l / l?] (8) 
k&K2 

is a valid inequality. To see this we add the inequalities 

• x (6G(W)) > 1 for all k € K' 
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• Bye — I^bgXj xe — BYlk£K2 xe — 0 for a^ e € ^G(M^) 

and divide the result by B. We can round the coefficients of the left-hand side 
of this new inequality by adding an appropriate amount of xk > 0, and round 
the right-hand side. The resulting valid inequality is (8) which we call the 
strengthened cut inequality. These inequalities are also nonredundant 
under reasonable conditions. To avoid technicalities, we will show this for 
highly-connected graphs G and N. 

Lemma 9 The strengthened cut inequality (8) defines a facet of P$ if the 
following conditions are satisfied. 

(i) \K\//B is not an integer. 

(ii) There are at least max {\d(S£>(w))/B"\ + 1 | w € {u,i>}} parallel uv-
pipes between any u,v € V, u ^ v. 

(iii) L = E. 

Proof. First, Ps is full-dimensional, because the conditions of Proposition 
4 are satisfied. Consider a facet defining inequality 

] £ aeJ/e + Yl H aeXe ^ > (10) 

such that each root of (8) satisfies (10) with equality. We will show that the 
coefficients of this inequality are as in the strengthened cut inequality. 

For any set F C 6Q(W) of cardinality t := ("(1 jB)d(6i)(W))~\ there exists 
a feasible root solution in which ye = 1 for e € F and ye = 0 for e € 8G(W)\F, 
and in which all demands in 6D(W) use at most three pipes, and all other 
demands use at most one pipe. This is due to assumptions (ii) and (iii). 
Since there is at least one pipe in each shore of the cut not used by such 
a solution, one can prove that ae and ae = 0 for all e € .EfW] and all &. 
Because of condition (i) one can also find sufficiently many routings of small 
demands to prove ae = 0 for e € Sa(W). Now compare a root solution using 
F C 8Q(W) with a root solution using F—{e} + {/} for arbitrary edges e € F 
and / 6 8G(W) \ F. The routings in F — {e} are supposed to be the same in 
both solutions, and e is supposed to carry only demands of K' = K\C\8D(W). 

Note that, because of condition (i), K' is not empty! The comparison of the 
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two solutions proves that ae = aj. This is true for all e , / € SQ(W). NOW 

compare a root solution using F C 8G(W) with the root solution in which 
an arbitrary edge e € SG{W) \ F is added to i71, then t/e and some x\ for 
& € K2 is set to 1, and all other variables stay the same. This proves that 
a\ = — ae. Since e, k, and F were arbiirary, (10) has the same coefficients as 
the strengthened cut inequality 8, hence it defines a facet. D 

Note that condition (i) is also necessary for (8) to define a facet. 

Remark. The strengthened cut inequalities may be generalized in the spirit 
of the "flow-cutset inequalities" introduced in [3]. Let F be a subset of 
SG(W). In the validity proof above add the inequalities xk(6a(W)) as before, 
but now add the knapsack inequalities only for e G F. The resulting flow-
cutset inequality is 

y(F) + £ J x (ÖG(W) \F) — 2_, x {Fx > \\K \/B~\ • 

Hypomatchable inequalities 

We introduce and study a large class of inequalities called hypomatchable 
inequalities. 

Consider an instance <S of PIPE with B > 2. Choose an odd number 
of nodes V = {t>i, t>2,..., vn} C V, and demands ki, A;2, . . . , kn in K\ (not 
necessarily distinct) such that demand jfc,- is incident to u,-. Lastly, choose 
a set F C E[V] with the property that if &,- = kj then [u,-, Vj] is not in F. 
Denote by K' the set of chosen demands with only one endpoint in V, and 
denote by K" the set of chosen demands with two endpoihts in V. Let F' 
be the set F together with all edges [ui,v,] with it, = kj. 

Consider the inequality 

V{F)- £ xk(F) + Y^,xki(sG(vi))F')+Y: X ! xe>\n/2/ l111 
k£Ki i = l k£K" «€£: 

«connects u .t»* 

which we call a hypomatchable inequality, because, as we shall see later, the 
inequality has a good chance to be facet-defining when (V',F') defines a 
hypomatchable graph. 

Lemma 12 The hypomatchable inequality (11) is valid for P$. 
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Proof. Add the valid degree and cover inequalities 

• x '(Sa(vi)) > 1 for i = 1 , . . . , n and 

• Ve - Xe' - YlktKi xe ^ 0 an<d 

Ve - xe
3 - Sfceî 2 xe — 0 for each e = [ut-- Uj] € i*F 

Divide both sides by two, and round up all coefficients on the left-hand side 
by adding the corresponding nonnegativity constraints \x£ > 0. Since the 
left-hand side takes integer values for all (x, y) € Ps, one can round up the 
right-hand side to get a valid inequality, namely (11). D 

As an illustration, consider a three-node example with nodes i>ivU22U3 
and parallel pipes e,- and t\ both with endnodes u,- and Uj+i for i — 1,2,3 
(we identify v4 and Vi). We also let L = E, B = 4. Demand k is parallel to 
€k and d = 1 for k = 1,2,3. Let F := {ex,e^,e^} and define the fractional 
solution (x,y) by xk = ye = 1/2 if e G F and xk = ye = 0 for e € £\F. This 
solution corresponds to the nonintegral routing of each demand by splitting 
the flow equally along the two paths between each pair of nodes on the 
triangle. One can verify that (x,y) satisfies all the linear inequalities in (1) 
as well as the knapsack and cover inequalities (6), (7), and the strengthened 
cut inequalities (8). However, (x,y) violates the hypomatchable inequality 
y{F) + Yil=i xki{8G{vi) \ F) >2. 

We discuss conditions under which a hypomatchable inequality is nonre-
dundant. We introduce some convenient terminology. For a graph H = 
(V, F) with an odd number of nodes, we call MCFa supermatching if all 
nodes except one are incident to exactly one edge of M, and the last node is 
incident to two edges of M. A supermatching of H has (\V\ -f l ) /2 edges. 

Consider a root (x,y) of a hypomatchable inequality (11), i.e., (x, y) is a 
feasible solution of (1) that satisfies (11) with equality. Let M := {[i>t',Vj] € 
F' | Xe' = 1 or XeJ = 1 } . It can be seen that there is at most one isolated 
node in (V M) and that M is either a supermatching with fn/2]\ or a 
matching with ln/2j edges. 

A graph H is hypomatchable (see [10]) if H\{v} contains a perfect match
ing for each v € Vjif]. Examples of hypomatchable graphs include odd cycles 
and the complete graph on an odd number of nodes. 

Remark 13 Every hypomatchable graph is connected. 
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Theorem 14 A hypomatchable inequality (11) defines a facet of P$ if the 
following conditions hold: 

(i) L = E, K = K' U K"; 
(ii) G is a complete graph and \V'\ < \V\ — 11 
(Hi) GF> = (V(F'),F') Iisypomatchable. 

Proof. Since the conditions of Proposition 4 are satisfied, Ps is fulldimen-
sional. 

Consider a facet defining inequality 

]£ a=y<= + E E aexe > « (15) 

such that each root of (11) satisfies (15) with equality. As Ps is fulldimen-
sional, it suffices to show that the two inequalities (11) and (15) are equal 
up to a positive scalar multiple. 

We first describe a basic construction of roots of (11). Let M be a match
ing of GF> of size [n/2j or a supermatching of GF> of size |"n/2]. Set ye = 1 
for e € M and ye = 0 for e € F'\M. If Vi is incident to at least one edge in M, 
route k{ such that xki(8a{vi) \ M) = 0. If u; is not incident to an edge in M 
(there can be at most one such node) route &,• such that X**(5G(U,-) (F'F = 0. 
With L = E and G complete it is always possible to find such a routing. 
Then (x,y) is feasible and a root of (11). 

For each e € E \ F' one can construct a root (x,y) of (11) with ye = 0 
by choosing a supermatching in the basic root construction and avoiding e 
in the routing. This works because of \V'\ < \V\ — 1. For each e 6 F' \ F 
one can construct a root (x,y) of (11) with ye = 0 by choosing a maximum 
matching M of Gp> that avoids e. That ii possible by condition (iii). By 
comparing these solutions with the corresponding root solutions where ye is 
set to 1, one proves that ae = 0 for each e € E \ F. Similarly, we derive 
Og = 0 for e € E\ F and for those k 6 K whose coefficient in (11) is 0. 

For given e = [u,-, vf\ € F choose a perfect matching of GF1 \{u,} and aug
ment it to a supermatching M by adding edge e. With the basic construction 
one may now create a root with ye = 1, x** = 1 and no other demand using e. 
By setting xe = 1 for some k ^ cc,- one obtains a new root. (Note that K 
contains only small demands, because of the condition K = K1 U K")) This 
proves ae = 0. Since e and k was arbitrary, and, moreover, &, ^ kj, one gets 
ae = 0 for all e € .F1 and k € K. 
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{ 

For e = [Vi, vj] 6 F'FF one can similarly prove that a* = 0 for all k 4 ifct-

Thus, whenever in (11) a coefficient of some variable is zero, then the 
corresponding coefficient m (15) is zero. 

Let e = [vi,Vj] e F and / € 8G[Vi) \ F. We shall prove that ae = aj. 
Pick a perfect matching M in GF' \ \Vi}- If / 6 F' augment this matching 
by edge / . T he basic routing construction can be done such that demand &,• 
is routed on edge / . Compare this solution to the one where demand ki uses 
edge e instead of / . We get de = a/ for any e, / and &,• chosen as above. If 
e € F' FF and / € Sa(v{) \ F', a similar construction shows a** = ak/\ 

Now let e, / , and g be three edges with endnode Vi. When e and / are 
in F and g $• F we have shown ae = a*1 = aj. When e<EF,f€F'\F, 
and g £ F' we have ae = aki = ak/. Note that e, / € F' \ F is not possible. 
By Remark 13 Gf' is connected, and thus (15) is a scalar multiple of (11), 
showing that (11) defines a facet of P$. D 

We note that conditions (i) and (ii) are present only to simplify the proof. 
Any one of them can be relaxed. Especially the restriction on the number 
and size of demands is not necessary. Condition (iii) is probably necessary, 
but we have not been able to prove this. 

In our computations we have chosen F to be an odd cycle. We call this 
subclass of (11) cycle inequalities. 

The hypomatchable inequalities may be extended into larger classes of 
facet defining inequalities using lifting techniques. The idea is to shrink 
certain node sets in some PIPE instance and thereby obtain a "smaller" 
related instance for which a hypomatchable inequality is valid. The lifted 
inequality is obtained by letting all edges that were shrunk get a coefficient 
zero. One can- show (under certain conditions on the subgraphs that are 
shrunk) that a lifted hypomatchable inequality is nonredundant. 

4 The cutting plane algorithm 

In this section we describe the implementation of our cutting plane algorithm 
for solving the PIPE problem. We assume that the reader is familiar with 
the general outline of a cutting plane algorithm (see, for instance, [1] or [17]). 
The following table presents the main steps of such a cutting plane algorithm. 
We hereafter let V be the subset of V consisting of all endnodes of demand 
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edges (i.e., nodes uk and v for [u* u ] € K). 

1. Initialization 
2. while branch-and-bound tree is not empty 
3. select a leaf from the tree 
4. do 
5. solve the LP 
6. separate inequalities and add them to the LP 
7. while there are violated inequalities 
8. call primal heuristic 
9. branch if necessary 
10. print best feasible solution and best lower bound 
11. STOP. 

In the Initialization phase we set up the first LP and initialize the branch-
and-bound tree with the root node representing the whole problem. As initial 
cuts for the first LP we use the trivial inequalities 0 < X j < , , 0 < / / e < , , and 
the degree constraints xk(8a(uk)) > 1 and x (6GvV )) > 1 for [u ,v ] € K. 
In addition, we add some of the strengthened cut inequalities in the following 
way. For each node v € V , we check whether (d(Su(v)) modulo B) ^ 0. If 
that is the case, we add the corresponding strengthened cut inequality to 
the initial LP. If not, we try to extend the node set W = {v} in a greedy 
like fashion (by checking all neighbouring nodes of W) until we find a set W 
satisfying (d(6i)(W)) modulo B) ^ 0 (in this case we add the strengthened 
cut inequality induced by W to the initial LP) or the list of neighbours is 
empty. 

This set of inequalities represents the first LP. For solving the linear 
programs we use CPLEX1, a very fast and robust linear programming solver. 
Step 6, separating inequalities, will be discussed in Subsection 4.1 in detail. 
We add inequalities a (x,y) > a to the current LP, if the slack (= a — 
a (xii/), where (x,y) is the current LP solution) is at least VIEPS, which 
is set to 0.1 in our implementation. In order to keep the LPs of moderate 
size, each inequality is assigned an "age" (at the beginning the age is set to 
0). Each time the inequality is not tight at the current LP solution, the age 
is increased by one. If the inequality gets too old, i.e., the age exceeds a 

1 CPLEX is a registered trademark of CPLEX Optimization, Inc. 
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certain limit (in our implementation this limit is set to 8), the inequality is 
eliminated from the LP. 

If we do not find more violated inequalities and there is still a gap be
tween the current optimum LP objective function value and the best known 
feasible solution, we call the primal heuristic (step 8). This procedure will 
be described in Subsection 4.2. If (after a possible improvement of the best 
feasible solution) there is still a gap between the current local lower bound 
and the best solution, we branch on a variable that is closest to 0.5. In this 
way, we create two new subproblems, one where the branching variable is 
fixed to 0, and one, where it is fixed to 1. We add these two subproblems to 
our branch-and-bound tree and continue with step 3. The strategy we use 
to select the next leaf is best-first-search, i.e., we select a leaf with the worst 
lower bound (equal to the global lower bound). 

In principle, if we let this algorithm run forever, it will find an optimum 
solution. But, "forever" really can mean forever. In the next section we will 
see two examples where we cannot improve the gap between the best lower 
and upper bound after hours of CPU time. Therefore, the algorithm has 
an option to stop when a certain time limit or a certain number of branch-
and-bound nodes is exceeded. In this case, we print out the best feasible 
solution and the global lower bound providing a solution guarantee for the 
best solution. 

4.1 Separation algorithms 
In the following we discuss separation algorithms for the cut inequalities 
(1) (i) and (8), the cover inequalities (7), and the cycle inequalities (11). 
The separation problem for a class of inequalities can be stated as follows: 

Separation problem. Given a vector (x,y) with x € R. , ,y € R and a 
class of inequalities valid for Ps- Decide whether (x, y) satisfies all inequalities 
of that class, and if not, find an inequality a (x,y) > a with a (x,y) < a. 

Since we added to the initial LP all trivial inequalities, we can suppose 
in the following that all components of the actual LP solution (x,y) are 
nonnegative and less than or equal to 1. 

C u t inequalities. In order to solve the separation problem for the cut in
equalities (1) (i) for a particular demand k € K, we have to decide whether 
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the minimum cut capacity between u and v is less than 1 where edge ca
pacities are given by x . This can be done using any max-flow algorithm. We 
implemented the highest-label preflow push algorithm suggested by Goldberg 
and Tarjan [5] (see also [2]). This algorithm runs in time 0(|V|2v/|i?|). 

We also use our max-flow algorithm to find violated strengthened cut in
equalities (8). We assign each edge e € E the capacity max{0, ye—^ZkeKi 5e}> 
and determine for each [u ,v ] € K\ a minimum [u ,v --cut, 8G{W") say, for 
W* C V. If |fo(W*) fl K\/lB is not integer, we add the corresponding 
strengthened cut inequality in case it is violated. 

Cover inequalities. Separating the cover inequalities (7) is easy. Since 
there are linearly many (linear in the number of demands and edges, see 
Section 3), we sequentially check all of them for possible violation. One 
might think it is possible to store all cover inequalities explicitly in the LP, 
but it turns out that the number of such inequalities may be very large (see 
next section), though only a fraction of them is needed to solve the problem. 

Cycle inequalities. We do not know whether the separation problem for 
the cycle inequalities (11) can be solved in polynomial time (when F defines 
a cycle), because we do not know how to find a low-weight cycle that only 
contains terminal nodes for demands of value 1. In the following we present 
a heuristic, where we first try to find a minimum cycle with respect to a 
certain weight function, and then choose, if possible, for each node in the 
cycle, the best demand of size 1. 

Let us first describe the weight function according to which we want to 
find a minimum cycle. Consider again (11) with F being a cycle with node 
set {u i , . . . , vn}, n odd, and k\,..., kn demands of size 1 such that demand 
ki has an endnode at node u,- (i = 1 , . . . , n). Since the objective function is 
nonnegative, the optimum integer solution and also the current LP solution 
certainly satisfy xk'(S(vi)) = 1. If we subtract this equation (for i = 1 , . . . n) 
from the cycle inequality, we get 

n 

y(F) ~ 2_> x v-^1)— ẑ  x ' (^G(U«) n f ) + 2_, 2_, • xe > - L̂ J • (16) 
fcg-K^ «=1 k£K" e€£: 

e connects u ,v 

Suppose for a moment that we do not have parallel edges, and all demands 
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k\,..., kn are different. If we choose as edge weights, for uv 6 E, 

wuv := 0.5 + yuv— ^T x*Lv ~ ]C ^L' 

then w(F) - 0.5 exactly coincides with the difference between the left- and 
right-hand sides of (16), when F is an odd cycle and each node in the cycle 
has exactly one incident demand of size 1. Thus, if w(F) < 0.5 and F is odd, 
we have a violated cycle inequality, otherwise not. If there are parallel edges 
{ e i , . . . , e p } , p > 2 , connecting nodes u and v, we aggregate these edges to a 
single edge, uv say, and assign it the weight 

wuv := 0.5 + J2 (ye. - J2 **i ~ 21 ** ) , 

where / := {i € { 1 , . . . ,p} | there exists some k € K\ with s*. > 0}. 
Now we determine a minimum cycle F* with respect to edge weights w 

(see below). Note that according to the definition of w, w(F*) — 0.5 is a 
lower bound for the slack of the most violated cycle inequality. Thus, if 
w(F*) > 0.5, there is no violated cycle inequality. Otherwise, if all nodes 
in the cycle are incident to some demand of size 1 (otherwise the heuristic 
fails), we run through all nodes of the cycle and determine for each node u, 
the best possible demand k{, i.e., we choose 

ki := argmin x (^G(U0 \ F*). 

It might be that the cycle inequality that is defined by our choices F* and 
ki,. •.p k\p*\ yields no longer a violated inequality, because the edge weights 
wuv do not reflect the exact slack, when nodes have more than one incident 
demand of size 1. 

There remains the problem of finding a minimum cycle F* in an undi
rected graph G = (V,E) with edge weights wuv, uv € E, that can be neg
ative. If the edge weights are indeed arbitrary, the problem to determine a 
minimum cycle is A/'P-complete. However, we can decide whether there is a 
cycle of negative weight and if not, find a minimum cycle by transforming 
the problem to a perfect matching problem (see [2]). Thus, we can decide 
whether there exists a cycle of weight less than 0.5 which might give rise to a 
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violated inequality. Since a perfect matching algorithm is very time consum
ing and since such an algorithm might return just one cycle, we preferred to 
implement the following heuristic. Starting from each node v € V, we deter
mine a shortest spanning tree by using Prim's algorithm ([16]) and check all 
fundamental cycles whether their weight is less than 0.5. In case the cycle is 
even, we contract one edge. This results in many violated cycle inequalities, 
and for many instances this algorithm finds a cycle of weight less than 0.5 
whenever there is one. 

4.2 The primal heuristic 
In step 8 of our branch-and-cut algorithm we call the primal heuristic. We 
do that after the cutting plane phase for the current node is finished, i.e., we 
have not found any more violated inequalities, and the current LP solution 
is fractional. The idea of our primal heuristic is to fix a set of fractional 
variables to zero or one, solve the LP again, and iterate this process until all 
variables are integer. This heuristic idea, often used in general mixed integer 
programming solvers, is sometimes called "plunging" or "diving", because 
we "dive" deep into the branching tree and "plunge" for a feasible solution. 
The tuning parameters of this heuristic are the order in which the fractional 
variables should be fixed in one step and their number. We performed several 
tests trying to give an answer to these two questions. It turned out that the 
heuristic in general worked best when we just fix one fractional variable at a 
time and choose a fractional variable that is close to one. Moreover, we fix 
all variables that are 1 to value 1 for the rest of the heuristic. 

. If the heuristic does not change the linear program (except for fixing vari
ables) it frequently ends with an integral solution that violates one of the cut 
or cover constraints in (1), since not all of these constraints are contained in 
the LP. Therefore we separate those inequalities for each fractional solution 
appearing in the course of the heuristic. This unfortunately slows the heuris
tic down. In order to speed up the separation process in the heuristic, we 
only add those cut inequalities (1) (i), knapsack inequalities (1) (ii) and cover 
inequalities (7) that are violated by at least 0.5 (the usual violation epsilon 
in the cutting plane phase is 0.1). Moreover, we restrict the number of times 
the heuristic is called, depending on its success. More precisely, we calculate 
(i) the ratio between the time spent in the heuristic and the total time, and 
(ii) the ratio between the number of times the heuristic could improve the 
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best solution and the number of times the heuristic was called. If the "time" 
ratio is less than the "success" ratio, we call the heuristic, otherwise not. The 
results in the next section show that this strategy performs quite well, we 
obtain reasonably good primal solutions by spending at most 30% (usually 
less than 10%) of the total time in the heuristic. 

5 Computational results 

In this section we report on the test runs performed with our branch-and-cut 
algorithm. The code is implemented in C, and all results were obtained on 
a Sun SPARC 20 Model 71. The examples are modified real-world examples 
with pipe capacity B = 4. Table 1 summarizes the data. Column 2 and 3 
show the number of nodes and links of the physical network, Columns 4 and 
5 contain the corresponding information for the pipe graph. Here, \V'\ is the 
number of nodes incident to some demand edge. Columns 6 and 7 give the 
number of demands of size 1 and 4. 

The last column gives the number of 0/1 variables in our IP formulation. 
The numbers range from about 250 for the smallest problem up to 25000 
variables. The test series in Table 1 are based on two physical networks. 
nw is an example approximating parts of the physical network in Norway. 
All other examples whose name starts with "nw" are derived from nw. nw3 
differs from nw in that it contains some further physical links, that some more 
physical nodes are endnodes of demands, and that the set of possible express 
pipes is extended. The remaining "nw"-examples are variations of these two 
instances, where we wanted to test how sensible the solution is with respect 
to changes in the input data. If the name contains the letters ".0", the link 
capacities (of the example without ".0") are multiplied by ten in order to 
see what influence the link capacities have on the solution. Examples ending 
with ".p" have more express pipes than the corresponding example without 
".p". The input pipes in the ".p"-examples were generated by finding for 
each demand k a set of short ufcufc-paths (these were determined by adding 
certain edges to shortest path trees). Example nwS.dl.p results from nwS.p 
by changing the size of 9 demands from B to 1. The last three examples in 
Table 1 are typical for local area networks. The demand graph of terbstar 
consists of node-disjoint stars. The demands of terbco form a complete graph 
between the root nodes of these stars, and the demand graph of terbstco is 
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the union of these two demand graphs. 

Example 

\v\ 

C 
\V'\ \E\ 

Demands 
size 1 size B 

Variables 

nw 27 44 5 22 2 8 242 
nw.p 27 44 5 63 2 8 693 
nw3 27 60 10 91 3 18 2002 
nw3.p 27 60 10 191 3 18 4202 
nw3.0 27 60 10 91 3 18 2002 
nw3.0.p 27 60 10 191 3 18 4202 
nw3.dl.p 27 60 10 191 12 9 4202 
terbco 62 81 7 113 0 21 2486 
terbstar 62 81 56 248 36 12 12152 
terbstco 62 81 56 359 36 33 25130 

Table 1: Input data 

Unfortunately, the network planners could not give us any reasonable 
numbers for the cost of installing the express pipes. Thus, we played with this 
parameter a little bit and performed different tests varying the installation 
cost 7 from 0 (which means that we get the express pipes for free) up to 10 
which results in rather high express pipe costs compared to the routing costs. 

An interpretation of 7 may be illustrated as follows. If we have the choice 
between installing a new direct pipe for a demand of value 1 and using the 
spare capacity of an existing path of "length" less than 7 in the physical 
network, then the "long" path is preferred. 

Table 2 through 5 summarize our tests. Column 2 gives the number of 
inequalities of the initial LP, Columns 3 to 5 show the number of violated 
cut (those of type (1) (i) and (8) together), cover and cycle inequalities. The 
number of LPs solved (including those in the primal heuristic) and the num
ber of solved branch-and-bound nodes are presented in Columns 6 and 7. 
Columns 8 and 9 show the global lower bound and the value of the best fea
sible solution after the algorithm stopped. The total time (in CPU seconds) 
of the algorithm and the time spent in the heuristic are given in the last two 
columns. 

Looking at Table 2 with the results for 7 = 0 we see that we can solve 
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all problem instances in the root node, i.e., we do not. have to branch. Even 
more, with the exception of terbstar and terbstco the solutions of the root 
LPs are integer, since the primal heuristic has not been called. This indicates 
that the inequalities we separate are indeed important to solve the problems. 
Note that all ".p"-examples have lower objective function value than their 
corresponding counter part without ".p". An interesting question is how the 
number and variability of the express pipes influences the solutions. To com
pletely answer this question and to find the best feasible solution among all 
possible express pipes, our algorithm must be embedded into a column gener
ation approach. In case the network planners do not impose any restrictions 
on the set of express pipes, it will be a challenge for the future to integrate 
the cutting plane and the column generation approach in order to obtain 
the globally best solution. Whether the link capacities have an influence on 
the quality of the solution, we cannot draw any conclusions from this test 
set. For nwS the optimum is the same, for nwS.p we obtain a better solu
tion. A noteworthy fact is that all "nw"-examples are solved within seconds. 
The "terb"-examples seem to be harder, but still our algorithm provides the 
optimum solution after at most 25 minutes of CPU time. 

For 7 = 1 (see Table 3) the results are basically the same with mostly 
slightly higher running times. But, if we further increase 7 the situation 
changes (Table 4 and 5). We still can solve all "nw"-examples within one 
minute, but for terbstar and terbstco our algorithm gets stuck. We can give 
a solution guarantee of 9% or less after about 3 hours of CPU time (which 
might be acceptable in practice), but we almost cannot improve this gap any 
further, even if we spent some more hours of CPU time. Since the express 
pipes are very expensive, the algorithm tries to avoid using y-variables. What 
is missing are further inequalities (like the hypomatchable inequalities) that 
force the y-variables to one whenever the routing variables x are positive. If 
network planners will indeed come up with such high express pipe installation 
costs and they are really interested in finding the optimum solution more 
research in this area will be necessary. 

20 



Example 
init 

Cuttin 
knap 

5 Plane 
cuts 

s 
cycle 

lps bab lb ub Times (sec) 
Heur Total 

nw 25 28 6 0 5 1 183 183 0.0 0.1 

nw.p 25 71 0 0 11 1 156 156 0.0 0.2 

nw3 52 125 30 18 8 1 287 287 0.0 0.6 

nw3.p 51 224 3 17 19 1 243 243 0.0 1.7 

nw3.0 52 63 33 4 12 1 287 287 0.0 0.5 

nw3.0.p 51 46 1 4 4 1 227 227 0.0 0.4 
nw3.dl.p 51 469 7 108 13 1 139 139 0.0 5.0 
terbco 42 31 31 0 8 1 536 536 0.0 0.5 
terbstar 150 1200 389 334 42 1 193 193 1.0 74.8 
terbstco 192 3683 1194 1142 138 1 732 732 17.8 1483.0 

Table 2: 7 = 0 

Example 
init 

Cuttin 
knap 

g Plane 
cuts 

s 
cycle 

lps bab lb ub Time 
Heur 

s (sec) 
Total 

nw 25 24 7 0 6 1 197 197 0.0 0.1 
nw.p 25 57 3 0 9 1 166 166 0.0 0.2 
nw3 52 120 34 34 8 1 315 315 0.0 0.7 
nw3.p 51 226 8 27 14 1 264 264 0.0 1.8 
nw3.0 52 113 33 33 7 1 315 315 0.0 0.8 
nw3.0.p 51 146 5 21 8 1 248 248 0.0 0.9 
nw3.dl.p 51 532 14 112 29 1 156 156 0.1 8.6 
terbco 42 47 32 0 10 1 557 557 0.0 0.6 
terbstar 150 1385 384 511 23 1 241 241 0.6 107.0 
terbstco 192 3431 1087 1056 93 1 801 801 2.5 1298.7 

Table 3: 7 = 1 
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Example 
init 

Cuttin 
knap 

g Planes 
cuts 

s 
cycle 

Ips bab lb ub Times (sec) 
Heur Total 

nw 25 24 7 0 6 253 253 0.0 0.1 
nw.p 25 60 3 0 10 206 206 0.0 0.2 
nw3 52 130 31 28 9 427 427 0.0 0.9 
nw3.p 51 295 9 50 19 348 348 0.0 4.2 
nw3.0 52 137 35 38 9 427 427 0.0 1.9 
nw3.0.p 51 235 6 46 20 332 332 0.0 2.5 
nw3.dl.p 51 757 15 159 31 217 217 0.0 16.9 

terbco 42 56 26 0 8 641 641 0.0 0.5 
terbstar 150 7821 

12821 
26186 

3417 
5194 
10967 

3202 

5138 
11332 

3064 
4950 
9679 

697 
1303 
'2632 

423 
423 
424 

433 
433 
433 

965.0 
1386.9 
1817.9 

10003.3 
20008.6 
40014.0 

terbstco 192 5365 
7270 

11938 

1596 
2295 
4057 

1833 
2643 
4885 

1087 
1976 
3941 

196 
482 
1126 

1064 
1065 
1066 

1077 
1077 
1077 

1320.2 
1894.6 
2617.5 

10141.5 
20123.8 
40000.8 

Table 4: 7 = 5 

Example 
init 

Cuttin 
knap 

5 Planes 
cuts | cycle 

Ips bab lb ub Time 
Heur 

s (sec) 
Total 

nw 25 25 9 0 7 323 323 0.0 0.1 

nw.p 25 76 3 0 16 256 256 0.0 0.3 

nw3 52 199 42 39 25 567 567 0.0 3.9 

nw3.p 51 442 17 167 88 453 453 0.0 16.4 

nw3.0 52 184 42 36 20 567 567 0.0 3.7 

nw3.0.p 51 389 16 168 100 437 437 0.0 15.7 

nw3.dl.p 51 1078 35 259 78 292 292 2.4 56.3 

terbco 42 64 25 0 8 746 746 0.0 0.5 

terbstar 150 4840 
8732 
15728 

5024 
10460 
19508 

1518 
2883 
5491 

1582 
2903 
5084 

81 
193 
383 

626 
629 
632 

678 
678 
675 

1038.5 
1464.9 
2888.8 

10002.3 
20028.5 
40007.1 

terbstco 192 4976 
6278 
8773 

1330 
2813 
5863 

1085 
1657 
2575 

777 
1450 

1 2375 

17 
58 
127 

1370 
1374 
1378 

1424 
1424 
1424 

4143.3 
5438.5 
7263.0 

10096.8 
20166.5 
40060.3 

Table 5: 7 = 10 
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6 Conclusions 

Pipe selection and routing problems in telecommunications is a rather new 
area for applied combinatorial optimization. There are many related prob
lems and models to the one in our study that call for analysis and algorithmic 
development. 

The results obtained in our study indicate that a cutting plane approach 
may be attractive for solving certain real-world pipe selection and routing 
problems. Further work could be directed towards solving problems with 
larger pipe installation cost 7. This would require a further polyhedral study 
of the polytope Ps and, for this, other inequalities derived from path packing 
problems (see [6], [11]) may be of interest. 

A very interesting area is to extend the problem by allowing (almost) 
arbitrary express pipes and to modify the cutting plane algorithm by adding 
a column generation scheme. 
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