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Abstract

The paper studies Hamiltonian systems with a strong potential forcing
the solutions to oscillate on a very small time scale. In particular, we are
interested in the limit situation where the size € of this small time scale tends
to zero but the velocity components remain oscillating with an amplitude
variation of order O(1). The process of establishing an effective initial value
problem for the limit positions will be called homogenization of the Hamilto-
nian system. This problem occurs in mechanics as the problem of realization
of holonomic constraints, in plasma physics as the problem of guiding center
motion, in the simulation of biomolecules as the so called smoothing prob-
lem. We suggest the systematic use of the notion of weak convergence in
order to approach this problem. This methodology helps to establish uni-
fied and short proofs of the known results which throw light on the inherent
structure of the problem. Moreover, we give a careful and critical review of
the literature.
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Introduction

The concern of this paper is the study of Hamiltonian systems with a strong
potential forcing the solution to oscillate on a time scale, which is vastly
smaller than the time scale of the mean evolution. In particular we are
interested in the limit situation where the size € of the small time scale
is decreased to zero. Depending on the initial values three situations are
possible:

I The position and the velocity are converging pointwise as functions of
time to certain limit functions as ¢ — 0.

IT Only the position is converging pointwise to a limit function as ¢ — 0.
The velocity remains oscillating with an amplitude variation of order

O(1).
IIT Neither position nor velocity are converging pointwise.

We will see, that the positions indeed converge pointwise if the corresponding
total energies are bounded in the limit € — 0. Thus, case III is ruled
out for bounded energies. Case | can be handled by standard averaging
techniques of perturbation theory, cf. e.g. [16]. The remaining case II leads
to interesting results and deserves special techniques to handle the rapidly
oscillating velocities. The specific problem for this case Il is to establish an
effectiveinitial value problem, which describes the limit solution. We decided
to call this problem homogenization of the Hamiltonian system in order to
have a clear distinction in terminology to the somewhat simpler averaging
problem of case 1. This terminology seems to be justified since there is some
methodical analogy to the problem of homogenization for elliptic boundary
value problems [18].

A discussion of this particular homogenization problem is somewhat scat-
tered in the literature. However, it appears at the heart of three important
types of problems:

A Realization of holonomic constraints. In some texts on Theoretical Me-
chanics the question appears whether the formalism of the d’Alembert-
Lagrange principle for holonomic constraints can be justified by intro-
ducing strong, realistic potentials, which — in the limit of infinite
stiffness — force the motion to the constraints manifold. This ques-
tion is discussed to some extend in the monographs [3][4][9], by means
of examples in [15][28]. A mathematically exhaustive investigation of



this question is given in [26], which is heavily based on the important
early results of [22].

It turns out that this intuitive approach to justify the d’Alembert-
Lagrange formalism only works for either rather special initial data
(leading in fact to case I) or for rather special constraining potentials.
The interpretation of the physical meaning of these special potentials
is deeply connected to that of the distinction between case I and II.
The reader may find quite controversial positions in the literature, cf.
[15, p. 8] and [28, p. 104].

B Guiding center of motion of charged particles in nonuniform magnetic
fields. The spiral motion — Larmor gyration — of free charges around
magnetic field lines is a well-known phenomenon. The physical im-
portance of case Il is doubtless here, since the velocity of this gyration
necessarily remains O(1). Quite early, the results for problems of type
A, although unexpected and counterintuitive in that context, have
successfully been discovered in the physical literature [2][25][19] for
a description of fast Larmor gyration in nonuniform magnetic fields.
These results play a key role for the explanation of magnetic traps
and magnetic mirrors in plasma physics. They in fact motivated the
important mathematical research of [22].

C Corrected potentials for introducing constraints in the simulation of
biomolecules. Modeling biomolecules as classical mechanical systems
leads to Hamiltonian systems with vastly different time scales. There
is a strong need for eliminating the smallest time scales, because they
are a severe restriction for numerical simulation. This leads to the
idea of just freezing the high frequency degrees of freedom. How-
ever, the naive way of doing it via holonomic constraints, i.e., via
the d’Alembert-Lagrange principle, is bound to produce incorrect re-
sults, since there are strong potentials present which do not fit the
requirements mentioned for problems of type A. There is a need of
correcting the weaker potentials as was first noted in [21], where such
a correction was suggested on the base of (questionable) additional
physical assumptions. However, the right correction can be estab-
lished on strictly mathematical grounds using the results of [22][26] —
at least for certain subsystems as was argued in [7], where the reader
will find a detailed discussion of the field.

In this paper we approach the homogenization problem by making con-
sequent use of the notion of weak convergence, which enables us to handle



the velocities in a short and lucid way. To be specific, since only averages
of the velocities are converging, we are led to certain classes of test func-
tions in order to have an easy-to-use concept of convergence. It turns out
that the weak(-star) convergence in L™ and in the space of distributions &’
will be appropriate for our purposes. The idea of using weak convergence
for homogenization problems was systematically developed by MURAT AND
TARTAR in the mid-seventieth, cf. [18] and the literature cited therein.

We do not claim to present any new results (except Theorem 2.1), but
we hope that the methodical aspects of our presentation help to clarify and
unify the whole business. For instance, we will show that the main difficulty
of the problem is the lack of weak continuity of certain nonlinear functionals
like squaring a function. Besides, our aim is to give a critical review of
the known literature for problems of type A, B and C. To the best of our
knowledge, the collected references are quite complete.

Organization of the Paper.

In Section 1 an extraction principle is established for solution sequences
with bounded energy. The extracted subsequence shows a certain mixture
of strong and weak convergences, which is of basic importance for the rest
of the paper. We call this mixture M-convergence.

In Section 2 this concept is used to derive an abstract limit equation,
which gives a general answer to the homogenization question. However,
this equation is not intrinsic and therefore only of minor use. Nevertheless
it provides a lot of insight in the structure of the problem and allows to
establish short proofs of the more concrete answers for special situations.

Section 3 is devoted to the problems of type A, i.e., realization of holo-
nomic constraints. We give short proofs of the known results.

The general case for manifolds M of codimension r = 1 is discussed
at length in Section 4. We show the connection to the Virial Theorem of
Statistical Physics and to the theory of adiabatic invariants of Hamitonian
systems.

For the sake of completeness, the general case for codimension r > 1 is
shortly reviewed in Section 5. It turns out that resonances and some kind
of singularities may cause a nondeterministic behavior of the limit solution.
This is the central result of the work of TAKENS [26], which implies that
in general no really satisfactory answer can be given to the homogenization
problem.

Section 6 presents two examples for the codimension » = 1 case. The first
one is academic and completes some aspects of the discussion in Section 4,



whereas the second one deals with the problem of type B.

Basic Notation.

For the sake of simplicity we consider a model problem with the following
separable Hamiltonian on R?¢

1
H(e,6) = SJ6 + V() + 20 ().
Throughout the paper we make the following basic assumptions:

Al V € C*% is bounded from below, i.e., inf cpaV(2) > Vi > —o0.

A2 U € C% attains its global minimum 0 on a smooth m-dimensional

manifold M, i.e.,
Uln = 0, Ulz) >0  VeeRI\M.
The codimensionis r = d — m.

A3 U is uniformly strictly convex in directions orthogonal to TM, i.e.,
there is an o > 0 with

DU ()¢ > ?JE)? VE e NV,
where NM denotes the normal bundle of M.
We will denote the potential forces by
F(z) = grad V(z), G(z) = grad U(z).
Thus, the Hamiltonian induces corresponding canonical equations of motion:
3+ EF(29) + G2 =0 (1)

with initial values
2°(0) = 2, °(0) = ;.

We denote the energy, which is an invariant of motion by

H® = H(z§, &, €).



1 M-Convergence

We start our investigation by a careful study of the convergence properties
of the sequence z¢ for increasingly strong potential, i.e., ¢ = 0. We will
prove an extraction principle based on energy methods.

Lemma 1.1 Let a sequence € — 0 be given, for which the initial position x|
as well as the initial energy H® are bounded. Then, for each choice T > 0,
there is a subsequence € , such that the unique solutions x € C*([0,T], R%)
exist and the following limits hold

¥ = 2% in C(0,T,RY, & 23 in L=([0,T),RY,  (2)

for a Lipschitz continuous function z° € C%([0,T],R?). This limit function
gives a path in M,
2ty eM  vtelo,T],

and we furthermore get uniformly in [0, T]
dist(z, M) = O(€). (3)

On the other hand, if there is a sequence €, such that (2) and (3) hold, the
boundedness of $6/ and H¢ follows.

Proof. Let ¢ € C°°([0,T.[,R%) be the unique solutions of the equations
of motion with the maximal possible choice of T, > 0. The boundedness
He < H, and |z§| < K for all € implies

1
§|i6|2 S H* - V*7

and therefore by integration

|2 (t)| < 25| + tv/2(H, — Vo) < K +t/2(H, — V2).

Thus, existence and uniqueness theory for ordinary differential equation
shows that one can choose T, = co. Fixing some finite T' > 0, we thus have
that 2¢ and @¢ are bounded sequences in C'([0,7],R?). By the theorems of
Arzela-Ascoli and of Alaoglu (cf. [23, Thm. 11.28/11.29], remember that
L is the dual space of L) we now conclude, that there is a subsequence ¢
and a limit function 2° € CY([0,T],RY) = W1°([0, 7], R?) such that the

O in the sense of

.. . . . . el Do
limit relations in (2) hold. Since in consequence #© = #
distributions and therefore

12! D!
€2 =0,



we get by taking limits in &' for equation (1) that G(z°) = 0, i.e., 2°

constitutes a path in M. As a consequence we get
dist (2, M) — 0 (4)

uniformly in [0,7]. Thus, for sufficiently small ¢, the orthogonal projec-
tion xﬁ\/{ € Mof z¢ is a uniquely defined continuous function in t. Taylor
expansion of U shows

FA(H, -V, > U9

1 I I I I I !
= §($E — x&)TDQU(aU;W)(wE — 25¢) + O(dist(2° 7J\/[)?’).

Using assumption A3 and the fact that ($E/ — xi\/{) € N oM, we get the
N l’M
estimate
o? dist(x°, M)* < K (* + dist (2, M)?),

where K denotes some constant. With po = dist(z¢', M) /¢’ we thus have

K /
pZ < —21 (1 + dist (z* ,M)pf,) .
o

Because of (4), we have for sufficiently small ¢

K / 1
Oé—zldist(acE M) < 2
which implies

V2K,
Pe! < )
[8%

i.e., assertion (3).
The proof of the converse result is straightforward. D

Remark. In the following we will simplify the notation. All function spaces
will be understood to denote functions [0,7] — R% Terms like O(e), O(1)
applied to functions are meant to hold in the space C([0,T],RY).

If we do not bound the initial energy H€, we cannot expect strong con-
vergence of z° nor can we expect that the limit z° has range in M.

Example. Consider the Hamiltonian

H(r,60 = 36 + U ()



with the potential

22

z2/2 <0

x>0

For the initial values zf = 1, 2, = 0 we get the unbounded energy H® =
2¢72 — o0o. The solution of the equation of motion is given by the rapidly

oscillating function z¢(t) = z(t/€), where

cos(2t) 0<t<n/4
x(t) =< —2sin(t — 7 /4) m/4<t<br/4
sin(2t — 57 /2) /4 <t <3m/2

Here, we get merely weak convergence of 2° in L, namely

1 3m/2
¢ D= —2/r = 377/2/0 x(7)dr,

which is not on the manifold M = {0} defined by the minimum of U.

In a small neighborhood of a compact path in M it is possible to introduce
uniquely the following decomposition of a point z € R?

x=xM+ TN, v €M, xny € N M.

We will view (2, 2n) as a new coordinate system for this neighborhood.
More precisely, the coordinates are given by pulling this decomposition back
to a local bundle trivialization

Qx (R () = (NM, (-,-)), QCR™,

which obeys the metric structure. Whenever appropriate, we will — by
“abus de langage” — view the coordinates as (zy, 2n) € Q2 X R".

These coordinates can be applied to a sequence z°, which fulfills the
agsertions of Lemma 1.1. Using Lagrangian formalism it is straightforward,
but tedious, to establish the equations of motion in these new coordinates.
The result can be found in the Appendix of this paper. Inserting the details
of the convergence results of Lemma 1.1 these equations take the form

. 5t B —e_zDMU(xE) + 0(1)
M(w ) ( x;\f ) - ( —e_QDNU(xE)—I—O(l) )7 (5)



where Dy denotes differentiation with respect to za¢ and Dy with respect
to 2. The mass matrix M (2°) (Grammian matrix of the Euclidean metric
in the new coordinates) takes the form

(om0 (o) 0
MW_(O(G) I ) M{=") _(O(e) I—I—O(e))' (6)

Note, that the metric in the normal coordinates z 5 does not change, because
they belong to the Euclidean subspace N, M of R<.

Lemma 1.2 Under the assumptions of Lemma 1.1, there is a subsequence

€', such that we get in addition to the assertions of Lemma 1.1

1 . el . .

xﬁw—mvo in C1, xﬁwﬁwo i L™
Moreover, z° has a Lipschitz continuous first derivative, i.e., z° € C'H1,
Proof. Without loss of generality we may assume, that the assertions of

Lemma 1.1 already hold for the sequence ¢. Taylor expansion as in the proof
of Lemma 1.1 yields

1
DU (a) = 5 (@) DaD*U (w50 ay + O(e”) = O(€)
and
DyU(x) = DRU (2502 + O(e?) = O(e),
where we have used DU|y = 0 and the estimate 2% = O(¢). Thus, the
equations of motion (5) and the expression (6) for the inverse of the mass
matrix give
BHe=0(1), iy =0().
Applying the theorems of Arzela-Ascoli and Alaoglu once more, we conclude
that there is a subsequence €', such that

.l -0
Ty — X

uniformly in t € [0, 7] and &5, = #°. O
For later purposes we consider the quantity

0t =as/d = 0(1).

Using the Alaoglu theorem, we get by a further extraction of a subsequence
¢ the convergences HY — H° as well as

!

n Sopoin L2([0,T],RY, g7 @p” =X in L2([0,T], R,

Now, we combine all these convergences in a single notion.



Definition 1.3 Given a sequence ¢ — 0 and a corresponding sequence of

functions z¢ € C?([0,T], Rd). The sequence M-converges to a function z° €
chi(o,T],M) if H* — H® in R and

a5 — 2 i CH{[0,T], M), iS5 —=%° in L*([0,T],RY,
as well as
2§ =0() in C(0,T,RY), &% =0 in L*([0,7],R%,
and furthermore if there exist the limits
n°=a%/e=n in L*([0,7T],RY, n°@nt =% in L([0, 7], R™*Y).

Here, we assume that the sequence ¢ is restricted to sufficiently small values,
for which the coordinate decomposition z° = ity makes sense.

The results of Lemma 1.1 and Lemma 1.2 are summarized by the follow-
ing theorem.

Theorem 1.4 Let a sequence € — 0 be given, for which the initial position
x§ as well as the initial energy H are bounded. Then, for each choiceT > 0,
there is a subsequence €, such that z¢ M-converges to some 2° € CM1,
Conversely, if © M-converges, the initial position z{, as well as the initial
energy H® are bounded.

For later purposes we state the following simple consequence for the
initial values z3 = z°(0) and &3 = 2°(0).

0

Corollary 1.5 Suppose x° M-converges to x°. Then we have

z) = limz§ € M
e—0
and
.0 . ‘e
zg = lim z eT M.
0 0 oM Ty

2 Abstract Homogenization

The question arises, whether the limit 2% of a M-converging sequence z¢ is
itself a solution of an initial value problem on M. In this section we offer an
abstract approach for unfolding the structure of such a limiting equation.
We call this process “homogenization”, since it eliminates the fast oscillation
2% normal to the manifold, cf. the analogous situation in [18].



The starting point is the observation, that we may take the limit ¢ — 0in
the equations of motion (1) in the sense of distributions. The limit & = &°
in L implies that

e D' ..
7€ = 70

in &', in fact, even in the sense of distributions of first order, i.e., in 2", cf.
[12]. Thus, taking limits in (1), we get
i+ F(a%) + 9’1-11% € 2G(2%) = 0. (7)
e—+

This limit expression can be evaluated.

Theorem 2.1 Suppose that x¢ M-converges to z°. Then, the limit
N = 2" im n /e

e—0

exists as a function in L> and z° € C'Y' fulfills the equation
i 4 F(2°) 4+ DG(2%) - X" + %DQG($O) N =0 (8)
almost everywhere. The quantities n° and X are from Definition 1.3.
Proof. Taylor expansion of second order yields
2G() = P (Gf) - Gla5)

A
= DG(QCM) e + (9)

1
/ (1 — s)D*G(25¢ + s25) : (n° @ 1) ds.
0

Now we have the convergence D*G(a5; + sayy) — D?*G(2°) uniformly in
s € [0,1] and ¢ € [0,7]. Since multiplication is continuous as the operator

CY x (L™, weak-*-topology) — (L°°, weak-*-topology),

we get
1
« 1
/ (1 —s)D*G(a5 +s25) : (@) ds > §D2G(x0) : X (10)
0

Equation (7) shows that @’LHH% € 2G(x°) exists as a function in L°°. Thus,
€—

the relations (9) and (10) yield the existence of the limit

€

7' lim DG(a5,) - - = A

e—0 €

10



as a function in L. Using the (a4, 25) coordinates, we have

pey o0
(w3 « D%U(xa{)ne/e '

Note, that n/e € Nl,;wM. Our general assumption A3 implies, that
DRU(e5) ™" = DRU(")™
in C'. Thus, using the continuity of the multiplication as an operator
C'x 9" — 9",

we get the existence of the limit
€

N = Z'im L = @M im DL U (a5, - DR U (%) - = = DLU(2°)~'A
€

e—=0 ¢ e—0

as a function in L°. Turning back to the usual coordinates, we conclude

that .
' im DG(5) - = = DG(2°) - A,

e—0 €

which finally gives the desired limit equation. O

Remarks.

1. Note, that the existence of @’Hin% n°/e implies that n* 2 0. However,
e—+

in general we will still have
n- @0t Y #0.

For example, °(t) = sin(t/€) yields n* 00 but e @t = |02 Ay —
1/2. Thus, the product mapping is not weakly continuous, cf. [8].

2. The first order Taylor expansion

€

1
€2G(2°) = / DG (25 + say) - T s
0

.
instead of (9) cannot be used to evaluate the Z'!-limit of the expres-
sion. The reason is, that certainly

1
/ DG (a5 + sa’y) ds — DG(2°)
0

11



in C', but in general notin C!. Thus the limit is not simply DG (2°)-\*,
since the product is not continuous on C'x 2! as the following example
shows: Take ¢(t) = ecos(t/€) and ¥ = ¢! cos(t/€). We have ¢ — 0
in C, but not in C*, and @’LH_% ¥ = 0, since ¥°(t) = dsin(t/e€)/dt.

However, the product converges not to zero, ¢<¢ — 1/2.

3. This abstract theorem shows, that in general there exists an additional
force for the limit motion on M, which involves third derivatives of the
strong potential U.

4. For codimension r = 1, the limit equation (8) was already stated by
KoPPE AND JENSEN [15, eq. (5)] and by vAN KAMPEN [28, eq. (8.33)]
using suitable averaging operators to express 3.

The abstract homogenization process of this section does not yield an in-
trinsic description of 2 on M. This is even not possible, since the “shadow”
3} of the normal components cannot in general be predicted by its initial
value ¥(0) as will be explained in Section 5. However, for certain important
situations it is indeed possible, to derive a completely intrinsic description
of zV. This will be the subject of the next two sections.

3 Realization of Holonomic Constraints

If the last force term of the limit equation (8) vanishes in the tangential
direction, i.e., if

%D?G@O) LY € NolM, (11)
the limit function obeys
#0 4 grad V (2°) € N,oM, (12)

because DG (x°%)-A* € N, oM holds in any case. By the d’Alembert-Lagrange
principle, the relation (12) describes the motion due to the potential V' under
the holonomic constraints

2ty eM  vtelo,T).

Thus, the limit ¢ — 0 “realizes” holonomic constraints with potential V, if
and only if the condition (11) is fulfilled. Standard textbooks on classical
mechanics like [1][3][4][17] prove the existence of a wunique solution 2% €
C?([0,T],M) of (12) for given initial values &9 € T, oM. The arguments

12



used in the proof of Theorem 2.1 show that, given a solution of (12), the
equation

i+ grad V(2°) = = DG (2%) - A

can always uniquely be solved for the Lagrange-parameter A(t) € NooM.
Summarizing our discussion yields the following

Theorem 3.1 Suppose that condition (11) holds for a given M-converging
sequence z°. Then, there is a unique A\ € L>([0,T], N,oM), such that

DG ()" + %D?G@O) .Y = DG -\
On the other hand, the initial value problem
P04 P2+ DG()A =0, G(2%) =0, (13)
with 2°(0) = ) € M, i°(0) = i € T,oM has a unique solution a? €

C2([0, T], M) and X € C([0,T], N,oM).

Remark. For the purposes of numerical integration, one should represent
the constraints manifold M by r independent conditions, i.e.,

M= {z:R%: P(x) =0}, ¢ R? — R”, with rank D (2)|ene = 7.
Then, the equations of motion are described more conveniently as
P+ F(2%) 4+ Dyl (% =0,  ¢(2% =0,

with a Lagrange parameter A € R". This is a so called index 3 differential-
algebraic system, cf. [11].

There are essentially just two cases, where one can show, that condition

(11) holds.

Case I: Vanishing Normal Energy

Theorem 3.2 Suppose the initial values satisfy
xh =15 €M, io = dg € TaM.

Then, the sequence x M-converges to the unique solution of equation (13).

13



Proof. The assumptions on the initial values make standard perturbation
theory applicable. With its help LuBicH [16, Theorem 2.2] proves that
25 = O(€?), which implies the strong convergence

€

n =0,
uniformly in [0, 7]. In this case we conclude that
n°@n°—0

strongly, hence 3 = 0. Theorem 1.4 and Theorem 2.1 yield the existence of
a subsequence z¢, which M-converges to the solution z° of equation (13).
Since this limit is unique by Theorem 3.1, we can disregard the extraction of
subsequences and have thus proved the convergence of the original sequence.
0

Remark. The first mathematical proof of this theorem was given by RUBIN
AND UNGAR [22]. It appears in form of an example in the textbook of
ARNOLD [3, Chap. 17A]. For codimension r = 1 one can find a discussion
in [15] and [28]. It is restated as Theorem 9 in [4, Chap. 1,§6.2].

Case II: Constraining Potentials with Constant Gully Width

Theorem 3.3 Suppose that initial values x§, xf are given with uniformly
bounded enerqy H® = H (xg, &§;€), such that
29 =lim 2§ € M
e—0

and
) . ‘e
zg = lim z eT oM.
0 0 oM Ty

If the constraining potential U satisfies
D3U|y = const,
the sequence x° NM-converges to the unique solution of equation (13).

Proof. By Theorem 1.4 there is some subsequence 2, which M-converges
to a solution x° of the limit equation (8). Since 7 is normal to the manifold,
the tensor X takes the form

0 0
Y= )
0 Xnyn

14



using (2, 2 n)-coordinates. For a given vector field X € T, oM we get in
the metric of M

(D*G(2%) : 2, X) = (D?DxUl,—p0) : X
= (D4DxUl,=p0) : SNN (14)
= (DxD3U|p=0) : BN,

because the tangential derivates Dy commutes with the normal derivative

Dy

Since by assumption DxD3U = 0 for all X € TM, the condition

(11) is satisfied. Theorem 2.1 and Theorem 3.1 show that 2 is the unique
solution of the constrained system (13). This uniqueness of the limit z°

implies, that already the original sequence z¢ M-converges to z°. 0

Remarks.

1.

In view of Corollary 1.5 the conditions on the initial data are even
necessary for the assertions of the theorem. However, they allow a
nonvanishing normal velocity component:

. An example of a potential U satisfying the condition of this theorem

is given by U(xz) = dist(z, M)

. This theorem has been stated and proved by GALLAVOTTI [9, Chap.

3,83.8], who calls it “Arnold’s theorem” in view of a remark, which
was made by ARNOLD on p. 91f of his textbook [3].

. TAKENSs [26] offers a proof under somewhat more restrictive conditions

on the potential U, cf. his remark on p. 429.

. This theorem was extended to the case of a time dependent potential

V by ScHMIDT [24]. Our methods extend without difficulty to that
case.

. For codimension r = 1 one can find a discussion in [22],[15], and [28].

. This theorem shows that in the limit the normal and the tangential

part of the energy are completely separated,

1.
HO = JJi +V(2) + B,

15



where EY; is a constant. Interestingly enough, this energy separation
holds for exponentially large times in the case 0 < ¢ < 1. To be precise,
for the energy decomposition

1,.
HE = |5l + V(w50 + B
BENETTIN, GALGANI, AND GIORGILLI [5][6] have proved the following
Nekhoroshev-type of result:

|Ey(t) — Ex(0)] < e for 0<t<exp(be™),

where a and b are positive constants. In general, one has a = 1/r,
where r denotes the codimension of the constraints manifold M, but for
instance, the special potential U(z) = dist(z, M)? yields a« = 1 in any
dimension. These results should be contrasted with the comparatively
rather trivial estimate given by ScumIpT [24, Prop. 1].

4 The General Case for Codimension 1

In general, the explicit evaluation of the term

%D?G@O) > (15)

demands a careful study of the normal oscillations z%;. For reasons, which
will become clear in the next section, we restrict this study to the codimen-
sion r = 1 case. We are slightly changing notation in this case: Since we

are interested in local properties, we may assume without loss of generality
that the manifold M is orientable. Let ey € NM be a smooth field of unit
normal vectors. Now, the local coordinate system of points x near to the
range of the limit function 2° is given by

r=ay+ N -en(Tm)

In this way, the matrix X takes the special form

Y=0-en(2) @ en(2?),

where the scalar function o is given by the limit

(e /e)® = 0.
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On the manifold M the constraining potential U/ shows the “spring constant”
w?(z) = DX U(z) = D*U(z) : (en(z) @ en(z)), Ve e M,
in normal direction. Note that w(z) > a > 0 by assumption A3. For a
M-converging sequence z°, we thus introduce the normal energy
€ 1 s€ V2 6_2 2 (. € \2

By = 5 (@) + 5w (a5) - (eh)"

Since 2% = 0O(¢), the total energy splits as
1.
HE = L+ V(a5 + E§ + 0(0) (16)

Lemma 4.1 For a given M-converging sequence x¢, the normal oscillation
x'y satisfies the equation

Py + e_2w2(x§\,[)x§\7 = 0(1). (17)

The normal energy converges uniformly to a continuous function ES, €
C([0,T),R) and the constant total energy H® converges to a constant H®
which splits as

1.
HY = 5|gco|2 + V(2% + EY.

Proof. Using the second order equations (5) of motion in (2, 25)-coordi-
nates we get

i+ e PDNU(2%) = O(e)i5 + O(1).

Hence, the Taylor expansion
DyU(a) = DR U (2502l + O(€”)

leads us to the desired type of equation for 2%,. By the Definition 1.3 of M-
convergence, we have H® — HY as constants and therefore by the splitting
(16) the uniform convergence

1
Ey — H° - (§|g’50|2 + V(aco))
in C([0,7T],R). D
This result throws further light on the appearance of the force term

D?*G(2%) : £/2 in the limit equation (8). Suppose this term has no influence
on the motion of 2°, i.e., the condition (11) of the previous section is fulfilled.
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Then, Theorem 3.1 and the discussion preceding it show, that z° describes
the constrained motion on M with the constant energy

1
Hag = 1% + V(). (15)

Hence, Lemma 4.1 implies that the limit F% of the normal energy would be
necessarily constant in time. However, in general it will be a time dependent
function, therefore enforcing the nontrivial additional force term (15) on the
manifold M. We will see, that this additional force term is conservative, i.e.,
there is an additional potential yielding the equation of motion for the limit

20.

Heuristic Derivation of the Additional Potential

The structure of this additional potential can easily be derived, if we assume
that the normal oscillation is described by the equation

i+ e P (@) e = 0,

thus oversimplifying the result of Lemma 4.1. The oscillations take place
on a time scale O(¢) and the modulation by w?(z§,) occurs on a time scale
O(1). Thus, the simplified equation describes a slowly modulated harmonic
oscillation and the perturbation theory for integrable Hamiltonian systems
is applicable. In fact, one can show that the action variable F/w of a single-
frequency system is an adiabatic invariant, cf. Theorem 23 in Chapter 5,54
of [4]. This means that

lim 7E§V(t>
=0 w(25,(1))

which yields the following expression for the limit normal energy:

= © = const,

ES = 0w(zY).

Thus, the term
1
H® = §|5c0|2 + V(2% + 0 w(2?)

would be a first integral of the motion on M. This motivates, that 2° is de-
scribed by holonomic constrained Hamiltonian mechanics with the potential

W(ac) = V(ac) + Vadd(x), Vadd(ac) = @w(ac),
which is defined for all z € M.

18



Rigorous Derivation of the Additional Potential

We will base the rigorous derivation of the above given additional potential
Vadd on the fact, that in the limit € — 0 the normal energy £ is equiparti-
tioned into its kinetic

1
Te:_~52
N 2W|

and its potential part

ie., Ty = Uy = E$/2. This equipartition is a well known fact for the time
averages of these energy parts for harmonic oscillations and is connected
to the so called Virial Theorem of Statistical Mechanics, a mathematical
result which has the appearance of an ergodic theorem, but no ergodicity is
assumed, cf. [1][10][27].

Lemma 4.2 For a given M-converging sequence x° the kinetic and the po-
tential part of the normal energy converges weakly in L,

€ * 0 [ 0
Ty — Ty, Uy — Uy
Moreover, we get

1
TR =U3y=EY/2= §w2(960)0.

Proof. By definition of o and the strong convergence x5, — 2° we have

= 80 (15 5 2

NT T ¢ 2

Hence, by Lemma 4.1
Ty =Ey - Uy = BY - UY.

The next arguments follow closely the proof of the Virial Theorem as given
for instance in [10]:

Since @9 is a bounded sequence and z§ = O(e€), we get the uniform
convergence

1
—ayiy — 0
2$N$N

and therefore

dl ... o
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This limit can be evaluated in a different way, using the description (17) of
the normal oscillations,

d1

€ €

1 s € |2 1 € e
ZL NN = §|$N| ‘|‘§$N$N

6_2

= Sl - St a0 (en)? + 0(0
= Ty — Uy +0(e).

A comparison of the different evaluations of the limit shows that
0=1% - U%,

which gives the desired result. O
We are now able to show the adiabatic invariance of F/w.

Theorem 4.3 Suppose 2 M-converges to x°. Then, there is a constant O,
such that

ES = 0w(2?), o=

Proof. Since we have
B = 1O~ Ji = V().
where HY is a constant, we get the time derivative
B = — (3% i% + grad V (20)).
If we insert the limit equation (8) of Theorem 2.1 and note that
(DG (2% A", 2% =0
because of DG (z2%)A\* € N, oM, 3% € T,oM, we end up with the expression
.

%(DQG(QCO) %, 49)

_ % (%M@O)) 0.

In the last step we have used the identity (14). By Lemma 4.2 we get
o = EY /w?(2), which finally yields the differential equation

B 1de?(2°)/dt dw(a®)/dt
ES 2 w2 (2% w(@Y)
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Thus, there is a constant ©, such that
Ex =0 w(a?),

which finishes the proof if we note the relation between F% and ¢ once
again. 0O

Remark. In retrospective, the proof of this theorem was based on the
equation of the normal oscillation as given in Lemma 4.1 and on the explicit
limit equation of Theorem 2.1. VAN KAMPEN [28, p. 103f] argues by formal
use of the WKB method, that the invariance of EY% /w(z) follows at once
from equation (17). However, the following example shows that his argument
is not correct since an arbitrary O(1)-term can introduce resonances which
precludes the adiabatic invariance: Suppose we have
iy + e 2w? 2 = cos %t = 0(1),

with a constant frequency w. For the initial data 2%,(0) = 2% (0) = 0 we get
the solution

. et . wt
a5 (t) = 5, S —
This gives a limit normal energy
¢ Loeve, €208 o 0 2
B3y (1) = 55 OF + Sl (O] = 2784 0(0) » B (1) = £/3,

which is not of the form O w.

0

The limit function z° can now be described in a completely intrinsic way.

Theorem 4.4 Suppose the initial values z(, t§ are given, such that the
limits
x5 = lim € M, =~ lim & € T,
and
o (o) + () ()
=0 2w(zd)

exist. Then, the sequence x¢ M-converges to the unique solution z° € C? of
the constrained equation

#% 4+ grad W(2%) € NyoM
with the corrected potential
W(z) =V (z) + Vada(z),  Vada(z) = Ow(x),
which is defined for all x € M.
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Proof. In view of Theorem 2.1 and of Theorem 3.1 as well as the discussion
preceding it, we only have to show that

1
<§D2G(ac0) : 3, X> = (grad Vadd|p=go, X),
for each vector field X € T,oM. In fact, using the relation (14), i.e.,
Lo 0 1 2 0
5D G2, X )= 5 (DxD3U(2")) - o,

we get by Theorem 4.3

(grad w?|,_,0, X) -

N | —

<%D2G(x0) : 3, X> =

w(a9)
= O (gradw|,—,o0, X).

Again, the uniqueness of the limit 2° allows us to disregard the extraction
of subsequences. [

Remarks.

1. This theorem was first proved by RUBIN AND UNGAR [22, p. 82f].
Independently, it can be found by means of an example in the work
of KopPE AND JENSEN [15, eq. (7)]. KELLER AND RUBINSTEIN [13]
generalized the theorem to the wave equation vy = Av—e? grad U (v).

2. The additional potential does not have any influence if and only if
either ©® = 0, i.e., the normal energy vanishes initially in the limit,
or w(z) is a constant on the manifold M. This shows, that the two
cases discussed in Section 3 essentially exhaust all possibilities for the
realization of holonomic constrained motions under the potential V.

5 A Review of the General Case for
Codimension r > 1

The case of codimension r > 1 is considerably more difficult and has been
carefully analyzed by TAKENS [26]. We restrict ourselves to a short review
of his results. TAKENS calls the Hessian matrix D3,U of the strong potential
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in the normal directions of M diagonizable, if there is a field (el, ..., e%) of
orthonormal bases of N, which are eigenvectors of D%, U, i.e.,

DRU() : (ey(v) @ el (2)) =wi(2) -85 Vo € M.

Here, the eigenfrequencies w; shall depend smoothly on € M. TAKENS
proves ([26, Theorem 1]) that Theorem 4.3 extends to each normal com-
ponent, if one can exclude certain resonances, i.e., if for x € M we always
have

wi(r) Fwj(z)  1<4,5<r 4,
and
wilr) £ wjle) twr(e),  1<igk<r

Using this result, we can extend Theorem 4.4 in a straightforward fashion
using the same proof. However, in general, there can be situations, where
the limit 29 cannot be described intrinsically by a deterministic initial value
problem. In fact, TAKENS [26, Theorem 3] constructs an example with
d =4, r =2, where a one-parameter family of initial data z(0; p), 2(0; p),
depending on p € [0,1], yields a one-parameter family of limit solutions
2°(t; ) having the following property: There is a time ¢, > 0 such that

2%(t; ) = 2°(1)

does not depend on the parameter p for 0 < ¢ < t,. However, for fixed t > ¢,
the values of 2°(¢t; 1), u € [0, 1], constitute a continuum, i.e., for t > t, the
family forms a funnel. This resembles the properties of non-uniquely solvable
initial value problems, cf. [20]. Thus, for a fixed parameter p we cannot
describe the limit 2" by a uniquely solvable initial value problem. KoILLER
[14] coined the notion “Takens-chaos” for this effect.

6 Two Examples

We will discuss two examples for the general codimension r = 1 case, which
show the occurrence of the additional potential V,qq. A further nontrivial
example in the context of molecular dynamics including numerical simula-
tions can be found in BORNEMANN AND SCHUTTE [7].
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Example I. Illustrative, but Artificial

We take the Hamiltonian

-2 "2 2
m= T Ly e Ty
N—_——
=U(z,y)

describing a motion in R? This gives the constraint manifold M = {y = 0}
of dimension m = 1 and codimension r = 1. The equation of motion is given

by

o= 0 () - el () ()

i = =0,V (2t y) — R @)y
Using the initial values

o (0) =20, @°(0) =0, ¥ (0) =0, §(0)=wp,
we get as an immediate consequence of Theorem 4.4, that
2 — 2% in O, y*— 0 in C°,
where 20 is the solution of the initial value problem
i = -0,V (2°0) - 0/ (27, 2%(0) = g, #°(0) = vo.

The constant © is given by

2
Wo

- 2w(zg)

This result enables us to discuss a further important point. If we consider
the special situation, that initially

2
-0,V (20,0) = Qwu();o)w/(xo) #0 and vo =0,

we get the stationary solution 2° = 2. On the one hand, this proves

the necessity of the additional potential Vaqq = ©w. On the other hand,
Theorem 4.3 gives us in the this case a normal energy,



which is constant in time. Thus, a constant normal energy in the limit is
only necessary for the vanishing of the potential correction V,qq, but not
sufficient, cf. the discussion behind formula (18).

Remark. This example is discussed at length by KoPPE AND JENSEN [15],
who in fact prove Theorem 4.4 only for this example. GALLAVOTTI [9, p.
172ff] discusses the special case

W) =1+ 2?

“only in a heuristic, nonrigorous way”, as he writes. Instead of

w14+ 22
Vada(w) = 70 14 z2
V 0

he arrives at the wrong potential correction

w2

Vwrong(w) = IO 10g(1 + $2).

The reason for this flaw is that he first correctly derives for z &~ zq

2
Wy T

grad Vadd(w) ~ 7 m7
0

but in turn he argues that grad V,qq is therefore given by

2
wy ox

2 ] 422
which in fact yields Vipong. Interestingly enough, the potential correction

suggested by REIcH [21], the so called Fixman potential, also turns out to
be the same Virong.

Example II. The Magnetic Mirror

We consider the motion of a charged particle in a nonuniform axially sym-
metric magnetic B-field, whose field lines lie in planes passing through the
symmetry axis. Thus, in cylindrical coordinates r, z, ¢ the B-field does not
depend on the angle ¢ and its ¢-component vanishes. Hence, there is a vec-
tor potential A with components A = (0,0, A(r, z)), such that B = curl A,

i.e.,
B:( JA 8A—|—A0). (19)

"o or T
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The motion takes place according to the Langrangian
L = 5|9€|2 +e(@, A) = 5(7‘2 + 22 4120 4 ergA.
Since £ does not depend on ¢ we have the conservation law

—— = const, i.e., mr?¢ 4+ erA = const.

Thus, we can eliminate the ¢ variable. By gauging the vector potential
initially to zero and assuming for the sake of simplicity, that the motion
initially takes place tangentially to a plane of symmetry, we have

which implies

for all times. Hence, the Lagrangian reduces in (r, z)-coordinates to

e2 A2

o2m

gred = %(rz + 22) -

or equivalently, the motion fits into our framework with the Hamiltonian

A? m
9 €= —
€

1
H:§(f2+22)+6_2 7
~—
=U(r,z)

1

For a large specific charge €' = e/m we expect that the motion gyrates

very rapidly around the line
M=A{(r,z): A(r, z) = 0},

which is a field line by (19), the so called guiding center of the motion. The
frequency of gyration is given by ¢ 1w with

w? = %DQA2 (en@en)m = (DA-en)?
= |BI%,

since DA -eny = +|B| on M by (19). Thus, just as in the case of uniform
magnetic fields the frequency of gyration is given by the Lamor frequency
e|B|/m.
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Theorem 4.4 shows, that in the limit ¢ — 0 the average tangential motion
along the guiding center M is governed by the potential

w =05,

where the adiabatic invariant © is the magnetic moment of the particle
motion. The equation of motion now reads

. 0
§=-0|B|, (20)

where s denotes arc length on the line M. As we see, the appearance of the
additional potential W introduces the only force term for the limit motion.
This force term is of utmost importance in engeneering and natural sciences:
Charged particles are moderated by an increasingly strong magnetic field —
and that the more, the bigger the initial normal velocity was. This is the
working principle of magnetic traps and magnetic mirrors in plasma physics,
as well as of the Van Allen radiation belt of the earth with all its implications
for northern lights and astronautics.

Remarks.

1. The first derivation of equation (20) by physical reasoning was given
by the Swedish Nobel prize winner ALFVEN [2, Chapter 2.3], see also
[25][19].

2. The first mathematical discussion of the limit e/m — oo was given by
RUBIN AND UNGAR [22], who also discuss a nice mechanical analogue
of the magnetic mirror.

Appendix

Here, we derive the equations of motion in the (2, 25)-coordinates of Sec-
tion 1. The Lagrangian is given in these coordinates by
1

. . . . 1,.
¥ = 59(903\4, en) (B @) + h(aag, an) @ (B @ EN) + §|$N|2

—V(zm, zn) — e_zU(xM, TN),

where g denotes the metric tensor on M and we have h(z,0) =0 for z € M
because of the orthogonality of the coordinate splitting. The equations of
motion are given by the Euler-Lagrange equations:

4oy 0  doZ  0F
dtaiM_8$M7 dt 9y  Ozn
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We compute the derivatives and simplify them using the asymptotic results
of Lemma 1.1:

0L 1 . . . .
3 = —Dyg: (25 @ &5) + Dmh : (25 ® 2y)
IM | y=ge 2
— DV — € 2DU
= —?DyU +0(1),
and
0L 1 e e - e . €
5 = —Dng: (&% ® 35) + Dnh : (35, @ &%)
TN | e e 2
—DNV — e 2DyU
= —*DyU40(1),
and
0L .. e 0% e e
8iM x:l{:g-$M+h-$N7 8@]\7 x:$€:hT'xM+$N7
thus,
d 0% d 0¢
a T 1 1 T gl e 1.

Hence, the Euler-Langrange equations take the form (5), where the mass
matrix is given by

o [ 9 h\ _[00) O
M(x)_(hT I)_(O(e) I )

because of h(25,0) = 0 and therefore h(z°) = h(25, 25) = O(¢). Now,

I —h — hhT hg —gh
—h g 0 g—h'h

which gives

This proves the equations in (6).
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