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Abstract

We present computational experiments for solving quadratic (0� 1) problems. Our approach

combines a semidefinite relaxation with a cutting plane technique, and is applied in a Branch

and Bound setting. Our experiments indicate that this type of approach is very robust, and

allows to solve many moderately sized problems, having say, less than 100 binary variables,

in a routine manner.

Key words: quadratic (0,1)-programming, max-cut problem, semidefinite program, Branch and
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1 Quadratic (0,1) - Problems

A basic problem in discrete optimization consists in optimizing a quadratic function over some

hypercube. This type of problem is NP-hard, and it is still considered a computational challenge

to solve general modest-size problems of this type to optimality.

Quadratic programming over the vertices of a hypercube appears in various equivalent for-

mulations in the literature. We use the following model, which corresponds to the problem of

finding a cut of maximum weight in an edge weighted undirected graph.

(MC) mc := maxxtLx such that x ∈ {−1, 1}n (1)

�Large parts of this paper were prepared while the author was working at the Christian Doppler Laboratory

for Discrete Optimization at Graz University of Technology.

1



This problem is one of the basic NP-hard combinatorial optimization problems. Its scientific

interest has several reasons. First there are many applications that lead directly to (MC). These

range from the physics of spin glasses to nonsingularity of interval matrices. A detailed description

of various applications can be found in the survey paper by Poljak and Tuza [34]. Secondly, the

combinatorial structure of the so-called cut polytope associated with problem (1) provides a basic

ingredient for integer linear programming. A recent summary of theoretical properties of the cut

polytope can be found in the forthcoming book by Deza and Laurent [18]. Some connections

to general linear integer programs are elaborated in [22]. Finally from a more practical side,

the max-cut problem has remained a challenge in the design of algorithms for its solution. In

Section 3 we review the most interesting solution approaches for this problem.

Our primary goal is to provide computational experiments for problems of the form (1), based

on a recently introduced semidefinite relaxation. Our main conclusion, substantiated by compu-

tational experiments on a big variety of test problems, lies in the observation that this semidefinite

relaxation, combined with linear cutting plane techniques provides a strong machinery to solve

(1). Our approach is very robust, and much less sensitive to structural properties than most of

the other published solution methods.

The paper is structured as follows. We first recall various equivalent formulations of (1).

Since the main contribution of this paper are computational experiments, we find it convenient

for the reader to review the currently best solution methods for max-cut problems. This is done

in Section 3. In Section 4 we provide the mathematics underlying the semidefinite relaxation

used in this paper. We also describe the class of cutting planes that we use. In Section 6 we

provide algorithmic details on how we actually solve our semidefinite program. The main part of

the paper contains the computational experiments. We first describe the data sets we are using.

Then we show the performance of our approach applied directly to these problems. Finally, we use

our methodology in a Branch and Bound setting to solve problems to optimality. We conclude

with a discussion of our findings and show strong points and weaknesses of our approach, as

compared to previous work.

2 Equivalent formulations of (MC)

Problem (1) can be recast in several essentially equivalent forms. To start, it is well known, see

e.g. [3], that the adjunction of a linear term ctx in the cost function of (1) does not change the

problem significantly, because

max xtLx+ 2ctx such that x ∈ {−1, 1}n (2)

is equivalent to

max ytL̂y such that y ∈ {−1, 1}n+1, yn+1 = 1,

where L̂ :=

(
L c

ct 0

)
. Since this cost function is symmetric, yn+1 = 1 need not be maintained

explicitly. Therefore the inclusion of a linear term leads to a problem of the form (1), of size
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increased by one. It is also straightforward to see that (2) is equivalent to Quadratic (0, 1)

programming (QP),

(QP ) minxtQx+ qtx such that x ∈ {0, 1}n.
This has been observed by many researchers, see e.g. [3, 13].

Finally, we recall how (1) relates to the Max-Cut Problem. This connection was established

for instance by Mohar and Poljak [29]. Let G be an undirected graph on vertex set V = {1, . . . , n}
with edge weights {ce : e ∈ E(G)}, given by its adjacency matrix A = (aij) where aij = aji =

ce for e ∈ E(G), e = (ij), aij = 0 otherwise.

The Max-Cut Problem asks to divide V into two sets (S, V \S) so as to maximize the weight

of the edges ‘cut’ by the partition.

(Max-Cut) mc(G):=max
S⊆V

∑
i∈S,j /∈S

aij.

Let us represent partitions (S, V \ S) by vectors x ∈ {−1, 1}n with xi = 1 only if i ∈ S. We

denote by e the vector of ones. Using the Laplacian L of G, defined as

L := diag(Ae)− A,

it can easily be checked that
1

4
xtSLxS =

∑
i∈S,j /∈S

aij, (3)

if xS ∈ {−1, 1}n represent the partition (S, V \S). Thus (1) contains the Max-Cut Problem as a

special case. On the other hand, any symmetric matrix M can be written as the Laplace matrix

of a graph plus some diagonal matrix D, M = L+D. Since

xtDx = trD for all x ∈ {−1, 1}n (4)

holds for diagonal matrices D, it is clear that (1) is not more general than Max-Cut.

3 Overview of solution approaches

Linear Programming based methods.

Working with binary variables associated to the edges of the graph in question, the weight of

cuts is a linear function of these edge variables. It is therefore not surprising that attempts

were made to find tight linear descriptions containing the cut polytope, i.e. the convex hull of

all characteristic vectors representing cuts. A substantial computational study based on Linear

Programming and cutting planes is given by Barahona et al [3]. These experiments suggest that

LP based methods are likely to be efficient only if the graph is reasonably sparse. (Graphs with

100 vertices and edge density of 10 % can be handled by this approach, while it fails on dense

graphs with 50 vertices.) This observation is further substantiated by Barahona and Titan [4] and

Barahona [2], where max-cut problems on toroidal grid graphs are solved to optimality. (These

graphs are highly structured and have about 2|V | edges.) In [2] Max-Cut problems on toroidal
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grids of sizes up to 35 × 35 are solved to optimality using cutting planes in conjunction with

Linear Programming. The currently strongest results on toroidal grids are contained in a recent

study by De Simone et al [14], where Max-Cut problems on toroidal grids of sizes up to 100×100,

i.e. 10,000 vertices, are solved by Linear Programming based branch and cut techniques.

Another variant of a cutting plane algorithm is proposed by De Simone and Rinaldi, [15]. Here

the authors work on the complete graph and try to optimize over a very general class of linear

inequalities, valid for max-cut, the so-called hypermetric inequalities. Again, the computational

success seems to be very dependent on the actual number of nonzero edges in the graph, and it

deteriorates quickly, as the number of vertices increases.

Several authors approach (QP) with techniques developed for pseudo Boolean functions, see

e.g. [20]. The concept of roof dual studied in [20] corresponds to a linear relaxation of the problem

over a subset of the triangle inequalities. Further theoretical results, including a variety of facet

defining inequalities for the cut polytope are contained in the papers [6, 7, 5]. Computational

results based on quadratic posiforms are described in [8]. Several heuristics to obtain integer

solutions are investigated on graphs having up to 300 vertices.

Branch and Bound with Preprocessing.

Pardalos and Rodgers [30, 31] solve (QP) by Branch and Bound using a preprocessing phase

where they try to fix some of the variables. The main idea lies in the observation that xi can be

fixed if the partial derivative of the cost function with respect to xi does not change sign over

the convex hull of the feasible points. It is rather surprising that the computational performance

of this approach is quite similar to the results reported in [3], even though the approaches are

completely unrelated. The method works well, if some sort of diagonal dominance holds for the

cost function, or if the problem is very sparse. It seems to fail on dense problems of quite modest

size (n = 50).

Kalantari and Bagchi [24] propose a Branch and Bound scheme where they bound (QP) by a

linear convex envelope from below. Computational results on small problems (n ≤ 50) indicate

that again the efficiency of the approach deteriorates quickly with increasing problem size.

There exist several older computational studies dealing with our problem, such as Körner

[25], Carter [10] or Williams [39]. The results contained in these papers are either on very small

problems or are dominated by [3] and [30], so we do not go into further details.

Eigenvalue based approaches.

A last group of papers approaches the max-cut problem using eigenvalues. The basic idea here is

to represent cuts in the vertex oriented way of cut vectors x ∈ {−1, 1}n. Mohar and Poljak [29]

were the first to observe that

4mc(G) ≤ max
xtx=n

xtLx = nλmax(L).

(The factor 4 comes from (3).) Therefore the largest eigenvalue of the Laplacian provides an

upper bound on the weight of a maximum cut. A further improvement is proposed in [12] using
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(4) to obtain

4mc(G) ≤ ϕ(G) := min
ute=0

nλmax(L+ diag(u)). (5)

Computational experiments are contained in [37] and in [35], where this bound is applied to huge

graphs (with up to 50,000 vertices and several million edges). Using some of the combinatorial

properties of ϕ(G) investigated in [11], the paper [37] provides the first results of this bound in

a Branch and Bound setting. In [36] it is shown, that the eigenvalue relaxation can alternatively

be formulated as a semidefinite program, leading to computationally more stable algorithms.

Computational results using this semidefinite setting are given in [23, 9, 21]. In his thesis, Burkard

[9] investigates the basic model (SDP), formally introduced below, in a Branch and Bound setting,

Helmberg [21] sets the algorithmic framework for combining (SDP) with cutting planes. Finally,

[23] contains the first experiments combining the semidefinite model with polyhedral approaches

in a general setting.

After this short summary of existing solution methods we will now provide the details un-

derlying the semidefinite relaxation used in the present paper. Our computational work is an

outgrowth of [23, 21, 22] and builds on the results contained in these papers.

4 Semidefinite Relaxation

In this section we recall the semidefinite relaxation introduced in [36] to bound (MC). The starting

point is the following simple observation,

xtLx = trL(xxt).

Let F = {−1, 1}n denote the feasible set of (MC). We consider the set PC := conv{xxt : x ∈ F},
the so called cut polytope. With this notation (MC) is equivalent to

mc = max trLX such that X ∈ PC.

Since a complete description of the polyhedron PC is currently not known, and unlikely to be

available by a simple oracle due to the NP-hardness of (MC), we approximate the feasible set as

follows. By construction we have

X ∈ PC =⇒ X � 0, diag(X) = e.

The basic semidefinite relaxation, used in [36, 23] is therefore

(SDP) ϕ(G) = max trLX such that diag(X) = e, X � 0. (6)

We call this a Semidefinite Program in the matrix variable X , because it is a linear problem in X

with the additional semidefiniteness constraint X � 0. It can be solved in polynomial time using

the ellipsoid method, if the accuracy of the solution is prespecified by some constant. (The fact

that the optimal solution values of (5) and (6) coincide was observed by Schrijver [38], see also

[36] for extensions.)
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Before we show how this relaxation can be further tightened by cutting planes, we summarize

some useful properties of (SDP). Goemans and Williamson [19] have recently shown that (SDP)

applied to a max-cut problem on nonnegative edgeweights leads to an error of at most 13.8 %.

More precisely they prove the following theorem.

Theorem 4.1 ([19]) If G is a graph on nonnegative edgeweights, then ϕ(G) ≤ 1.138 mc(G).

Delorme and Poljak examine the behaviour of (SDP) on some classes of random graphs. In

particular they prove the following statement.

Theorem 4.2 ([11]) Let Gn,p be a random graph on n vertices with edge probability p, (0 < p <

1), then

lim
n→∞

ϕ(G)

mc(G)
= 1

with probability 1.

Finally, Laurent and Poljak [27] investigate the geometry of the set, described by the constraints

of (SDP). They show that Theorem 4.1 can be further improved if the adjacency matrix A has

the form A = aat.

Theorem 4.3 ([27]) Let G be a graph with adjacency matrix A = aat, and a ≥ 0. Then ϕ(G) ≤
1.125 mc(G). Moreover there is a simple characterization in terms of a, for ϕ(G) = mc(G) to

hold.

In view of these theoretical properties it is promising to use (SDP) as a starting point to

approximate (MC). On the other hand, the Branch and Bound results contained in [37] and

[9] indicate that (SDP) by itsself may still be too weak to solve larger problems to optimality.

(Solving instances with 70 vertices by Branch and Bound using only (SDP) could not be done

routinely, as demonstrated in [9].) Therefore we go one more step and combine (SDP) with a

cutting plane approach, as in integer linear programming. In the next section we describe the

linear inequalities used as cutting planes.

5 Hypermetric inequalities as cutting planes

Suppose we have solved the relaxation (SDP) yielding an optimal solution X . How could we

determine whether or not X ∈ PC ? Since the Max-Cut Problem is NP-hard, it is of course

highly unlikely that there is a statement of the form: X ∈ PC if and only if some polynomially

checkable condition is satisfied by X . We content ourselves therefore with a partial description of

PC, given by the hypermetric inequalities. These have been thoroughly investigated for instance

by Deza and Laurent [17].

Since hypermetric inequalities play a fundamental role in our approach, we review their deriva-

tion and some basic facts. Let b ∈ �n be a vector of integers, such that |btx| ≥ 1 for all x ∈ F .

(A possible choice for b satisfying these conditions would be to choose the integers b1, . . . , bn−1
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arbitrarily, and then select bn so that
∑

i≤n bi is odd.) To translate this condition into our matrix

model, we simply square to obtain

|xtb| ≥ 1 ⇐⇒ xtbbtx ≥ 1 ⇐⇒ tr(bbt)(xxt) ≥ 1.

Thus X ∈ PC only if tr(bbt)X ≥ 1. Let us introduce the set B := {b ∈ Zn :
∑

i b odd} and define

PH = {X : tr(bbt)X ≥ 1 for all b ∈ B}.

This gives the following relaxation.

PC ⊆ PH.

The set PH is generated by the intersection of an infinite number of halfspaces. Nontheless it

has been shown recently that this set is polyhedral, see [16]. The bad news is that it is currently

not known how to decide efficiently whether X ∈ PH holds or not. Since we are going to use

hypermetric inequalities as cutting planes in our model, we will describe later some heuristics to

test whether X /∈ PH.

Even though a complete description of PH by facet defining inequalities is not known, there

exist several special classes of facet defining inequalities for PC, that are hypermetric.

Perhaps the most obvious class of inequalities are the triangle inequalities. They state that

xij + xik + xjk ≥ −1, xij − xik − xjk ≥ −1

for all triples (i, j, k) of distinct vertices of G. (To see that this is some hypermetric inequality,

simply take b to be the characteristic vector of the triangle (i, j, k) in the first case, and set

bk = −1 in the second case. The polyhedron, defined by these conditions only is called the

Metric Polytope. This polytope is the basis for many polyhedral approaches to solve (MC),

see for instance [3, 15]. Its popularity is also due to the fact that the corresponding max-cut

relaxation is exact for graphs not contractible to K5 [1].

A generalization of the triangle inequalities to general cliques of odd order leads to the clique

inequalities. Let b be the characteristic vector of a clique of size k odd. Then

tr(bbt)X ≥ 1

holds for all X ∈ PC.

6 Implementation

This section gives a detailed description of our implementation which is an improved version of

[21]. It employs the primal-dual path-following algorithm of [23] as basic optimization tool. We

start with recapitulating some characteristics of this interior point code which are fundamental for

the understanding of the general approach. Section 6.2 gives the parameters used for computing

(SDP) and describes the heuristic for generating good cuts. Finally, we explain our procedures

for finding, selecting, and adding violated hypermetric inequalities.
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6.1 Interior Point Code

The algorithmic framework is designed to handle primal-dual pairs of the form

Maximize 〈C,X〉+ 〈b, s〉
subject to a− A(X)− B(s) = 0

X � 0, s ≥ 0

Minimize 〈a, y〉
subject to Z + C −AT (y) = 0

t+ b− BT (y) = 0

Z � 0, t ≥ 0,

where A(·) : �n×n → �k and B(·) : �m → �k are linear operators on the positive semidefinite

matrix variable X and on the nonnegative vector s, respectively. AT (·) and BT (·) denote the

corresponding adjoint operators. For technical reasons we requireA(·) to map the skew symmetric

part to zero such that A(M) = A(Mt) for an arbitrary n× n matrix M . We will call y the dual

variables and Z and t the dual slack variables. In the case of (SDP) AT (X) is just diag(X),

a = e, and s is not used at all. When we add cutting planes, s will be needed as slack variable.

In each step the algorithm computes a Newton step for the primal-dual pair towards a point

on the central trajectory. The central trajectory is characterized by primal and dual feasibility,

ZX = μI , and s ◦ t = μe (◦ denotes the Hadamard-product of matrices). μ is usually referred

to as the barrier parameter. Since the full Newton step might violate the cone restrictions a line

search is necessary. We do separate line searches for primal and dual update yielding step sizes

αp and αd. The new μ-value is computed with respect to the new point by

μ = min

{〈X,Z〉+ 〈s, t〉
n+m

× (0.5− 0.4α2), μold

}
,

where α = min {αp, αd}. This choice is empirically efficient for max-cut and leads to a cautious

reduction of μ if the last stepsize was rather small.

The computationally expensive part is the construction and factorization of the Newton-

system. After some manipulations the system matrix M of size k × k reads

M = A(Z−1At(·)X) + B(t−1 ◦ Bt(·) ◦ s).

Here, t−1 is short for (t−1
1 , . . . , t−1

m )t. To shed some light on this matrix we note that A(X) can

be represented as (tr(A1X), . . . , tr(AkX)) with the Ai being symmetric n × n matrices. Using

this notation we have

Mij = tr(AiZ
−1AjX).

Since there is no hope that either X or Z−1 is sparse, we have to exploit any possible structure

present in Ai to compute M efficiently. In our case all Ai are of form bbt. The constraint on

diagonal element Xii reads tr(eie
t
iX) = 1 and the hypermetric inequalities read tr(bbtX) ≥ 1. So

Mij is best computed by

Mij = (btjXbi)(b
t
iZ

−1bj).

PrecomputingXbi and btiZ
−1 for each row leads toO(n2k+nk2) arithmetic operations for building

M. In practice this can be improved significantly by making use of the sparsity of the vectors.
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M is symmetric, positive semidefinite, and dense, see [21]. We use the LDLt factorization to

solve this system. Although LDLt decomposition is comparatively fast for solving dense linear

systems, about 60% of our computation time are spent in this routine. The predictor corrector

approach significantly reduces the number of factorizations needed, so we employ it whenever

k > 2n. In contrast to other algorithms we do not compute a new μ on base of the predicted

point but stick with our apriori choice. For some strange reasons this leads to a very stable

algorithm.

6.2 (SDP) Relaxation

To compute (SDP) it remains to specify a starting point. Obviously X = I is the ideal starting

point on the primal side, since it is the center of the highly symmetric max-cut polytope and

elliptope. It remains to find a feasible assignment for the dual variables Z and y. Since

Z = −L+
n∑

i=1

yieie
t
i

we can choose the yi such that Z is diagonally dominant and therefore positive definite. There

seems to be no need for a more sophisticated choice. We now compute Newton steps till the gap

between primal and dual value is small enough,

〈a, y〉 − 〈L,X〉 ≤ 〈a, y〉 × 5 · 10−6.

At termination X is hopefully close to some cut product xxt and contains useful information

for constructing good cuts. We use the following heuristic to exploit this information. For each

row of X we do the following. We round the values to a {−1, 1}-vector and continue changing

the sign of the element which yields the largest improvement till no increase of the objective can

be gained by flipping single nodes. We take the best of all these cuts. For almost all our test

examples this was already the optimal cut.

If the gap between lower bound and dual objective is now smaller than one (we assume

that the objective yields integer values for cuts) we stop, otherwise we try to find hypermetric

inequalities which are violated by X .

6.3 Detecting Violated Hypermetric Inequalities

We employ three different strategies for separating inequalities which are violated by the current

X . Firstly, we enumerate all triangle inequalities. Secondly, we try to extend clique inequalities

which have already proven to be important (the corresponding dual cost yi is sufficiently large)

by adding two more nodes.

Finally, we employ a very simple heuristic to construct hypermetric candidates. We are

looking for integer vectors b with the following three properties. The sum of the elements of

b is odd, btXb is close to zero, and | 〈b, c〉 | = 1 where c is the currently best cut vector. The

third property is motivated by the idea that the new inequality should be tight for the optimal
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solution. We start with a vector which satisfies the first and third property (we use ei). Now we

try to decrease btXb maintaining these two properties by iteratively increasing some component

bj by one and at the same time decreasing (all with respect to the current best cut) another

component bk. In particular j runs through 1 to n and k is selected such that the pair j and k

yields the maximal decrease of btXb. We continue this process till there is no improvement for

all components of b. If in the end btXb < 1 this is a violated inequality.

In general we find a lot more violated inequalities than we are willing to include in our

relaxation because adding m inequalities implies that each Newton step will require O((n+m)3).

To keep the code efficient it is extremely important to select just a small number of promising

inequalities from the vast set of violated inequalities. The first criterion which comes to mind

is the amount of violation. This is a good criterion as long as triangle inequalities are used

exclusively. For general inequalities the following geometric criterion seems to work better. We

compute the intersection of the straight line segment betweenX and I with the violated inequality

and sort the inequalities with respect to the distance of this intersection to I . We take the m

inequalities with minimal distance.

6.4 Adding and Dropping Cutting Planes

We have now explained how we find violated hypermetric inequalities and which of them we

want to include. All we have to do now is to restart from the center X = I , compute a new

dual starting point, and iterate. On its path from the center towards the solution of this new

relaxation X will at some point leave the cut polytope. At this point it pays off to add a few newly

violated inequalities, push X back inside a little bit and continue. We do this several times and

then solve the improved relaxation exactly again. To distinguish between the process of adding

inequalities at the exact solution of the relaxation and adding inequalities while still solving the

current relaxation we call the first a large add and the second a small add. The process of a small

add requires some more explanation.

We use the triangle inequalities for triggering small adds, i.e. we check after each iteration for

a violated triangle inequality by enumeration. If a violation is detected we do three more Newton

steps to allow some more inequalities to become violated and then apply the same separation and

selection process as above. To get a new feasible primal point X is pushed back along the straight

line segment from X to I such that all added inequalities are satisfied. For the dual variables we

try to avoid changes in the hope that the current dual point is also a good counterpart to a just

slightly changed X . Therefore we set the yi-values corresponding to the new inequalities to zero,

and the corresponding tj-values (the counterparts to the slack variables sj) to one. This results

in an infeasible dual point because feasibility requires ti = −yi. None the less the dual objective

is a valid upper bound as long as the yi do not get positive. In practice Newton takes care that

these infeasibilities disappear within a few steps.

Since changes on the primal and dual side are small the new variables form, in general, an

acceptable primal-dual pair and the algorithm recovers within about three iterations. We can

continue with the next small add. Empirically it was our impression that small adds help to

10



generate a representative collection of inequalities which are well distributed over all vertices and

help to reduce the number of redundant inequalities. A heuristic explanation for this behavior is

that due to the underlying barrier method the new central path is pushed away from the newly

added inequalities, such that the next set of inequalities is generated with respect to an X which

generously satisfies all previous inequalities.

On the negative side small adds inhibit the early recognition of inequalities which have become

redundant. This is due to the fact that the barrier parameter μ is in general still too large for

the dual variables to converge to zero. To avoid the accumulation of redundant inequalities —

and to check whether the relaxation is already good enough — after several small adds we solve

the relaxation exactly. The dual costs of the exact solution provide a good indicator for the

importance of inequalities.

In our algorithm each large add adds n violated inequalities and is followed by ten small adds

which add n/3 inequalities each.

7 Numerical Results

In this section we will report numerical results on four different types of test problems. The first

part is devoted to the cutting plane algorithm itself. In the second part we investigate possibilities

to utilize this algorithm in a branch & bound scheme.

All four types of test problems are randomly generated, two of them are formulated as max-

cut problems on graphs, two as quadratic (0, 1) programming problems. The first, called G.5,

consists of unweighted graphs with edge probability 1/2. The second type, G−1/0/1, is a weighted

(complete) graph with edge weights chosen uniformly from {−1, 0, 1}. The third, Q100, goes back

to [39] and is formulated in quadratic (0, 1) programming terms. Its most natural setting with

respect to our definition of (QP) is to set all elements qij of Q with j < i to zero and choose the

others uniformly from {−100, . . . , 100}. Since we have already specified weights on the diagonal

of Q we do not need the linear term q. We include this last type for comparison with [3]. We will

also give examples of Q100 with density of 20% to demonstrate that our algorithm is insensitive

to different densities. We will call this latter class Q100,.2.

All our experiments were computed on an HP 9000/715.

7.1 Numerical results for (SDP) with hypermetric inequalities

As described in Section 6 the algorithm first computes (SDP) and iteratively performs a large

add followed by ten small adds till the gap between upper bound and best known solution is less

than one. A second stopping rule used here is that after five hours the algorithm is not allowed

to add any more inequalities. However, we wait till the current relaxation is solved. This may

take considerably longer than five hours.

We illustrate the typical behavior of the algorithm on an example of class G.5 in Table 1. The

dimension of the graph is 70. The maximum cut has value 708. The first column gives the number

of Newton steps, the second computation time, the third the development of the upper bound,
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iter h:mm:ss ubd % viol #constr #tri #cli #hyp

11 1 726.71 2.57 0.97 70 0 0 0

55 56 715.47 1.04 0.62 370 300 0 0

103 8:46 713.10 0.72 0.46 658 509 60 19

152 31:43 711.91 0.55 0.26 893 595 165 63

199 1:18:26 711.36 0.47 0.24 1112 608 332 102

251 2:55:28 711.02 0.42 0.15 1326 629 497 130

299 4:50:56 710.79 0.39 0.13 1435 564 645 156

319 6:04:32 710.74 0.39 0.08 1487 574 681 162

Table 1: Example of G.5, n = 70, maximum cut value is 708.

the fourth the relative gap in percent (= (ubd− lbd)/ubd× 100), the fifth the maximal violation

of the triangle inequalities, the sixth the number of constraints, which corresponds to k as used

in Section 6.1. The last three columns give the number of triangle facets, larger clique facets, and

general hypermetric inequalities included in the relaxation. Each line gives the current figures

after one round of adding inequalities and solving the resulting relaxation exactly. In particular

the first line is the (SDP) solution, the second the solution after one large and ten small adds,

etc.

During the adding phase of the last line computation time exceeded 5 hours. Although no

more inequalities were added thereafter it took more than one hour to solve this last relaxation

in just 20 Newton steps. Note that computation time per line increases rapidly as more and

more inequalities are added, whereas the number of iterations per line remains almost constant.

Furthermore we can observe a tailing off effect after the first round of adding inequalities: after

about .28 % (1 minute) of the total computation time we have already reached about 70 % of

the total improvement. We will make use of this fact in the branch & bound approach.

Due to this special structure of the algorithm computation times vary largely between different

problems of the same dimension. Whenever we reach the exact solution of the running relaxation

and the bound is not yet good enough another round of adding inequalities is needed and this

increases computation times drastically. We ask the reader to keep this in mind when looking at

average results given in Table 2.

Table 2 lists computational results for the four classes of random test problems described

above. The first column gives the dimension of the problems, the second the number of instances

computed. This is followed by the average computation time. Column solved gives the number of

instances where the algorithm could prove the lower bound to be optimal. For those which could

not be solved to optimality within the given time limit of “five hours”, gap gives the average

relative gap (ubd− lbd)/ubd in percent. The last column gives the average relative gap of (SDP )

without any additional cutting planes.

All problems of type Q100 and Q100,.2 were solved to optimality within the given time limit.

To compare these results to Table 3 of [3] we should first point out that computation times are
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n nr h:mm:ss solved gap ϕ-gap h:mm:ss solved gap ϕ-gap

G.5 G−1/0/1

30 10 1 10 0 2.36 1 10 0 11.57

40 10 33 10 0 2.67 27 10 0 13.53

50 10 3:39 10 0 2.44 4:18 10 0 11.82

60 5 1:44:00 4 0.38 2.29 1:13:52 4 1.133 13.08

70 3 4:03:10 1 0.28 2.26 2:11:11 2 1.306 13.85

80 2 3:40:28 1 0.39 2.13 5:34:48 0 1.556 12.90

90 1 5:57:00 0 0.46 2.39 5:37:11 0 5.343 19.01

100 1 5:02:05 0 0.78 2.53 5:38:25 0 5.299 16.04

Q100 Q100,.2

30 10 5 10 0 4.13 3 10 0 4.94

40 10 1:29 10 0 7.15 1 10 0 3.92

50 10 3:56 10 0 7.01 34 10 0 4.96

60 5 6:35 5 0 6.44 1:01 5 0 7.40

70 3 15:25 3 0 6.35 9:04 3 0 7.60

80 2 36:08 2 0 8.03 31 2 0 6.38

90 1 12:49 1 0 3.98 12:31 1 0 5.70

100 1 3:01:24 1 0 5.08 16:10 1 0 4.30

Table 2: Average results by using cutting planes with a time limit of five hours

not comparable and that Barahona et al restricted themselves to a time limit of ten minutes. In

Table 3 they give results for instances with density 20% up to n = 80 and for instances of density

larger than 70% up to n = 30. Even considering serious speedup due to improved computer

technology it seems to be fair to say that for dense problems (SDP) with cutting planes is by far

superior. For sparse problems the linear approach will in general be more attractive, since we

cannot exploit sparsity and thus our approach is limited to a rather small number of nodes.

Obviously, examples of type Q100 and Q100,.2 are much easier to solve than the “unweighted”

types G.5 and G−1/0/1. Here the algorithm is quite successful for instances with up to 60 nodes.

Besides from enormous increase in computation time we expect that for examples of size larger

than 90 more sophisticated separation routines will be needed to prove optimality.

To explore the limits of our code we give some examples of larger sizes for problems of type

G.5 and G−1/0/1 in Table 3. Only one example is computed for each dimension n. lbd gives the

best solution found. The computation time given in the next column refers to the time needed

to compute ϕ, ϕ-ubd is the corresponding upper bound with relative gap ϕ-gap. The last three

columns give the total computation time after one phase of adding inequalities with the resulting

upper bound and relative gap.

As stated in Theorem 4.2 ϕ is constantly getting better for the class G.5 as n increases.

On the other hand the upper bound ϕ is constantly getting worse for G−1/0/1. In both cases

13



n lbd mm:ss ϕ-ubd ϕ-gap h:mm:ss ubd gap

G.5

150 3168 16 3237.3 2.14 14:23 3209.2 1.28

200 5514 52 5618.9 1.94 38:58 5581.8 1.22

250 8574 2:00 8725.1 1.73 1:27:20 8673.4 1.15

300 12147 4:34 12368.5 1.80 2:35:53 12306.4 1.29

350 16390 8:10 16679.6 1.74 4:41:20 16613.4 1.34

400 21479 12:21 21811.0 1.52 7:14:38 21736.5 1.18

450 27144 25:00 27538.9 1.47 9:29:51 27450.5 1.12

G−1/0/1

150 526 18 639.1 17.7 14:11 587.6 10.5

200 865 52 1039.0 17.2 32:00 986.4 12.3

250 1135 2:14 1389.8 18.7 1:26:36 1312.3 13.5

300 1654 4:45 1993.2 17.0 2:24:21 1897.4 12.8

350 2126 8:32 2576.0 17.5 5:55:03 2467.9 13.9

400 2518 15:14 3074.0 18.1 8:06:29 2948.6 14.6

450 2794 29:06 3450.6 19.0 12:24:43 3312.0 15.6

Table 3: Larger examples for (SDP) and one phase of adding cutting planes

the improvement gained by one large add is still considerable but the relative improvement

is decreasing. Computing times do not allow for adding more inequalities and are, in fact,

prohibitive for these large examples.

7.2 Branch & Bound

In [9] a branch & bound code was implemented using (SDP) as bounding procedure. The results

were good yet below our expectations. Using (SDP) with cutting planes, however, seems to be

worth the trouble in spite of the rather large computational costs involved.

Typically max-cut branch & bound codes branch by fixing the relation between two vertices.

This is usually called branching on an edge. Either both end points are put into the same set

(the edge is not in the cut) or must go into different sets (the edge is in the cut). Both cases can

be modeled by replacing the two vertices by one new vertex, thereby reducing the dimension of

the cost matrix by one.

As we have mentioned in Section 7.1 the first round of adding inequalities typically yields

substantial improvement of the bound, and afterwards we observe a strong tailing off effect.

Therefore we restricted the bounding procedure to just one phase of adding inequalities (one

large and ten small adds). Since we do not yet know how to fully exploit the dual information for

variable fixing we keep branching on edges till the gap between upper bound and lower bound is

closed to our satisfaction.

14



n nr h:mm:ss min-time max-time nodes min max

50 10 3:11 12 6:29 25 1 57

60 5 12:20 28 46:04 64 1 209

R1 70 3 39:42 13:18 1:17:00 109 31 237

80 2 3:43:15 3:21:38 4:04:52 411 303 519

90 1 176:17:56 11279

50 10 2:42 12 6:20 19 1 49

60 5 8:53 28 23:45 36 1 99

R2 70 3 28:01 11:14 53:03 69 25 147

80 2 2:17:12 2:16:21 2:18:04 213 187 239

90 1 41:33:43 2339

50 10 2:32 12 7:07 10 1 31

60 5 11:26 28 38:07 31 1 97

R3 70 3 45:54 4:22 1:54:16 67 5 173

80 2 1:56:38 6:14 3:47:03 367 211 523

90 1 115:56:40 5033

50 10 1:56 12 7:01 12 1 37

60 5 13:10 28 40:21 31 1 101

R4 70 3 50:21 5:41 2:03:27 73 7 183

80 2 7:40:25 4:44:30 10:36:20 394 267 521

90 1 160:23:59 7143

50 10 2:29 12 6:24 12 1 33

60 5 9:05 28 29:26 33 1 97

R5 70 3 37:07 5:21 1:23:47 69 7 167

80 2 4:00:23 2:25:59 5:34:47 294 167 421

90 1 47:24:48 2641

Table 4: Comparison of branching rules R1 to R5

Branching Rules

The success of branch & bound algorithms depends very much on the choice of the edge to branch

on next. Numerous different branching rules of arbitrary complexity can be thought of but it is

quite impossible to predict their performance on an arbitrary cost function. We will report our

experience with a few very simple rules in the following.

Probably the first strategy which comes to mind is to select the edge ij with |xij| maximal.

Separating or contracting the vertices i and j as suggested by the sign of xij will not change the

problem substantially but setting xij opposite to its current sign should lead to a sharp drop of

the optimal solution in the corresponding subtree. If the bound also drops as fast we can hope

that this subtree will be cut off quickly. We will call this rule R1.
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With the complete primal X matrix available deciding upon only one edge seems to be a

waste of information. Rule R2 will choose i and j such that their rows are “closest” to a {−1, 1}
vector, i.e. they minimize

∑n
k=1(1− |xik|)2. Using this rule we hope for the same effect as above

assuming that for two very well articulated rows i and j |xij| will also be quite large.

In rule R3 we follow the opposite idea. The quality of the bound should get better fast if we

fix the most difficult decisions. Therefore we branch on edge ij which minimizes |xij|.
Probably it might be better to link a vertex which is hard to fix to a vertex which is quite

sure about its position. We try to follow this strategy in rule R4 by choosing vertex i to be the

vertex minimizing
∑n

k=1(1− |xik|)2 and vertex j to be the vertex minimizing
∑n

k=1 x
2
jk.

Finally there are the triangle inequalities which may offer useful information. If in an active

triangle inequality the coefficient of an edge is +1 we assume that the value of this edge tends too

much towards −1. If on the other hand the coefficient is −1 the value of the edge tends too much

towards +1. We extend this interpretation to hypermetric inequalities in general. Edges being

covered by several inequalities, all of them indicating the same behavior, should be an object of

interest. In rule R5 for each edge we sum up — over all active hypermetric inequalities — the

product of the dual cost of the inequality times the coefficient of this edge. We pick the edge

with maximal absolute value of this sum.

Experimental Comparison

We compare these rules for the class G−1/0/1 using the same instances as in Table 2, but omit

examples of size 30 and 40 which are usually solved in the root node. The results are given Table

4. To facilitate the interpretation of these results we also describe the typical structure of the

branch & bound trees for the branching rules.

R1 and R2 indeed show the behavior predicted. Branching against the variable xij leads

to much smaller optimal cuts for the subtree which is consequently cut off most of the time.

Branching with xij does not change the optimal solution but does not improve the bound by

much either. This usually leads to long chains in the branch tree. Especially if the bound is not

good enough to cut off the opposite subtree immediately, the same behavior is observed again

for the subtree. Obviously, difficult decisions are postponed. This branching rule may lead to a

high number of branching nodes but as the tree is not very dense, many of them are solved for

small dimensions, thus resulting in faster overall computation times than rules with fewer nodes

in higher dimensions. The more global point of view of rule R2 in selecting the edge seems to

pay off.

R3 and R4 also match our expectations. For these rules both branches are equally difficult

to solve but the bound improves fast. This results in very dense trees which are not very deep.

This time R3 seems to be superior to R4. Although for some problems these two rules result in

fewer branching nodes they are quite a bit slower than R2 since all problems are solved for large

dimensions.

There is no typical structure of the branch & bound tree for rule R5. Looking at the compu-

tational results R5 seems quite attractive and is second best after rule R2.
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n nr h:mm:ss min-time max-time nodes min max

G.5

30 10 1 0 3 1 1 1

40 10 34 0 2:14 7 1 27

50 10 2:31 0 4:36 16 1 33

60 5 11:50 28 35:57 56 1 147

70 3 54:37 17:38 1:50:41 139 65 253

80 2 1:46:48 36:06 2:57:30 154 77 231

90 1 49:17 613

100 1 131:01:24 5741

G−1/0/1

30 10 1 1 2 1 1 1

40 10 42 0 1:37 9 1 21

50 10 2:42 12 6:20 19 1 49

60 5 8:53 28 23:45 36 1 99

70 3 28:01 11:14 53:03 69 25 147

80 2 2:17:12 2:16:21 2:18:04 213 187 239

90 1 41:33:43 2339

100 1 78:41:28 3369

Table 5: Average branch and bound results for the instances of Table 2, part 1

Experience with R2

We conclude our section on numerical results by using rule R2 to solve the same problems as of

Table 2 and to solve a few larger examples of the class G.5 with a performance guarantee of 1%.

Comparing the results of Table 5 with Table 2 we see that for small sizes up to 40 the

direct approach is likely to be faster, but for larger sizes the branch & bound approach is more

attractive (keep in mind that in Table 2 the algorithm was stopped after approximately five

hours). Reasonable computing times can be expected for sizes up to 80.

For the easier classes Q100 and Q100,.2 Table 6 indicates that the direct approach is often

more efficient. Obviously, we branch before the bound is good enough. As we explained above

branching by Rule R2 does not improve the bound significantly for one of the two subproblems.

So even for easy problems one branch of the tree — the branch running in line with the optimal

solution — will extend over many levels.

We also tried to compute solutions with a given performance guarantee for the examples given

in Table 3. For the class G.5 a gap of 1% between upper and lower bound seems reasonable. For

G−1/0/1 we decided to go for a gap of 5%. As we can see in Table 7 there is some hope for G.5

examples even for relatively large sizes if a few branching nodes suffice. If this is not the case the

high cost of the bounding procedure gets prohibitive immediately. Obviously there is no hope to
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n nr h:mm:ss min-time max-time nodes min max

Q100

31 10 8 2 38 3 1 23

41 10 1:22 30 2:15 24 5 51

51 10 3:52 18 5:01 37 1 57

61 5 3:56 19 10:07 52 33 65

71 3 19:57 19:34 20:22 76 73 79

81 2 35:43 35:01 36:25 81 75 87

91 1 52:30 79

101 1 1:32:00 137

Q100,.2

31 10 3 2 4 1 1 1

41 10 1 0 10 1 1 1

51 10 24 15 1:01 1 1 5

61 5 2:52 28 11:28 14 1 67

71 3 22:03 11:03 32:42 65 21 87

81 2 25:38 15:56 35:21 45 19 71

91 1 55:49 79

101 1 1:31:25 127

Table 6: Average branch and bound results for the instances of Table 2, part 2

get reasonable results for large examples of type G−1/0/1 with this approach.

8 Concluding Remarks

In view of the computational results presented in the previous sections, we offer the following

conclusions.

n h:mm:ss nodes

G.5, 1% gap

150 16:33 51

200 16:55:39 35

250 29:29:28 23

300 >11 days >150

G−1/0/1, 5% gap

150 303:40:34 1845

Table 7: “Limits” of the branch and bound approach, instances as in Table 3
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• The (SDP) approach is very robust and consistently yields bounds where the ϕ-gap on

graphs with nonnegative weights is typically much below the worst case error of 13.9 %

predicted by Theorem 4.1.

• Combined with a small selection of hypermetric inequalitites, the (SDP) approach approxi-

mates the Max-Cut problem quite well, and is feasible for graphs with up to several hundred

vertices (n ≈ 400).

• For smaller problems (n ≤ 50), the cutting plane approach applied at the root node of

the branching tree is sufficient to solve the problem, otherwise branching is necessary. The

number of nodes in the branching tree is rather small, but the computation time per node

can be quite large.

• To generate good feasible solutions it is in general sufficient to compute the optimal solu-

tion X of the elliptope. The rows of X form good starting vectors for local improvement

heuristics.

• Since solving the relaxation (SDP) is only moderately time consuming this leads to reason-

able solutions for arbitrary cost matrices up to dimensions of 1000.

• The algorithm does not make use of any special structure in the input data. For sparse

cost matrices the linear programming approach will be more efficient but may require very

precise knowledge about the underlying structure.

In summary, we consider the combination of (SDP) with polyhedral methods a strong new tool

to solve general quadratic (0,1) problems.
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[3] F. BARAHONA, M. JÜNGER, and G. REINELT. Experiments in quadratic 0-1 program-

ming. Mathematical Programming, 44:127–137, 1989.

[4] F. BARAHONA and H. TITAN. Max mean cuts and max cuts. In Combinatorial Optimiza-

tion in Science and Technology, pages 30–45, 1991.

[5] E. BOROS, Y. CRAMA and P.L. HAMMER. Chvátal cuts and odd cycle inequalities in
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[14] C. De SIMONE, M. DIEHL, M. JÜNGER, P. MUTZEL, G. REINELT and G. RINALDI.

Exact ground states of ising spin glasses: new experimental results with a Branch and Cut

algorithm. Technical Report 393, IASI Rome, 1994.

[15] C. De SIMONE and G. RINALDI. A cutting plane algorithm for the max-cut problem.

Technical Report 346, IASI Rome, 1992.

[16] M. DEZA, M. GRISHUCHIN and M. LAURENT. The hypermetric cone is polyhedral,

Combinatorica, 13:397–411, 1993

[17] M. DEZA and M. LAURENT. Applications of Cut Polyhedra. Technical Report LIENS -

92 -18, Ecole Normale Supérieure, Paris, 1992, to appear in Computational and Applied

Mathematics.

[18] M. DEZA and M. LAURENT. Cut Polyhedra and Metrics. Book in preparation.

[19] M.X. GOEMANS and D.P. WILLIAMSON. .878-Approximation algorithms for Max-Cut

and Max 2SAT. Proceedings of 26th Annual ACM Symposium on Foundations of Computer

Science, Computer Science Press, 2-13, 1994.

[20] P.L. HAMMER, P. HANSEN and B. SIMEONE. Roof duality, complementation and per-

sistency in quadratic 0-1 optimization. Mathematical Programming, 28:121-155, 1984.

20



[21] C. HELMBERG. An interior point method for semidefinite programming and max-cut

bounds. Doctoral dissertation, University of Technology Graz, 1994.

[22] C. HELMBERG, S. POLJAK, F. RENDL, and H. WOLKOWICZ. Combining Semidefi-

nite and Polyhedral Relaxations for Integer Programs. Lecture Notes in Computer Science,

920:124:134, 1995, Proceedings of IPCO 4 (E. Balas, J. Clausen eds).

[23] C. HELMBERG, F. RENDL, R. J. VANDERBEI, and H. WOLKOWICZ. An interior point

method for Semidefinite Programming. SIAM Journal on Optimization. To appear.

[24] B. KALANTARI and A. BAGCHI. An algorithm for quadratic zero-one programs. Naval

Research Logistics, 37: 527–538, 1990.
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