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Abstract

We investigate dominance relations between basic semidefinite relaxations and classes of

cuts. We show that simple semidefinite relaxations are tighter than corresponding linear

relaxations even in case of linear cost functions. Numerical results are presented illustrating

the quality of these relaxations.

1 Introduction

The quadratic knapsack problem is the easiest case of constrained 0/1 quadratic programming

and is extremely difficult to solve by linear programming alone. Semidefinite programming is well

known to provide powerful relaxations for quadratic 0/1 programming [7, 1, 4] and, as we intend

to show, it is very useful for quadratic knapsack problems as well. We compare several possibilities

for setting up initial relaxations and show that in the special case of linear cost functions some

are even better than the canonical linear relaxation. We discuss possible strengthenings of these

relaxations by polyhedral cutting plane approaches in theory and in practice. The main practical

difficulty with semidefinite approaches is the high computational cost involved. These stem from

the factorization of a completely dense symmetric positive definite matrix with dimension equal

to the number of constraints. To keep the number of constraints small it is of major importance

to understand the interaction and dominance relations between different classes of cuts. We

give several theoretical results in this direction. Finally, we present computational results of this

approach on practical data.

Let N = {1, . . . , n} be a set of items, a ∈ INn a vector of weights, b ∈ IN a capacity, and

C ∈ �n×n a matrix of costs. The quadratic knapsack problem reads

(QK) Maximize xtCx

subject to atx ≤ b

x ∈ {0, 1}n .
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We can interpret this problem in graph theoretic terms: Given the complete graph on n vertices

with node weights ai and profit cii for all i = 1, . . . , n. Every edge ij in the complete graph

is assigned an objective function coefficient cij. Find a set of nodes S with sum of the node

weights not greater than the threshold b that maximizes the profit
∑

i∈S cii +
∑

i,j∈S,i<j 2cij. As

in the case of the linear knapsack problem the quadratic knapsack problem often appears as a

subproblem to more complex optimization problems. Typical applications arise in VLSI- and

compiler design [3, 6].

Our approach builds up on [4], which concentrates on the quadratic 0/1 programming aspects.

Here, we investigate quadratic representations of a linear constraint, as suggested in [7, 1, 4] and

discuss various aspects of knapsack specific inequalities.

The paper is structured as follows. Section 2 introduces several semidefinite relaxations

obtained by different representations of the knapsack constraint and analyzes their strength.

Section 3 surveys both well known and some new polyhedral concepts for generating knapsack

specific cuts. In Section 4 we deal with the dominance relation between these cuts. In Section 5

implementational issues are discussed. We also present our numerical results.

2 Semidefinite Relaxation

(QK) is a constrained quadratic 0/1 programming problem. The usual approach for designing

relaxations is to linearize the quadratic cost function by switching to “quadratic space”. To this

end we introduce variables yij for i ≤ j which are used to model the products xixj. In the

unconstrained case the convex hull of all feasible points in quadratic space is referred to as the

boolean quadric polytope. The knapsack constraint cuts off part of this polytope. Although

the convex hull of the restricted set of feasible integral points may differ substantially from the

boolean quadric polytope it seems natural to start with a strong relaxation for the boolean

quadric polytope and add knapsack specific inequalities on top.

Relaxation for the Boolean Quadric Polytope

As a relaxation for the boolean quadric polytope we use the semidefinite framework of [4] which

is based on [7] and [1]. We model the dyadic product xxt by a (symmetric) matrix variable Y .

We denote the diagonal of this matrix by y. Using this notation the feasible set of matrices can

be restricted to those satisfying Y − yyt � 0, i.e. Y − yyt must be positive semidefinite. This

condition is equivalent to (
Y y

yt 1

)
� 0.

The diagonal elements yi are obviously bounded by 0 and 1 and correspond to xi. Looking at

the determinant of a 3× 3 principal minor containing the last row we get

yiyj −
√
yiyj(1 + yiyj − yi − yj) ≤ yij ≤ yiyj +

√
yiyj(1 + yiyj − yi − yj) (1)

which yields an absolute lower bound of −1
8 for yij .
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Numerous facet defining inequalities are known for the boolean quadric polytope [8] and can

be added to sharpen the relaxation. Some of the most popular inequalities are (for all possible i,

j and k)

yij ≥ 0 (2)

yij ≤ yii (3)

yii + yjj ≤ 1 + yij (4)

yik + yjk ≤ ykk + yij (5)

yij + yik + yjk + 1 ≥ yii + yjj + ykk (6)

These correspond to the triangle inequalities of the max-cut polytope [2].

Modelling the Knapsack Constraint

The easiest way to model the knapsack constraint atx ≤ b on Y is to restrict the diagonal elements

of Y , yielding our first semidefinite relaxation,

(SQK1) Maximize tr(CY )

subject to tr(Diag(a)Y ) ≤ b

Y − yyt � 0.

Can we do better than (SQK1) by choosing some other representation of the knapsack inequality?

Let us first consider a generic approach [7]. b− atx ≥ 0 implies

(b− atx)(b− atx) = b2 − 2batx+ atxxta ≥ 0.

So a possible representation for the knapsack inequality could read

b2 − 2baty + atY a ≥ 0.

However, this inequality is already implied by the semidefinite constraint Y − yyt � 0. On the

other hand exploiting the fact that atx ≥ −b on the feasible set we get a very useful representation

in a very similar manner. We square both sides of atx ≤ b and get

atxxta ≤ b2.

Replacing xxt by Y we call this the square representation of the inequality and use it to form a

second relaxation

(SQK2) Maximize tr(CY )

subject to tr(aatY ) ≤ b2

Y − yyt � 0.

Lemma 2.1 (SQK2) is tighter than (SQK1).

Proof. With Z = Y − yyt we get

atZa+ (aty)2 ≤ b2 (7)

which implies aty ≤ b by the positive semidefiniteness of Z.

This proof suggests the following corollary.
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Corollary 2.2 If aty = b for some Y satisfying tr(aatY ) ≤ b2 and Y − yyt � 0, then a is in the

null space of Z = Y − yyt.

Another possibility to construct quadratic representations is to multiply the inequality by

either xi or (1− xi) [7, 1]. If, for some fixed i, we sum up the two inequalities

n∑
j=1

ajyij ≤ byi (8)

n∑
j=1

aj(yj − yij) ≤ b(1− yi) (9)

we get aty ≤ b.

Lemma 2.3 The relaxation obtained by replacing tr(Diag(a)Y ) ≤ b of (SQK1) with a pair of

inequalities (8) and (9) for some i is tighter than (SQK1).

By including all n inequalities of type (8) and one additional inequality of type (9) we get

(SQK3) Maximize tr(CY )

subject to
∑n

j=1 ajyij ≤ byi i = 1 . . .n∑n
j=1 aj(yjj − y1j) ≤ b(1− y1)

Y − yyt � 0.

Lemma 2.4 (SQK3) is tighter than (SQK2).

Proof. By multiplying inequality i of type (8) with ai
n∑

j=1

aiajyij ≤ baiyi

and summing up over all n inequalities, we obtain atY a ≤ baty ≤ b2. The right hand side

inequality follows from Lemma 2.3.

In practice it is more efficient to start with (SQK2) and to add Inequalities (8) and (9) in case

of violation only.

Comparison With a Linear Relaxation

We investigate the special case of a linear cost function C = Diag(c), i.e. Cij = 0 for i �= j. The

standard linear relaxation reads

(LK) Maximize ctx

atx ≤ b

0 ≤ xi ≤ 1 i = 1, . . . , n.

(SQK1) is equivalent to (LK) because for any feasible x vector there is a feasible matrix Y having

x as its diagonal. However, this is not true for (SQK2).

Lemma 2.5 Let Y ∗ be an optimal solution of (SQK2) for C = Diag(c). If (LK) has a unique

optimal solution x∗ which is not integral then tr(Y C) < ctx.

Because of this result we can expect that for numerous linear 0/1 programming problems we get

better relaxations by simply translating the linear relaxation to the semidefinite representation.
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3 Cutting Planes

In this section we introduce several classes of valid inequalities for the polyhedra associated with

the linear and the quadratic representation. These classes serve as the basis for an algorithm to

tighten bounds obtained from the semidefinite relaxation of a knapsack problem, see Section 5.

Our starting point is the polyhedron

P := conv{x ∈ {0, 1}n :
∑
i∈N

aixi ≤ b}.

A typical example of valid inequalities for P are cover inequalities. Let S be a subset of N

with
∑

i∈S ai > b, then the cover inequality with respect to the cover S

∑
i∈S

xi ≤ |S| − 1

is valid for P . The original weights are completely ignored by cover inequalities.

Definition 3.1 (weight inequalities)

Let T ⊆ N with a(T ) < b be given and set r := b− a(T ). The weight inequality with respect

to T is defined as ∑
i∈T

aixi +
∑

i∈N\T
max{0, (ai − r)}xi ≤ a(T ).

The name weight inequality expresses that the coefficients of the items in T equal their weights.

The symbol r := b − a(T ) corresponds to the remaining capacity of the knapsack when xt = 1

for all t ∈ T . The right hand side of the inequality is the weight of the set T . Hence, if for an

item i ∈ N \T ai ≤ r holds, then xt = 1 for all t ∈ T and xi = 1 is a feasible solution. Therefore,

the coefficient of i equals 0 in this case. For an item i ∈ N \ T such that ai > r, the value ai − r

corresponds to the weight by which the knapsack capacity b is exceeded if we set xi = 1 and

xt = 1 for all t ∈ T . These arguments can be made precise to yield Proposition 3.2.

Proposition 3.2 [9] For T ⊆ N , a(T ) < b and r := b − a(T ), the weight inequality with

respect to T is valid for P .

The idea of weight inequalities can be extended to more general cases. Instead of taking the

values of the weights of the items into account, we introduce “relative” weights for all the items

and derive an analogon of weight inequalities for these relative weights.

For disjoint subsets T and I such that a(T ∪ I) ≤ b, at ≤ ai for all t ∈ T and i ∈ I and

a(T ) ≥ ai for all i ∈ I , we define the relative weight cu of an item u ∈ T ∪ I as follows:

cu := 1 if u ∈ T ; cu := min{|S| : S ⊆ T, a(S) ≥ au} if u ∈ I.

In words, we first normalize the weights of the items in T to the value 1; thereafter an item i ∈ I

obtains as a new weight the value that counts the number of items in T that one needs in order to

cover the original weight ai. Under these assumptions we define for z ∈ N \ (T ∪ I) the extended

weight inequality with respect to T ∪ I ∪ {z} as follows:

5



Definition 3.3 (extended weight inequalities)

For r := b− a(T )− a(I), the extended weight inequality with respect to T ∪ I ∪ {z} is of the

form ∑
i∈T

xi +
∑
i∈I

cixi + czxz ≤ |T |+
∑
i∈I

ci,

where cz := min{|S|+∑j∈J cj : S ⊆ T, J ⊆ I, a(S ∪ J) ≥ az − r}.

Extended weight inequalities have been introduced and analyzed in [9]. For the purpose of

this paper the following proposition is needed.

Proposition 3.4 [9] The extended weight inequality defined for T ∪ I ∪ {z} is valid for P .

It was also shown in [9] that for any extended weight inequality lifting coefficients can always

be computed in polynomial time. In particular, the exact lifting coefficient of an item coincides

either with a certain lower bound or its value equals this lower bound plus 1.

In the following we will study the polyhedron

Q := conv{y ∈ {0, 1}n(n+1)/2 :
∑
i∈N

aiyii ≤ b, yij = yiiyjj ∀i < j}.

that we obtain by lifting the original polyhedron to the space of quadratic variables. In this

higher dimensional space, there are novel ways to construct relaxations of Q that, itself, allow

for generating valid inequalities for Q.

Lemma 3.5 Let N1, . . . , Nk be a partition of N . For every v ∈ {1, . . . , k} we choose a spanning

tree (Nv, Tv) in the complete graph K(Nv) on the node set Nv. By degvi we denote the degree of

node i in the tree (Nv, Tv). The polyhedron conv{y ∈ {0, 1}n(n−1)/2 :
∑k

v=1(
∑

i∈Nv
ai)[

∑
ij∈Tv

yij+∑
i∈Nv

(1− degvi )yii] ≤ b contains all the feasible points of Q.

Lemma 3.5 allows us to derive valid inequalities for Q via the following scheme: Generate a

relaxation Q′of Q as stated in the Lemma. Find valid inequalities, like cover inequalities, weight

inequalities or extended weight inequalities for Q′. These inequalities are also valid for Q.

Example 3.6 Consider the knapsack polyhedron

conv{x ∈ {0, 1}6 : 5x1 + 6x2 + 7x3 + 8x4 + 9x5 + 12x6 ≤ 21}.
Partitioning into sets {1, 2}, {3, 4}, {5, 6} and choosing the edge set of the complete graphs on two

nodes for all elements in the partition yields the knapsack polyhedron

Q′ := conv{y ∈ {0, 1}21 : 11y1,2 + 15y3,4 + 21y5,6 ≤ 21}.
A valid inequality for this polyhedron is given by the cover inequality y1,2 + y3,4 + y5,6 ≤ 1.

Partitioning N into the sets {1, 2, 3}, {4}, {5}, {6} and choosing the edges (1, 2), (1, 3) in the

complete graph with vertices 1, 2, 3 yields another knapsack polyhedron

Q′′ := conv{y ∈ {0, 1}21 : 18[y1,2 + y1,3 − y1,1] + 8y4,4 + 9y5,5 + 12y6,6 ≤ 21}.
A valid inequality for Q′′ is given, for instance, by the constraint 2[y1,2+y1,3−y1,1]+y4,4+y5,5+

y6,6 ≤ 2.
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In the remainder of this paper we sometimes refer to special relaxations of Q. These are

obtained by partitioning a subset S = {i1, . . . , is} of N of even cardinality into elements of

cardinality two, S1, . . .S
s

2 , S1 = {i1, i2}, S2 = {i3, i4}, . . . , S
s

2 = {is−1, is}, for instance. In

other words, we choose a perfect matching M in the complete graph with node set S, or a

matching M in the complete graph with node set N . By Lemma 3.5 the polyhedron

conv

⎧⎨
⎩y ∈ {0, 1}n(n+1)/2 :

∑
ij∈M

(aj + ai)yij +
∑

i∈N\S
aiiyii ≤ b

⎫⎬
⎭

is a relaxation of Q. The knapsack inequality
∑

ij∈M (aj + ai)yij +
∑

i∈N\S aiiyii ≤ b is called

the matching-knapsack-constraint associated with the matching M in the complete graph with

node set N . We will refer to a cover inequality based on a matching-knapsack-constraint as

matching-cover-constraint.

We conclude this section by introducing a quadratic representation for linear cover inequali-

ties. Let S ⊂ N define a valid cover inequality for P and choose any hamiltonian cycle CS in the

complete graph over the vertex set S. Then∑
ij∈CS

yij ≤ |CS| − 2

is a valid inequality for Q. We refer to this type of inequalities as cycle inequalities [3].

4 Various Aspects of Cutting Planes

In general (SQK2) and (SQK3) will not be tight enough to provide provably optimal solutions

but it is possible to improve these semidefinite relaxations by adding further inequalities. We

have already mentioned generic cuts from the boolean quadric polytope in Section 2. In this

section we will consider knapsack specific inequalities.

We start with valid inequalities for P as defined in Section 3. These are again linear constraints

which have to be transformed into some quadratic representation. In principal we have the same

possibilities as for modeling the knapsack inequality and the same results apply. Note, that in

case of multiplication with xi it may be worth to postpone the lifting procedure. Multiplication

of atx ≤ b with xi corresponds to a conditional inequality, which is effective only if xi > 0,

xi
∑
j �=i

ajxj ≤ (b− ai)xi.

So for an extended weight inequality multiplied with xi we can lift the remaining coefficients with

respect to the reduced knapsack inequality
∑

j �=i ajxj ≤ b− ai instead of the original atx ≤ b.

Example 4.1 For the knapsack polyhedron

SP4 := conv{x ∈ {0, 1}4 : 4x1 + 5x2 + 6x3 + 7x4 ≤ 16},
lifting the inequality x1+x2+x3 ≤ 3 with respect to the original inequality yields x1+x2+x3+x4 ≤
3. By multiplying with x3 we get

y13 + y23 − 2y33 + y34 ≤ 0.
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Lifting x1 + x2 ≤ 2 with respect to 4x1 + 5x2 + 7x3 ≤ 10 yields

y13 + y23 − 2y33 + 2y34 ≤ 0.

It is also interesting to investigate the dominance relation between different representations if

we include triangle inequalities (2) to (6) in the basic relaxation. Consider the extended weight

inequality for P ∑
i∈T

(1− xi) +
∑
i∈I

ci(1− xi)− czxz ≥ 0. (10)

Multiplication with xz yields the quadratic representation

∑
i∈T

(yzz − yiz) +
∑
i∈I

ci(yzz − yiz)− czyzz ≥ 0. (11)

We subtract this inequality from the diagonal representation of (10) (replace xi with yii) and get

∑
i∈T

(1− yii − yzz + yiz) +
∑
i∈I

ci(1− yii − yzz + yiz) ≥ 0.

If we require the triangle inequalities (4) to hold, the latter expression is clearly nonnegative and

(11) dominates the diagonal representation of (10).

We now turn towards valid inequalities for the polyhedron Q. One question in terms of

computations is to choose a relaxation of the original problem that allows to derive strong valid

cuts for the quadratic knapsack problem. If we restrict the discussions to cuts that are cover

inequalities, a precise statement can be made for a comparison of the polyhedra Q and

C := conv{y ∈ {0, 1}n(n+1)/2 :
∑
i∈N

a2i yii +
∑

i<j, i,j∈N
2aiajyij ≤ b2}

that we associate with the form atxatx ≤ b2 of the given quadratic knapsack problem.

Lemma 4.2 For (SQK1) combined with the triangle inequalities (3) every cover inequality that

is valid for C is dominated by a matching-cover-constraint.

The next lemma is another indication that matching-knapsack-constraints are a useful relaxation

for deriving valid inequalities.

Lemma 4.3 Let S ⊂ N be a cover. The square representation of the cover inequality with respect

to S is dominated by the diagonal representation combined with

(a) matching-cover-inequalities if |S| is even,

(b) cycle inequalities if |S| is odd.
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5 Implementation

For solving the semidefinite programs we use the primal-dual path-following interior point algo-

rithm of [5]. To guarantee that there is no duality gap between primal and dual optimal solutions

we have to ensure that at least one of both has a feasible point satisfying all inequalities strictly.

To this end we add the constraint yij = 0 whenever ai + aj > b for some i �= j. The arithmetic

mean of all zero, one, and two item solutions is now such a feasible point.

Each iteration of the interior point code requires the factorization of a dense positive definite

matrix. The dimension of this matrix is the number of constraints of the semidefinite program.

More than 60% of the overall computation time are spent in this routine. It is therefore extremely

important to keep the set of constraints as small as possible. Even expensive separation routines

will pay off if they help to achieve this goal.

We start the algorithm with (SQK2) as initial relaxation and compute its optimal solution.

Then we improve the relaxation by adding n cutting planes and iterate. The current implemen-

tation supports the following cutting planes: representations of the knapsack constraint in the

form of (8) and (9), all triangle inequalities (2) to (6), weight inequalities and extended weight

inequalities with respect to the original knapsack constraint. An inequality of the latter two

classes is checked for violation with respect to its quadratic representation and representations

of the form (8) and (9). Especially the separation algorithm for extended weight inequalities is

quite involved and includes an exact lifting procedure.

dim rhs sol (SQK1) (SQK2) (SQK3) cut

30 350 934 1412.2 1298.6 1257.4 972.8

30 450 1580 1783.5 1736.5 1733.1 1580.0

30 512 1802 2397.4 2050.3 2023.0 1824.3

45 350 2228 2561.1 2327.1 2296.9 2228.0

45 450 2840 3283.8 3086.0 3078.2 2873.8

45 512 3154 4082.5 3554.2 3554.2 3251.7

47 350 1192 1487.7 1406.6 1375.4 1192.0

47 450 1732 1848.7 1834.0 1832.9 1735.6

47 512 1932 2505.9 2162.0 2155.2 1951.6

61 350 22210 23738.7 23357.1 23352.8 22221.3

61 450 26996 27987.5 27654.3 27651.7 27000.2

61 512 29760 30353.7 30083.9 30083.0 29760.6

Table 1:

As test problems we use some compiler design problems of [6]. For each example we compute

solutions for right hand sides 350, 450, and 512. Results are given in Table 1. The first column

is the dimension, the second the right hand side. The third column gives the best solution we

know. Columns (SQK1), (SQK2), and (SQK3) give the optimal solution of the corresponding

relaxations. Column cut displays the upper bound of the cutting plane approach after half an
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hour of CPU-time.

Observe that there is a significant gap between (SQK1) and (SQK2) but only little improve-

ment from (SQK2) to (SQK3). Typically the set of active constraints consists of numerous

triangle inequalities and a few knapsack specific cuts. Regarding the possible representations

of linear cuts there is a clear tendency in favor of multiplication with some xi (8) which is not

astonishing in view of the theoretical results.
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