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Abstract

The paper studies Hamiltonian systems with a strong potential forcing
the solutions to oscillate on a very small time scale� In particular� we are
interested in the limit situation where the size � of this small time scale tends
to zero but the velocity components remain oscillating with an amplitude
variation of order O���� The process of establishing an e�ective initial value
problem for the limit positions will be called homogenization of the Hamilto�
nian system� This problem occurs in mechanics as the problem of realization
of holonomic constraints� in plasma physics as the problem of guiding center
motion� in the simulation of biomolecules as the so called smoothing prob�
lem� We suggest the systematic use of the notion of weak convergence in
order to approach this problem� This methodology helps to establish uni�
	ed and short proofs of the known results which throw light on the inherent
structure of the problem� Moreover� we give a careful and critical review of
the literature�
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Introduction

The concern of this paper is the study of Hamiltonian systems with a strong
potential forcing the solution to oscillate on a time scale� which is vastly
smaller than the time scale of the mean evolution� In particular we are
interested in the limit situation where the size � of the small time scale
is decreased to zero� Depending on the initial values three situations are
possible�

I The position and the velocity are converging pointwise as functions of
time to certain limit functions as �� ��

II Only the position is converging pointwise to a limit function as �� ��
The velocity remains oscillating with an amplitude variation of order
O����

III Neither position nor velocity are converging pointwise�

We will see� that the positions indeed converge pointwise if the corresponding
total energies are bounded in the limit � � �� Thus� case III is ruled
out for bounded energies� Case I can be handled by standard averaging
techniques of perturbation theory� cf� e�g� 	�
�� The remaining case II leads
to interesting results and deserves special techniques to handle the rapidly
oscillating velocities� The speci�c problem for this case II is to establish an
e�ective initial value problem� which describes the limit solution� We decided
to call this problem homogenization of the Hamiltonian system in order to
have a clear distinction in terminology to the somewhat simpler averaging
problem of case I� This terminology seems to be justi�ed since there is some
methodical analogy to the problem of homogenization for elliptic boundary
value problems 	�
��

A discussion of this particular homogenization problem is somewhat scat�
tered in the literature� However� it appears at the heart of three important
types of problems�

A Realization of holonomic constraints� In some texts on Theoretical Me�
chanics the question appears whether the formalism of the d�Alembert�
Lagrange principle for holonomic constraints can be justi�ed by intro�
ducing strong� realistic potentials� which � in the limit of in�nite
sti�ness � force the motion to the constraints manifold� This ques�
tion is discussed to some extend in the monographs 	��	��	��� by means
of examples in 	���	�
�� A mathematically exhaustive investigation of
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this question is given in 	�
�� which is heavily based on the important
early results of 	����

It turns out that this intuitive approach to justify the d�Alembert�
Lagrange formalism only works for either rather special initial data
�leading in fact to case I� or for rather special constraining potentials�
The interpretation of the physical meaning of these special potentials
is deeply connected to that of the distinction between case I and II�
The reader may �nd quite controversial positions in the literature� cf�
	��� p� 
� and 	�
� p� �����

B Guiding center of motion of charged particles in nonuniform magnetic

�elds� The spiral motion � Larmor gyration � of free charges around
magnetic �eld lines is a well�known phenomenon� The physical im�
portance of case II is doubtless here� since the velocity of this gyration
necessarily remains O���� Quite early� the results for problems of type
A� although unexpected and counterintuitive in that context� have
successfully been discovered in the physical literature 	��	���	��� for
a description of fast Larmor gyration in nonuniform magnetic �elds�
These results play a key role for the explanation of magnetic traps
and magnetic mirrors in plasma physics� They in fact motivated the
important mathematical research of 	����

C Corrected potentials for introducing constraints in the simulation of

biomolecules� Modeling biomolecules as classical mechanical systems
leads to Hamiltonian systems with vastly di�erent time scales� There
is a strong need for eliminating the smallest time scales� because they
are a severe restriction for numerical simulation� This leads to the
idea of just freezing the high frequency degrees of freedom� How�
ever� the naive way of doing it via holonomic constraints� i�e�� via
the d�Alembert�Lagrange principle� is bound to produce incorrect re�
sults� since there are strong potentials present which do not �t the
requirements mentioned for problems of type A� There is a need of
correcting the weaker potentials as was �rst noted in 	���� where such
a correction was suggested on the base of �questionable� additional
physical assumptions� However� the right correction can be estab�
lished on strictly mathematical grounds using the results of 	���	�
� �
at least for certain subsystems as was argued in 	��� where the reader
will �nd a detailed discussion of the �eld�

In this paper we approach the homogenization problem by making con�
sequent use of the notion of weak convergence� which enables us to handle
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the velocities in a short and lucid way� To be speci�c� since only averages

of the velocities are converging� we are led to certain classes of test func�
tions in order to have an easy�to�use concept of convergence� It turns out
that the weak��star� convergence in L� and in the space of distributions D �

will be appropriate for our purposes� The idea of using weak convergence
for homogenization problems was systematically developed by Murat and

Tartar in the mid�seventieth� cf� 	�
� and the literature cited therein�
We do not claim to present any new results �except Theorem ����� but

we hope that the methodical aspects of our presentation help to clarify and
unify the whole business� For instance� we will show that the main di�culty
of the problem is the lack of weak continuity of certain nonlinear functionals
like squaring a function� Besides� our aim is to give a critical review of
the known literature for problems of type A� B and C� To the best of our
knowledge� the collected references are quite complete�

Organization of the Paper�

In Section � an extraction principle is established for solution sequences
with bounded energy� The extracted subsequence shows a certain mixture
of strong and weak convergences� which is of basic importance for the rest
of the paper� We call this mixture M�convergence�

In Section � this concept is used to derive an abstract limit equation�
which gives a general answer to the homogenization question� However�
this equation is not intrinsic and therefore only of minor use� Nevertheless
it provides a lot of insight in the structure of the problem and allows to
establish short proofs of the more concrete answers for special situations�

Section � is devoted to the problems of type A� i�e�� realization of holo�
nomic constraints� We give short proofs of the known results�

The general case for manifolds M of codimension r � � is discussed
at length in Section �� We show the connection to the Virial Theorem of
Statistical Physics and to the theory of adiabatic invariants of Hamitonian
systems�

For the sake of completeness� the general case for codimension r � � is
shortly reviewed in Section �� It turns out that resonances and some kind
of singularities may cause a nondeterministic behavior of the limit solution�
This is the central result of the work of Takens 	�
�� which implies that
in general no really satisfactory answer can be given to the homogenization
problem�

Section 
 presents two examples for the codimension r � � case� The �rst
one is academic and completes some aspects of the discussion in Section ��
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whereas the second one deals with the problem of type B�

Basic Notation�

For the sake of simplicity we consider a model problem with the following
separable Hamiltonian on R�d

H�x� �� �� �
�

�
j�j� � V �x� � ���U�x��

Throughout the paper we make the following basic assumptions�

A� V � C� is bounded from below� i�e�� infx�Rd V �x� � V� � ���

A� U � C� attains its global minimum � on a smooth m�dimensional
manifold M� i�e��

U jM � �� U�x� � � �x � Rd nM�

The codimension is r � d�m�

A� U is uniformly strictly convex in directions orthogonal to TM� i�e��
there is an � � � with

�TD�U�x�� � ��j�j� �� � NxM�

where NM denotes the normal bundle of M�

We will denote the potential forces by

F �x� � gradV �x�� G�x� � gradU�x��

Thus� the Hamiltonian induces corresponding canonical equations of motion�

���x� � ��F �x�� �G�x�� � � ���

with initial values
x���� � x��� �x���� � �x���

We denote the energy� which is an invariant of motion by

H� � H�x��� �x
�
�� ���
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� M�Convergence

We start our investigation by a careful study of the convergence properties
of the sequence x� for increasingly strong potential� i�e�� � � �� We will
prove an extraction principle based on energy methods�

Lemma ��� Let a sequence �� � be given� for which the initial position x��
as well as the initial energy H� are bounded� Then� for each choice T � ��
there is a subsequence ��� such that the unique solutions x�

� � C��	�� T ��Rd�
exist and the following limits hold

x�
� � x� in C�	�� T ��Rd�� �x�

� �
� �x� in L��	�� T ��Rd�� ���

for a Lipschitz continuous function x� � C����	�� T ��Rd�� This limit function

gives a path in M�

x��t� �M �t � 	�� T ��

and we furthermore get uniformly in 	�� T �

dist�x�
�

�M� � O����� ���

On the other hand� if there is a sequence ��� such that ��� and ��� hold� the
boundedness of x�

�

� and H�� follows�

Proof� Let x� � C��	�� T�	�Rd� be the unique solutions of the equations
of motion with the maximal possible choice of T� � �� The boundedness
H� � H� and jx��j � K for all � implies

�

�
j �x�j� � H� � V��

and therefore by integration

jx��t�j � jx��j� t
p

��H� � V�� � K � t
p
��H� � V���

Thus� existence and uniqueness theory for ordinary di�erential equation
shows that one can choose T� ��� Fixing some �nite T � �� we thus have
that x� and �x� are bounded sequences in C�	�� T ��Rd�� By the theorems of
Arzel�a�Ascoli and of Alaoglu �cf� 	��� Thm� ����
 ������� remember that
L� is the dual space of L�� we now conclude� that there is a subsequence ��

and a limit function x� � C����	�� T ��Rd� � W ����	�� T ��Rd� such that the

limit relations in ��� hold� Since in consequence �x�
� D �

� �x� in the sense of
distributions and therefore

����x�
� D �

� ��
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we get by taking limits in D � for equation ��� that G�x�� � �� i�e�� x�

constitutes a path in M� As a consequence we get

dist�x�
�

�M�� � ���

uniformly in 	�� T �� Thus� for su�ciently small ��� the orthogonal projec�
tion x�

�

M
� M of x�

�

is a uniquely de�ned continuous function in t� Taylor
expansion of U shows

����H� � V�� � U�x�
�

�

�
�

�
�x�

� � x�
�

M�TD�U�x�
�

M��x�
� � x�

�

M� � O�dist�x�
�

�M����

Using assumption A� and the fact that �x�
� � x�

�

M
� � N

x�
�

M

M� we get the

estimate
�� dist�x�

�

�M�� � K���
�� � dist�x�

�

�M����

where K� denotes some constant� With ��� � dist�x�
�

�M�	�� we thus have

���� �
K�

��

�
� � dist�x�

�

�M�����
�
�

Because of ���� we have for su�ciently small ��

K�

��
dist�x�

�

�M� � �

�
�

which implies

��� �
p
�K�

�
�

i�e�� assertion ����
The proof of the converse result is straightforward�

Remark� In the following we will simplify the notation� All function spaces
will be understood to denote functions 	�� T � � R

d� Terms like O���� O���
applied to functions are meant to hold in the space C�	�� T ��Rd��

If we do not bound the initial energy H�� we cannot expect strong con�
vergence of x� nor can we expect that the limit x� has range in M�

Example� Consider the Hamiltonian

H�x� �� �� �
�

�
�� � ���U�x�






with the potential

U�x� �

�
x�	� x � �

�x� x � �
�

For the initial values x�� � �� �x�� � � we get the unbounded energy H� �
���� � �� The solution of the equation of motion is given by the rapidly
oscillating function x��t� � x�t	��� where

x�t� �

���
��

cos��t� � � t � 
	�

�� sin�t� 
	�� 
	� � t � �
	�

sin��t� �
	�� �
	� � t � �
	�

�

Here� we get merely weak convergence of x� in L�� namely

x�
�
� x� � ��	
 �

�

�
	�

Z ����

�
x��� d��

which is not on the manifold M � f�g de�ned by the minimum of U �

In a small neighborhood of a compact path inM it is possible to introduce
uniquely the following decomposition of a point x � Rd

x � xM � xN � xM �M� xN � NxMM�

We will view �xM� xN� as a new coordinate system for this neighborhood�
More precisely� the coordinates are given by pulling this decomposition back
to a local bundle trivialization

!	 �Rr� h
� 
i� � �NM� h
� 
i� � ! � Rm�

which obeys the metric structure� Whenever appropriate� we will � by
"abus de langage# � view the coordinates as �xM� xN� � !	Rr�

These coordinates can be applied to a sequence x�� which ful�lls the
assertions of Lemma ���� Using Lagrangian formalism it is straightforward�
but tedious� to establish the equations of motion in these new coordinates�
The result can be found in the Appendix of this paper� Inserting the details
of the convergence results of Lemma ��� these equations take the form

M�x��

	
�x�
M

�x�N



�

	
����DMU�x�� � O���

����DNU�x�� � O���



� ���

�



where DM denotes di�erentiation with respect to xM and DN with respect
to xN � The mass matrix M�x�� �Grammian matrix of the Euclidean metric
in the new coordinates� takes the form

M�x�� �

	
O��� O���

O��� I



� M�x���� �

	
O��� O���

O��� I � O���



� �
�

Note� that the metric in the normal coordinates xN does not change� because
they belong to the Euclidean subspace NxMM of Rd�

Lemma ��� Under the assumptions of Lemma ���� there is a subsequence

��� such that we get in addition to the assertions of Lemma ���

x�
�

M � x� in C�� �x�
�

M

�
� �x� in L��

Moreover� x� has a Lipschitz continuous �rst derivative� i�e�� x� � C����

Proof� Without loss of generality we may assume� that the assertions of
Lemma ��� already hold for the sequence �� Taylor expansion as in the proof
of Lemma ��� yields

DMU�x�� �
�

�
�x�N �TDMD

�U�x�M�x
�
N � O���� � O����

and
DNU�x�� � D�

NU�x�M�x
�
N � O���� � O����

where we have used DU jM � � and the estimate x�N � O���� Thus� the
equations of motion ��� and the expression �
� for the inverse of the mass
matrix give

�x�M � O���� �x�N � O������

Applying the theorems of Arzel�a�Ascoli and Alaoglu once more� we conclude
that there is a subsequence ��� such that

�x�
�

M � �x�

uniformly in t � 	�� T � and �x�
�

M

�
� �x��

For later purposes we consider the quantity

��
�

� x�
�

N	�
� � O����

Using the Alaoglu theorem� we get by a further extraction of a subsequence
��� the convergences H��� � H� as well as

��
�� �
� � in L��	�� T ��Rd�� ��

�� � ��
�� �
� $ in L��	�� T ��Rd�d��

Now� we combine all these convergences in a single notion�






De�nition ��� Given a sequence � � � and a corresponding sequence of
functions x� � C��	�� T ��Rd�� The sequence M�converges to a function x� �
C����	�� T ��M� if H� � H� in R and

x�M � x� in C��	�� T ��M�� �x�M
�
� �x� in L��	�� T ��Rd��

as well as

x�N � O��� in C�	�� T ��Rd�� �x�N
�
� � in L��	�� T ��Rd��

and furthermore if there exist the limits

�� � x�N	�
�
� � in L��	�� T ��Rd�� �� � ��

�
� $ in L��	�� T ��Rd�d��

Here� we assume that the sequence � is restricted to su�ciently small values�
for which the coordinate decomposition x� � x�

M
� x�N makes sense�

The results of Lemma ��� and Lemma ��� are summarized by the follow�
ing theorem�

Theorem ��� Let a sequence �� � be given� for which the initial position

x�� as well as the initial energy H
� are bounded� Then� for each choice T � ��

there is a subsequence ��� such that x�
�

M�converges to some x� � C����

Conversely� if x� M�converges� the initial position x�� as well as the initial

energy H� are bounded�

For later purposes we state the following simple consequence for the
initial values x�� � x���� and �x�� � �x�����

Corollary ��� Suppose x� M�converges to x�� Then we have

x�� � lim
���

x�� �M

and

�x�� � lim
���

�x��M � Tx�
�

M�

� Abstract Homogenization

The question arises� whether the limit x� of a M�converging sequence x� is
itself a solution of an initial value problem onM� In this section we o�er an
abstract approach for unfolding the structure of such a limiting equation�
We call this process "homogenization#� since it eliminates the fast oscillation
x�N normal to the manifold� cf� the analogous situation in 	�
��

�



The starting point is the observation� that we may take the limit �� � in
the equations of motion ��� in the sense of distributions� The limit �x�

�
� �x�

in L� implies that

�x�
D �

� �x�

in D �� in fact� even in the sense of distributions of �rst order� i�e�� in D ��� cf�
	���� Thus� taking limits in ���� we get

�x� � F �x�� �D ���lim
���

���G�x�� � �� ���

This limit expression can be evaluated�

Theorem ��� Suppose that x� M�converges to x�� Then� the limit


� � D ���lim
���

��	�

exists as a function in L� and x� � C��� ful�lls the equation

�x� � F �x�� �DG�x�� 
 
� � �

�
D�G�x�� � $ � � �
�

almost everywhere� The quantities �� and $ are from De�nition ����

Proof� Taylor expansion of second order yields

���G�x�� � ���
�
G�x���G�x�

M
�
�

� DG�x�
M
� 
 �

�

�
�Z �

�
��� s�D�G�x�M � sx�N � � ��� � ��� ds�

���

Now we have the convergence D�G�x�
M

� sx�N � � D�G�x�� uniformly in
s � 	�� �� and t � 	�� T �� Since multiplication is continuous as the operator

C� 	 �L��weak�%�topology�� �L��weak�%�topology��

we getZ �

�
��� s�D�G�x�M � sx�N � � ��� � ��� ds

�
�

�

�
D�G�x�� � $� ����

Equation ��� shows that D ���lim
���

���G�x�� exists as a function in L�� Thus�

the relations ��� and ���� yield the existence of the limit

D
���lim
���

DG�x�M� 

��

�
� &


��



as a function in L�� Using the �xM� xN� coordinates� we have

DG�x�M� 

��

�
�

	
�

D�
NU�x�

M
���	�



�

Note� that ��	� � Nx�
M
M� Our general assumption A� implies� that

D�
NU�x�M�

�� � D�
NU�x����

in C�� Thus� using the continuity of the multiplication as an operator

C� 	D �� � D
���

we get the existence of the limit


� � D ���lim
���

��

�
� D ���lim

���
D�

NU�x�M�
�� 
D�

NU�x�M� 

��

�
� D�

NU�x����&


as a function in L�� Turning back to the usual coordinates� we conclude
that

D
���lim

���
DG�x�M� 


��

�
� DG�x�� 
 
��

which �nally gives the desired limit equation�

Remarks�

�� Note� that the existence of D ���lim
���

��	� implies that ��
�
� �� However�

in general we will still have

�� � ��
�
� $ 
� ��

For example� ���t� � sin�t	�� yields ��
�
� � but �� � �� � j��j� �

� $ �
�	�� Thus� the product mapping is not weakly continuous� cf� 	
��

�� The �rst order Taylor expansion

���G�x�� �

Z �

�
DG�x�M � sx�N � 
 �

�

�
ds

instead of ��� cannot be used to evaluate the D ���limit of the expres�
sion� The reason is� that certainlyZ �

�
DG�x�M � sx�N � ds � DG�x��

��



in C� but in general not in C�� Thus the limit is not simply DG�x��

��
since the product is not continuous on C	D �� as the following example
shows� Take ���t� � � cos�t	�� and �� � ��� cos�t	��� We have �� � �
in C� but not in C�� and D ���lim

���
�� � �� since ���t� � d sin�t	��	dt�

However� the product converges not to zero� ���� �
� �	��

�� This abstract theorem shows� that in general there exists an additional
force for the limit motion onM� which involves third derivatives of the
strong potential U �

�� For codimension r � �� the limit equation �
� was already stated by
Koppe and Jensen 	��� eq� ���� and by van Kampen 	�
� eq� �
�����
using suitable averaging operators to express $�

The abstract homogenization process of this section does not yield an in�

trinsic description of x� onM� This is even not possible� since the "shadow#
$ of the normal components cannot in general be predicted by its initial
value $��� as will be explained in Section �� However� for certain important
situations it is indeed possible� to derive a completely intrinsic description
of x�� This will be the subject of the next two sections�

� Realization of Holonomic Constraints

If the last force term of the limit equation �
� vanishes in the tangential
direction� i�e�� if

�

�
D�G�x�� � $ � Nx�M� ����

the limit function obeys

�x� � gradV �x�� � Nx�M� ����

because DG�x��

� � Nx�M holds in any case� By the d�Alembert�Lagrange
principle� the relation ���� describes the motion due to the potential V under
the holonomic constraints

x��t� �M �t � 	�� T ��

Thus� the limit � � � "realizes# holonomic constraints with potential V � if
and only if the condition ���� is ful�lled� Standard textbooks on classical
mechanics like 	��	��	��	��� prove the existence of a unique solution x� �
C��	�� T ��M� of ���� for given initial values �x�� � Tx�

�

M� The arguments

��



used in the proof of Theorem ��� show that� given a solution of ����� the
equation

�x� � gradV �x�� � �DG�x�� 
 

can always uniquely be solved for the Lagrange�parameter 
�t� � Nx�M�
Summarizing our discussion yields the following

Theorem ��� Suppose that condition ���� holds for a given M�converging

sequence x�� Then� there is a unique 
 � L��	�� T �� Nx�M�� such that

DG�x��
� �
�

�
D�G�x�� � $ � DG�x�� 
 
�

On the other hand� the initial value problem

�x� � F �x�� �DG�x��
 � �� G�x�� � �� ����

with x���� � x�� � M� �x���� � �x�� � Tx�
�

M has a unique solution x� �
C��	�� T ��M� and 
 � C�	�� T �� Nx�M��

Remark� For the purposes of numerical integration� one should represent
the constraints manifold M by r independent conditions� i�e��

M � fx � Rd � ��x� � �g� � � Rd� R
r� with rankD��x�jx�M � r�

Then� the equations of motion are described more conveniently as

�x� � F �x�� �D�T �x��
 � �� ��x�� � ��

with a Lagrange parameter 
 � Rr� This is a so called index � di�erential�
algebraic system� cf� 	����

There are essentially just two cases� where one can show� that condition
���� holds�

Case I	 Vanishing Normal Energy

Theorem ��� Suppose the initial values satisfy

x�� � x�� �M� �x�� � �x�� � Tx�
�

M�

Then� the sequence x� M�converges to the unique solution of equation �����

��



Proof� The assumptions on the initial values make standard perturbation
theory applicable� With its help Lubich 	�
� Theorem ���� proves that
x�N � O����� which implies the strong convergence

�� � ��

uniformly in 	�� T �� In this case we conclude that

�� � �� � �

strongly� hence $ � �� Theorem ��� and Theorem ��� yield the existence of
a subsequence x�

�

� which M�converges to the solution x� of equation �����
Since this limit is unique by Theorem ���� we can disregard the extraction of
subsequences and have thus proved the convergence of the original sequence�

Remark� The �rst mathematical proof of this theorem was given by Rubin
and Ungar 	���� It appears in form of an example in the textbook of
Arnold 	�� Chap� ��A�� For codimension r � � one can �nd a discussion
in 	��� and 	�
�� It is restated as Theorem � in 	�� Chap� ��x
����

Case II	 Constraining Potentials with Constant Gully Width

Theorem ��� Suppose that initial values x��� �x�� are given with uniformly

bounded energy H� � H�x��� �x
�
�� ��� such that

x�� � lim
���

x�� �M

and

�x�� � lim
���

�x��M � Tx�
�

M�

If the constraining potential U satis�es

D�
NU jM � const�

the sequence x� M�converges to the unique solution of equation �����

Proof� By Theorem ��� there is some subsequence x�
�

� which M�converges
to a solution x� of the limit equation �
�� Since �� is normal to the manifold�
the tensor $ takes the form

$ �

	
� �

� $NN



�

��



using �xM� xN��coordinates� For a given vector �eld X � Tx�M we get in
the metric of M

hD�G�x�� � $� Xi �
�
D�DXU jx�x�

�
� $

�
�
D�

NDXU jx�x�
�
� $NN

�
�
DXD

�
NU jx�x�

�
� $NN �

����

because the tangential derivates DX commutes with the normal derivative
DN � Since by assumption DXD

�
NU � � for all X � TM� the condition

���� is satis�ed� Theorem ��� and Theorem ��� show that x� is the unique
solution of the constrained system ����� This uniqueness of the limit x�

implies� that already the original sequence x� M�converges to x��

Remarks�

�� In view of Corollary ��� the conditions on the initial data are even
necessary for the assertions of the theorem� However� they allow a
nonvanishing normal velocity component�

�x�N��� � O����

�� An example of a potential U satisfying the condition of this theorem
is given by U�x� � dist�x�M���

�� This theorem has been stated and proved by Gallavotti 	�� Chap�
��x��
�� who calls it "Arnold�s theorem# in view of a remark� which
was made by Arnold on p� ��f of his textbook 	���

�� Takens 	�
� o�ers a proof under somewhat more restrictive conditions
on the potential U � cf� his remark on p� ����

�� This theorem was extended to the case of a time dependent potential
V by Schmidt 	���� Our methods extend without di�culty to that
case�


� For codimension r � � one can �nd a discussion in 	����	���� and 	�
��

�� This theorem shows that in the limit the normal and the tangential
part of the energy are completely separated�

H� �
�

�
j �x�j� � V �x�� �E�

N �

��



where E�
N is a constant� Interestingly enough� this energy separation

holds for exponentially large times in the case � � �� �� To be precise�
for the energy decomposition

H� �
�

�
j �x�Mj� � V �x�M� � E�

N

Benettin� Galgani� and Giorgilli 	��	
� have proved the following
Nekhoroshev�type of result�

jE�
N�t��E�

N���j � � for � � t � exp�b ��a��

where a and b are positive constants� In general� one has a � �	r�
where r denotes the codimension of the constraints manifoldM� but for
instance� the special potential U�x� � dist�x�M�� yields a � � in any
dimension� These results should be contrasted with the comparatively
rather trivial estimate given by Schmidt 	��� Prop� ���

� The General Case for Codimension �

In general� the explicit evaluation of the term

�

�
D�G�x�� � $ ����

demands a careful study of the normal oscillations x�N � For reasons� which
will become clear in the next section� we restrict this study to the codimen�
sion r � � case� We are slightly changing notation in this case� Since we
are interested in local properties� we may assume without loss of generality
that the manifold M is orientable� Let eN � NM be a smooth �eld of unit
normal vectors� Now� the local coordinate system of points x near to the
range of the limit function x� is given by

x � xM � xN 
 eN �xM��

In this way� the matrix $ takes the special form

$ � � 
 eN �x��� eN �x���

where the scalar function � is given by the limit

�x�N	��
� �
� ��

�




On the manifoldM the constraining potential U shows the "spring constant#

���x� � D�
NU�x� � D�U�xM� � �eN �x�� eN�x��� �x �M�

in normal direction� Note that ��x� � � � � by assumption A�� For a
M�converging sequence x�� we thus introduce the normal energy

E�
N �

�

�
� �x�N�

� �
���

�
���x�M� 
 �x�N ���

Since x�N � O���� the total energy splits as

H� �
�

�
j �x�Mj� � V �x�M� � E�

N � O���� ��
�

Lemma ��� For a given M�converging sequence x�� the normal oscillation

x�N satis�es the equation

�x�N � ������x�M�x
�
N � O���� ����

The normal energy converges uniformly to a continuous function E�
N �

C�	�� T ��R� and the constant total energy H� converges to a constant H�

which splits as

H� �
�

�
j �x�j� � V �x�� �E�

N �

Proof� Using the second order equations ��� of motion in �xM� xN��coordi�
nates we get

�x�N � ���DNU�x�� � O����x�M � O����

Hence� the Taylor expansion

DNU�x�� � D�
NU�x�M�x

�
N � O����

leads us to the desired type of equation for x�N � By the De�nition ��� of M�
convergence� we have H� � H� as constants and therefore by the splitting
��
� the uniform convergence

E�
N � H� �



�

�
j �x�j� � V �x��

�

in C�	�� T ��R��
This result throws further light on the appearance of the force term

D�G�x�� � $	� in the limit equation �
�� Suppose this term has no in'uence
on the motion of x�� i�e�� the condition ���� of the previous section is ful�lled�

��



Then� Theorem ��� and the discussion preceding it show� that x� describes
the constrained motion on M with the constant energy

HM �
�

�
j �x�j� � V �x��� ��
�

Hence� Lemma ��� implies that the limit E�
N of the normal energy would be

necessarily constant in time� However� in general it will be a time dependent
function� therefore enforcing the nontrivial additional force term ���� on the
manifold M� We will see� that this additional force term is conservative� i�e��
there is an additional potential yielding the equation of motion for the limit
x��

Heuristic Derivation of the Additional Potential

The structure of this additional potential can easily be derived� if we assume
that the normal oscillation is described by the equation

�x�N � ������x�M�x�N � ��

thus oversimplifying the result of Lemma ���� The oscillations take place
on a time scale O��� and the modulation by ���x�

M
� occurs on a time scale

O���� Thus� the simpli�ed equation describes a slowly modulated harmonic
oscillation and the perturbation theory for integrable Hamiltonian systems
is applicable� In fact� one can show that the action variable E	� of a single�
frequency system is an adiabatic invariant� cf� Theorem �� in Chapter ��x�
of 	��� This means that

lim
���

E�
N�t�

��x�
M
�t��

� ( � const�

which yields the following expression for the limit normal energy�

E�
N � (��x���

Thus� the term

H� �
�

�
j �x�j� � V �x�� � (��x��

would be a �rst integral of the motion on M� This motivates� that x� is de�
scribed by holonomic constrained Hamiltonian mechanics with the potential

W �x� � V �x� � Vadd�x�� Vadd�x� � (��x��

which is de�ned for all x �M�

�




Rigorous Derivation of the Additional Potential

We will base the rigorous derivation of the above given additional potential
Vadd on the fact� that in the limit �� � the normal energy E�

N is equiparti�
tioned into its kinetic

T �
N �

�

�
j �x�j�

and its potential part

U �
N �

���

�
���x�M� 
 �x�N���

i�e�� T �
N � U�

N � E�
N	�� This equipartition is a well known fact for the time

averages of these energy parts for harmonic oscillations and is connected
to the so called Virial Theorem of Statistical Mechanics� a mathematical

result which has the appearance of an ergodic theorem� but no ergodicity is
assumed� cf� 	��	���	����

Lemma ��� For a given M�converging sequence x� the kinetic and the po�

tential part of the normal energy converges weakly in L��

T �
N

�
� T �

N � U �
N

�
� U�

N �

Moreover� we get

T �
N � U�

N � E�
N	� �

�

�
���x����

Proof� By de�nition of � and the strong convergence x�
M
� x� we have

U �
N �

���x�
M
�

�



x�N
�

��
�
�

���x��

�
��

Hence� by Lemma ���

T �
N � E�

N � U �
N

�
� E�

N � U�
N �

The next arguments follow closely the proof of the Virial Theorem as given
for instance in 	����

Since �x�N is a bounded sequence and x�N � O���� we get the uniform
convergence

�

�
x�N �x�N � �

and therefore
d

dt

�

�
x�N �x�N

D
�

� ��

��



This limit can be evaluated in a di�erent way� using the description ���� of
the normal oscillations�

d

dt

�

�
x�N �x�N �

�

�
j �x�N j� �

�

�
x�N �x�N

�
�

�
j �x�N j� �

���

�
���x�M��x

�
N�

� � O���

� T �
N � U �

N � O����

A comparison of the di�erent evaluations of the limit shows that

� � T �
N � U�

N �

which gives the desired result�
We are now able to show the adiabatic invariance of E	��

Theorem ��� Suppose x� M�converges to x�� Then� there is a constant (�
such that

E�
N � (��x��� � �

(

��x��
�

Proof� Since we have

E�
N � H� � �

�
j �x�j� � V �x���

where H� is a constant� we get the time derivative

�E�
N � �h �x�� �x� � gradV �x��i�

If we insert the limit equation �
� of Theorem ��� and note that

hDG�x��
�� �x�i � �

because of DG�x��
� � Nx�M� �x� � Tx�M� we end up with the expression

�E�
N �

�

�
hD�G�x�� � $� �x�i

�
�

�



d

dt
���x��

�

 ��

In the last step we have used the identity ����� By Lemma ��� we get
� � E�

N	�
��x��� which �nally yields the di�erential equation

�E�
N

E�
N

�
�

�

d���x��	dt

���x��
�
d��x��	dt

��x��
�

��



Thus� there is a constant (� such that

E�
N � (��x���

which �nishes the proof if we note the relation between E�
N and � once

again�

Remark� In retrospective� the proof of this theorem was based on the
equation of the normal oscillation as given in Lemma ��� and on the explicit
limit equation of Theorem ���� Van Kampen 	�
� p� ���f� argues by formal
use of the WKB method� that the invariance of E�

N	��x
�� follows at once

from equation ����� However� the following example shows that his argument
is not correct since an arbitrary O����term can introduce resonances which
precludes the adiabatic invariance� Suppose we have

�x�N � ����� x�N � cos
�t

�
� O����

with a constant frequency �� For the initial data x�N ��� � �x�N ��� � � we get
the solution

x�N �t� �
�t

��
sin

�t

�
�

This gives a limit normal energy

E�
N �t� �

�

�
j �x�N�t�j� �

�����

�
jx�N�t�j� � t�	
 � O���� E�

N�t� � t�	
�

which is not of the form (��

The limit function x� can now be described in a completely intrinsic way�

Theorem ��� Suppose the initial values x��� �x�� are given� such that the

limits

x�� � lim
���

x�� �M� �x�� � lim
���

�x��M � Tx�
�

M

and

( � lim
���

� �x��N�
� � ������x����x

�
�N�

�

���x���

exist� Then� the sequence x� M�converges to the unique solution x� � C� of

the constrained equation

�x� � gradW �x�� � Nx�M

with the corrected potential

W �x� � V �x� � Vadd�x�� Vadd�x� � (��x��

which is de�ned for all x �M�

��



Proof� In view of Theorem ��� and of Theorem ��� as well as the discussion
preceding it� we only have to show that�

�

�
D�G�x�� � $� X

�
� hgradVaddjx�x� � Xi �

for each vector �eld X � Tx�M� In fact� using the relation ����� i�e���
�

�
D�G�x�� � $� X

�
�

�

�

�
DXD

�
NU�x��

� 
 ��
we get by Theorem ����

�

�
D�G�x�� � $� X

�
�

�

�

�
grad��jx�x� � X

� 
 (

��x��

� ( hgrad�jx�x� � Xi �

Again� the uniqueness of the limit x� allows us to disregard the extraction
of subsequences�

Remarks�

�� This theorem was �rst proved by Rubin and Ungar 	��� p� 
�f��
Independently� it can be found by means of an example in the work
of Koppe and Jensen 	��� eq� ����� Keller and Rubinstein 	���
generalized the theorem to the wave equation vtt � )v���� gradU�v��

�� The additional potential does not have any in'uence if and only if
either ( � �� i�e�� the normal energy vanishes initially in the limit�
or ��x� is a constant on the manifold M� This shows� that the two
cases discussed in Section � essentially exhaust all possibilities for the
realization of holonomic constrained motions under the potential V �

� A Review of the General Case for

Codimension r � �

The case of codimension r � � is considerably more di�cult and has been
carefully analyzed by Takens 	�
�� We restrict ourselves to a short review
of his results� Takens calls the Hessian matrix D�

NU of the strong potential

��



in the normal directions of M diagonizable� if there is a �eld �e�N � � � � � e
r
N� of

orthonormal bases of NM� which are eigenvectors of D�
NU � i�e��

D�
NU�x� � �eiN �x�� ejN �x�� � ��

i �x� 
 �ij �x �M�

Here� the eigenfrequencies �i shall depend smoothly on x � M� Takens

proves �	�
� Theorem ��� that Theorem ��� extends to each normal com�
ponent� if one can exclude certain resonances� i�e�� if for x � M we always
have

�i�x� 
� �j�x� � � i� j � r� i 
� j�

and
�i�x� 
� �j�x� � �k�x�� � � i� j� k � r�

Using this result� we can extend Theorem ��� in a straightforward fashion
using the same proof� However� in general� there can be situations� where
the limit x� cannot be described intrinsically by a deterministic initial value
problem� In fact� Takens 	�
� Theorem �� constructs an example with
d � �� r � �� where a one�parameter family of initial data x������� �x�������
depending on � � 	�� ��� yields a one�parameter family of limit solutions
x��t��� having the following property� There is a time t� � � such that

x��t��� � x��t�

does not depend on the parameter � for � � t � t�� However� for �xed t � t�
the values of x��t���� � � 	�� ��� constitute a continuum� i�e�� for t � t� the
family forms a funnel� This resembles the properties of non�uniquely solvable
initial value problems� cf� 	���� Thus� for a �xed parameter � we cannot
describe the limit x� by a uniquely solvable initial value problem� Koiller
	��� coined the notion "Takens�chaos# for this e�ect�

� Two Examples

We will discuss two examples for the general codimension r � � case� which
show the occurrence of the additional potential Vadd� A further nontrivial
example in the context of molecular dynamics including numerical simula�
tions can be found in Bornemann and Sch�utte 	���

��



Example I� Illustrative
 but Arti�cial

We take the Hamiltonian

H� �
�x�

�
�

�y�

�
� V �x� y� � ���

���x�

�
y�� �z �

�U�x�y�

�

describing a motion in R�� This gives the constraint manifold M � fy � �g
of dimension m � � and codimension r � �� The equation of motion is given
by

�x� � ��xV �x�� y��� �����x�����x���y����

�y� � ��yV �x�� y��� ������x��y��

Using the initial values

x���� � x�� �x���� � v�� y���� � �� �y���� � w��

we get as an immediate consequence of Theorem ���� that

x� � x� in C�� y� � � in C��

where x� is the solution of the initial value problem

�x� � ��xV �x�� ���(���x��� x���� � x�� �x���� � v��

The constant ( is given by

( �
w�
�

���x��
�

This result enables us to discuss a further important point� If we consider
the special situation� that initially

��xV �x�� �� �
w�
�

���x��
���x�� 
� � and v� � ��

we get the stationary solution x� � x�� On the one hand� this proves
the necessity of the additional potential Vadd � (�� On the other hand�
Theorem ��� gives us in the this case a normal energy�

E�
N �

w�
�

�
�

��



which is constant in time� Thus� a constant normal energy in the limit is
only necessary for the vanishing of the potential correction Vadd� but not

su�cient� cf� the discussion behind formula ��
��

Remark� This example is discussed at length by Koppe and Jensen 	����
who in fact prove Theorem ��� only for this example� Gallavotti 	�� p�
����� discusses the special case

���x� � � � x�

"only in a heuristic� nonrigorous way#� as he writes� Instead of

Vadd�x� �
w�
�

�

s
� � x�

� � x��

he arrives at the wrong potential correction

Vwrong�x� �
w�
�

�
log�� � x���

The reason for this 'aw is that he �rst correctly derives for x � x�

gradVadd�x� � w�
�

�

x

� � x��
�

but in turn he argues that gradVadd is therefore given by

w�
�

�

x

� � x�
�

which in fact yields Vwrong� Interestingly enough� the potential correction
suggested by Reich 	���� the so called Fixman potential� also turns out to
be the same Vwrong�

Example II� The Magnetic Mirror

We consider the motion of a charged particle in a nonuniform axially sym�
metric magnetic B��eld� whose �eld lines lie in planes passing through the
symmetry axis� Thus� in cylindrical coordinates r� z� � the B��eld does not
depend on the angle � and its ��component vanishes� Hence� there is a vec�
tor potential A with components A � ��� �� A�r� z��� such that B � curlA�
i�e��

B �



��A
�z

�
�A

�r
�
A

r
� �

�
� ����

��



The motion takes place according to the Langrangian

L �
m

�
j �xj� � eh �x�Ai � m

�
� �r� � �z� � r� ���� � er ��A�

Since L does not depend on � we have the conservation law

�L

� ��
� const� i�e�� mr� ��� erA � const �

Thus� we can eliminate the � variable� By gauging the vector potential
initially to zero and assuming for the sake of simplicity� that the motion
initially takes place tangentially to a plane of symmetry� we have

A��� � �� ����� � ��

which implies

�� � � eA

mr

for all times� Hence� the Lagrangian reduces in �r� z��coordinates to

Lred �
m

�
� �r� � �z��� e�A�

�m
�

or equivalently� the motion �ts into our framework with the Hamiltonian

H �
�

�
� �r� � �z�� � ���

A�

���z�
�U�r�z�

� � �
m

e
�

For a large speci�c charge ��� � e	m we expect that the motion gyrates
very rapidly around the line

M � f�r� z� � A�r� z� � �g�
which is a �eld line by ����� the so called guiding center of the motion� The
frequency of gyration is given by ���� with

�� �
�

�
D�A� � �eN � eN �jM � �DA 
 eN ��

� jBj��
since DA 
 eN � �jBj on M by ����� Thus� just as in the case of uniform
magnetic �elds the frequency of gyration is given by the Lamor frequency

ejBj	m�

�




Theorem ��� shows� that in the limit �� � the average tangential motion
along the guiding center M is governed by the potential

W � ( jBj�
where the adiabatic invariant ( is the magnetic moment of the particle
motion� The equation of motion now reads

�s � �( �

�s
jBj� ����

where s denotes arc length on the line M� As we see� the appearance of the
additional potential W introduces the only force term for the limit motion�
This force term is of utmost importance in engeneering and natural sciences�
Charged particles are moderated by an increasingly strong magnetic �eld �
and that the more� the bigger the initial normal velocity was� This is the
working principle of magnetic traps and magnetic mirrors in plasma physics�
as well as of the Van Allen radiation belt of the earth with all its implications
for northern lights and astronautics�

Remarks�

�� The �rst derivation of equation ���� by physical reasoning was given
by the Swedish Nobel prize winner Alfv�en 	�� Chapter ����� see also
	���	����

�� The �rst mathematical discussion of the limit e	m�� was given by
Rubin and Ungar 	���� who also discuss a nice mechanical analogue
of the magnetic mirror�

Appendix

Here� we derive the equations of motion in the �xM� xN��coordinates of Sec�
tion �� The Lagrangian is given in these coordinates by

L �
�

�
g�xM� xN� � � �xM � �xM� � h�xM� xN� � � �xM � �xN� �

�

�
j �xN j�

�V �xM� xN�� ���U�xM� xN��

where g denotes the metric tensor on M and we have h�x� �� � � for x �M
because of the orthogonality of the coordinate splitting� The equations of
motion are given by the Euler�Lagrange equations�

d

dt

�L

� �xM
�

�L

�xM
�

d

dt

�L

� �xN
�

�L

�xN
�

��



We compute the derivatives and simplify them using the asymptotic results
of Lemma ����

�L

�xM

����
x�x�

�
�

�
DMg � � �x�M � �x�M� �DMh � � �x�M � �x�N�

�DMV � ���DMU

� ����DMU � O����

and

�L

�xN

����
x�x�

�
�

�
DNg � � �x�M � �x�M� �DNh � � �x�M � �x�N�

�DNV � ���DNU

� ����DNU � O����

and

�L

� �xM

����
x�x�

� g 
 �x�M � h 
 �x�N �
�L

� �xN

����
x�x�

� hT 
 �x�M � �x�N �

thus�

d

dt

�L

� �xM

����
x�x�

� g 
�x�M�h
�x�N�O����
d

dt

�L

� �xN

����
x�x�

� hT 
�x�M��x�N�O����

Hence� the Euler�Langrange equations take the form ���� where the mass
matrix is given by

M�x�� �

	
g h

hT I



�

	
O��� O���

O��� I



�

because of h�x�
M
� �� � � and therefore h�x�� � h�x�

M
� x�N� � O���� Now�

M 

	

I �h
�hT g



�

	
g � hhT hg � gh

� g � hTh



�

	
g �

� g



� O����

which gives

M�� �

	
g�� �hg��

�hT g�� I



� O��� �

	
O��� O���

O��� I � O���



�

This proves the equations in �
��

�
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