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Abstract

Many physical systems exhibit rapid motion coupled to a slowly
varying motion. Often the rapid motion is associated with a stiff
contribution in the potential energy function. In this context, the
situation typically considered in the literature is the one with a strictly
convex potential. Under some technical assumptions, one can then
show that the slow motion is reproduced by a properly constrained
system. In this paper we are concerned with a different situation:
Often different time-scales can be found because of many local minima
and barrier crossing between these minima. We suggest here to replace
the detailed motion in the minima and the local barrier crossings by a
statistical model which is then coupled to the slow equations of motion
over long periods of time. This leads to Langevin type equations of
motion subject to an appropriate time transformation.
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1 Introduction

In this paper we consider Hamiltonian systems containing a strong potential.
Such systems arise, for example, in the context of molecular dynamics (MD).
To make those systems mathematically tractable, we formally introduce the
Hamiltonian

H(q, p) =
ptM−1p

2
+ V (q) + Uε(q/ε)

with ε a small parameter 1 � ε > 0 and V (q) as well as Uε(q), ε ≥ 0, smooth
functions. The corresponding equations of motion are

d

dt
q = M−1p, (1)

d

dt
p = −∇V (q)− 1

ε
∇Uε(q/ε). (2)

and the solutions exhibit rapid motion on time-scales of order ε due to the
force term

Fstrong(q) = −1

ε
∇Uε(q/ε).

If the equations of motions are directly discretized by an explicit method
such as Verlet [17], then the step-size Δt has to satisfy Δt ∼ ε which leads
to extremely long simulation times.

In various previous publications [8],[10],[15] it has been assumed that Uε

is a convex function with the minima condition

∇Uε(q/ε) = 0

defining am-dimensional smooth sub-manifoldM of the coordinate space q ∈
IRn. Then, under some additional technical assumptions, the dynamics can
be reduced to a constrained Hamiltonian systems on the tangent space TM
of M in the limit ε → 0 [16], [6], [8]. This eliminates the highly oscillatory
components in the solutions and the constrained equations of motion can
be discretized by the SHAKE modification [10] of the Verlet scheme using a
step-size Δt� ε.

In this paper we are concerned with the situation that Uε possesses many
local minima that are separated by an average barrier height Eb. In this case
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we will again observe rapid motions on a time-scale τs ∼ ε and, on top of
this, transitions between nearby local minima over time-scales of length [16]

τe ∼ exp(
Eb

kBT
) τs.

Here we are interested in the case

δ := exp(
Eb

kBT
) � 1. (3)

Thus a diffusion process over length-scales of order O(1) will require a time-
scale of order O(δ) which again, simulated as such, would lead to extremely
long simulations.

For example, in the context of molecular dynamics [1], bond-stretching
and bond-angle bending potentials can be treated as convex potentials of
type Uε(q/ε) [8], [9]. In contrast to this, the torsion potentials and the
Lennard-Jones potentials give raise to non-convex contributions in Uε(q/ε).
These contributions can be defined by applying the Gaussian transform of a
potential energy function as used in optimization of molecular conformations
[18]. Specifically: Let f(x), x ∈ IRn, be some function, then its Gaussian
transform Fλf is defined by

(Fλf)(x) =
1

(4π)n/2λn

∫
IRn
f(y) exp(−||y − x||2

4λ2
) dy (4)

where λ ≥ 1 is a parameter. Now let W (q) be some given potential
energy function. Then we define the smooth part V (q) of W (q) by V (q) :=
(FλW )(q), λ = 1/ε, and the non-smooth part by Uε(q/ε) := W (q) − V (q).
This splitting is then used in (1)–(2).

In this paper we suggest an enhanced simulation technique based on a
statistical model for the motion on time-scales of the local transition time τe.
This corresponds to motions on a length-scale of order O(ε). We will show
that via such an approach the effective simulation time can be reduced by a
factor of δ or more. A statistical model for the fast motion seems reasonable
whenever one is not interested in the details of the motion on the fast time-
scales but, instead, is interested in the qualitative long-term behavior of the
system. This leads one to the concept of time-averaging [13], [8]. In Section
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7, we discuss this in the context of our simplified equations of motion and
show that time-averaging leads to the standard Langevin equations

d

dt
Q = M−1P,

d

dt
P = −∇V (Q)− γP + ξ

in the smoothed variable (Q(t), P (t)).
Based on Liouville’s equation [1] and an appropriate initial distribution

of states, a different approach to the enhanced simulation of systems like (1)–
(2) has been pointed out in [12]. There a nonstationary thermal embedding
is used to spatially average over the potential Uε(q/ε).

2 A simple statistical model for the fast mo-

tion

In this section we investigate the fast motion on length-scales of order O(ε).
To do so, we consider the canonical coordinate transformation

Q = q/ε,

P = εp

together with the time transformation

τ = t/ε.

In the new coordinates (Q,P ) the equations of motion are now

d

dτ
Q = M−1P/ε,

d

dτ
P/ε = −ε∇V (εQ)−∇Uε(Q)

and, for small enough ε, the weak force term

Fweak(Q) = ε∇V (εQ)
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can be dropped from the equations. Finally, we scale the momenta such that
P/ε → P and obtain the equations

d

dτ
Q = M−1P,

d

dτ
P = −∇Uε(Q).

For notational simplicity, we drop from now on the subscript ε in Uε(Q) and
write simply U(Q).

Let us assume that this system is locally in thermal equilibrium, i.e., the
relative probability p12 of finding the system in the two nearby states Q1 and
Q2 is equal to the ratio

p12 =
exp(−U(Q1)/(kBT )

exp(−U(Q2)/(kBT )
. (5)

Furthermore, we assume that the system is ergodic in the sense that trajec-
tories (Q(τ ), P (τ )) spend the same relative amount p12 of time near the two
states Q1 and Q2. This leads us to the following idea: Let (Q̄(τ̄ ), P̄ (τ̄ )) be a
completely random trajectory in phase space IR2n. Then, for this trajectory,
the relative probability p12 of visiting the two states Q1 and Q2 is equal to
one. However, upon performing the differential time transformation

dτ = exp(−U(Q(τ )/(kBT )) dτ̄
along the trajectory (Q̄(τ̄ ), P̄ (τ̄ )), the relative probability p12 for the time-
transformed trajectory (Q̄(τ ), P̄ (τ )) is now again equivalent to the above
expression (5) for the original system. This can be seen from

〈f〉 = lim
T→∞

∫ T
0 f(Q̄(τ ))dτ∫ T

0 dτ
,

= lim
T→∞

∫ T
0 f(Q̄(τ̄ )) exp(−U(Q̄(τ̄ )/(kBT ))dτ̄∫ T

0 exp(−U(Q̄(τ̄ )/(kBT ))dτ̄
,

=

∫
f(Q) exp(−U(Q)/(kBT ))dQ∫

exp(−U(Q)/(kBT ))dQ .

where f(Q) is an arbitrary observable, for example, f(Q) = δ(|Q − Qi|),
i = 1, 2, and δ(x) Dirac’s delta function.
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Thus we are lead to consider the following statistical model for the fast
motion on length-scales of order O(ε): Define the time-scaling factor

ρ(Q) := exp(−U(Q)/(kBT ))

and consider the force-free, time-scaled Langevin equations

ρ(Q)
d

dτ
Q = M−1P, (6)

ρ(Q)
d

dτ
P = −γP + ξ (7)

where γ > 0 is a small parameter amd ξ is a Gaussian white noise process
with variance [1]

〈ξ(τ )ξ(τ +Δτ )〉 = 2kBTMγδ(Δτ ).

3 Coupling to the slow motion

The solutions of (6)–(7) can be transformed back to the original variable
(q, p) and the original time t. After a few formal manipulations, this yields

ρ(q/ε)
d

dt
q = M−1p,

ρ(q/ε)
d

dt
p = −γp+ ξ.

The weak potential V (q) is now included into this model through

ρ(q/ε)
d

dt
q = M−1p,

ρ(q/ε)
d

dt
p = −∇V (q)− γp+ ξ

where we have again assumed that, over time-scales of order O(τe), the force
Fweak(q) = −∇V (q) is practically constant.

Upon introducing the differential time-transformation

dt̄ := dt/ρ(q/ε), (8)
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this can be considered as standard Langevin dynamics

d

dt̄
q = M−1p, (9)

d

dt̄
p = −∇V (q)− γp + ξ (10)

in internal time t̄ together with a time-transformation t̄ → t which yields then
the averaged dynamics of (1)–(2) up to a linear transformation in time. (This
is due to fact that ρ(q/ε) is uniquely determined only up to a multiplicative
factor.) In other words, the slow dynamics feels the local barrier crossing
due to the fast motion as a corresponding stretching and shrinking of time.

If the factor δ in (3) is uniformly close to one for all local minima of
U(q/ε), then we have t̄ ≈ t and the equations (8)–(10) reduce to standard
Langevin dynamics.

4 The system in thermal equilibrium

A first simple verification of our approach can be achieved by comparing
expectation values in thermal equilibrium for the original system (1)–(2) and
our simplified system (8)–(10). Let f(q, p) be some observable. Then, in
thermal equilibrium, the macrocanonical ensemble average is given by

〈f〉ens =

∫
f(q, p) exp(−H(q, p)/(kBT ))dqdp∫

exp(−H(q, p)/(kBT )dqdp
.

With the decomposition of H(q, p) into a modified Hamiltonian

H̃(q, p) =
ptM−1p

2
+ V (q)

and ρ(q/ε) = exp(−U(q/ε)/(kBT )), this is equivalent to

〈f〉ens =

∫
f(q, p)ρ(q/ε) exp(−H̃(q, p)/(kBT ))dqdp∫

ρ(q/ε) exp(−H̃(q, p)/(kBT )dqdp
.

Upon assuming ergodicity, 〈f〉ens is equal to the time average

〈f〉ens = lim
T→∞

∫ T
0 f(q(t̄), p(t̄))ρ(q(t̄)/ε)dt̄∫ T

0 ρ(q(t̄)/ε)dt̄
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along solutions (q(t̄), p(t̄)) of the system (9)–(10) with Hamiltonian H̃(q, p).
Now, as done before, we only have to introduce the differential time-
transformation

dt = ρ(q(t̄)/ε)dt̄

and the desired result

〈f〉ens = lim
T→∞

∫ T
0 f(q(t), p(t))dt∫ T

0 dt

follows.
A somewhat similar approach, called umbrella sampling [1], is someti-

mes taken in the computation of ensemble averages through Monte-Carlo
methods. There the potential energy function is modified such that good
sampling is achieved and the average is taken over an appropriately modified
observable [1].

5 Numerical discretization

A simple time-discretization of (8)–(10) is given by the following modified
Verlet scheme [1]:

qn+1 − 2qn + qn−1 = −(Δt̄)2(∇V (qn) + γpn − ξn), (11)

pn = M
qn+1 − qn−1

2Δt̄
, (12)

tn+1 = tn + ρ(qn/ε)Δt̄ (13)

and qn, n = 0, 1, . . . , N , is the approximation to the solution of (1)–(2) with
q0 = q(0) at t = tn up to a linear transformation in time.

This scheme still requires a time-step Δt ∼ ε and evaluation of ∇V (q)
in each time-step to resolve the time-transformation (8) accurately. This
frequent evaluation of ∇V (q) can be avoided by applying the idea of multiple
time-stepping [14]. Let L be an integer such that ΔT = LΔt is an appropriate
time-step for the slow force −∇V (q). The multiple time-stepping algorithm
consists then of the steps

qn+1 − 2qn + qn−1 = −(Δt̄)2(γpn − ξn),

pn = M
qn+1 − qn−1

2Δt̄
,

tn+1 = tn + ρ(qn/ε)Δt̄
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whenever n is not a multiple of L and

qn+1 − 2qn + qn−1 = −(Δt̄)2(L∇V (qn) + γpn − ξn),

pn = M
qn+1 − qn−1

2Δt̄
,

tn+1 = tn + ρ(qn/ε)Δt̄

for n = iL, i = 0, 1, . . . , N/L. Another possibility is to keep∇V (qn) constant
over L steps in (11)–(13), i.e.,

∇V (qn) = ∇V (qk)
for k = iL and n − k < L. However, this leads to a non-reversible discreti-
zation. For a more detailed discussion of multiple time-stepping algorithms
see [4]).

6 An example

Consider the function

W (x) =
K

2
x2 + τ sin(ωx),

x ∈ IR. Its Gaussian transform (4) is

(FλW )(x) =
K

2
x2 + τ exp(−1

4
ω2λ2) sin(ωx) .

Thus, for ωλ→ ∞, (FλW )(y) = Kx2/2.
Let us now consider the Hamiltonian

H(q, p) = p2/2 +W (q).

A splitting into the smooth and non-smooth contribution is simply given by
V (q) := (FλW )(q) and Uε(q/ε) :=W (q)−V (q) with ε = 1/ω and λ ≥ 1. The
corresponding equations of motion are now solved using standard Langevin
dynamics

d

dt
q = p,

d

dt
p = −∇V (q)− 1

ε
∇Uε(q/ε)− γp + ξ
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and compared to the results obtained by using the technique described in
this paper. In both cases a heat-bath coupling parameter γ = 0.5 was chosen
and both systems were started from the initial condition (q, p) = (1, 0).
Furthermore, λ = 5, ω = 3.0, τ = 1.0, kBT = 0.5, and K = 0.2. Fig.
1 shows a trajectory q(t) of the system (1)–(2). A trajectories q(t) for the
splitted potential with α = 5.0 and using the equations (8)-(10) can be found
in Fig. 2. The same trajectory as a function of the internal time t̄ is given
in Fig. 3. In Fig. 4 the transformed time t is plotted as a function of the
internal time t̄. Note that, except for local variations, we have t ≈ t̄ and that
the time-average of ρ(q(t̄)/ε) must be therefore close to one. This will be
discussed in more detail in the following section. We also tested a modified
scaling function

ρ(q/ε) = exp(−cUε(q/ε)/(kBT ))

where c ≥ 1 is a constant. For c > 1, this modified ρ leads to more pro-
nounced localized states near the minima of Uε(q/ε). This can be seen by
comparing Fig. 5 (c = 5) and Fig. 2 (c = 1).

7 Averaging in time

Let us assume that the shortest period in the motion of (1)–(2) due to the
potential V (q) is of order O(1). In contrast to this, the potential Uε(q/ε)
contributes high-frequency terms with period of order O(τe), τe ∼ δε. In
our simplified system (8)–(10) we have replaced the exact fast motion by a
statistical model system. However, in many cases one might not even be
interested in the statistical behavior on time-scales of order O(τe) but only
wants to compute the “average” behavior of the system over time-scales of
order O(1). In this case one can apply the idea of averaging in time [11],
[13], [8]. Specifically: To separate the high frequency components from the
slowly varying solution components, we introduce the smoothing operator

〈w〉α (t) :=
1

α

∫ +∞

−∞
ψ(
t− t′

α
)w(t′) dt′ (14)

with 0 < α � 1 and w : IR → IR. Here ψ : IR → IR is an appropriate
weight function [8]. One could, for example, chose for ψ the Meyer scaling
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function [3]. Note that, in the frequency domain, the smoothing operator
(14) corresponds to a low pass filter with cut-off frequency ωc = O(1/α).

The idea is now to replace the rapidly varying solutions q(t) of (1)-(2) by
〈q〉α(t) with

1 � α � τe

and then to seek an approximation to the smooth 〈q〉α rather then to the
rapidly varying q(t). We call the functions 〈q〉α(t), corresponding to solutions
q(t) of (1)-(2), the smoothed dynamics of (1)-(2). In the sequel we will denote
〈q〉α(t) by Q(t) and 〈p〉α(t) by P (t).

Since it is not obvious how to obtain the correct averaged equations of
motion from the original system (1)-(2), we apply the smoothing operator
(14) to the simplified system (8)-(10). By our smoothness assumption on the
potential V (q), averaging in (9)-(10) is trivial and we obtain

d

dt̄
Q = M−1P,

d

dt̄
P = −∇V (Q)− γP + ξ

with an appropriately modified γ and corresponding Gaussian white noise
process ξ, i.e.,

〈ξ(t̄)ξ(t̄ +Δt̄)〉 = 2kBTMγδ(Δt̄).

This leaves us with averaging the differential time-transformation (8), i.e.,
with

dt = 〈ρ(q(t̄)/ε)〉αdt̄ .

Remember (see Fig. 4), in the previous section we had

〈ρ(q(t̄)/ε)〉α ≈ 1.0.

This can be explained as follows: Provided the assumption of local ergodicity
holds, the time-average over a time-scale of order O(α) can be replaced by
the spatial average over a length-scale l, 1 � l � ε. This spatial averaging
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can be performed by applying the Gaussian transform (4) to ρ(q/ε) with
λ = 1/l. Thus

〈ρ(q(t̄)/ε)〉α ≈ (Fλρ)(q)

≈ exp(−(FλU)(q)/(kBT ))

≈ 1

where we have assumed that (FλU)(q) ≈ 0. This leaves us with the averaged
equations of motion

d

dt
Q = M−1P, (15)

d

dt
P = −∇V (Q)− γP + ξ (16)

which are just the standard Langevin equations without any time-
transformation. The equations (15)-(15) are easy to solve numerically [1])
and the computational savings compared to solving (1)-(2) or (8)-(10) are
obvious.

8 Summary

We have considered Hamiltonian systems containing a strong non-convex
potential. This implies motion on different time-scales. If one is only inte-
rested in the slow dynamics, one might replace the “exact” fast dynamics
by a simplified system. The results of this paper can be considered as a
first attempt in this direction. We suggested a very simple model for the
fast subsystem based on the assumption that the fast system is in thermal
equilibrium. More sophisticated models could be obtained using transition
rate theory [5]. Also, the coupling between the fast and slow system could
be modeled differently. This will be the subject of further research. Finally,
we also considered time-averaging in (8)-(10) and derived the time-averaged
equations (15)-(16). Again, these time-averaged equations of motion have to
be considered as a crude approximation to the exact 〈q〉α(t). The approxi-
mation could be improved by replacing the Gauss transform by some more
appropriate integral transform [3].
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Figure 1: A trajectory q(t) of the original system.
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Figure 2: A trajectory q(t) of the simplified system (c = 1).
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Figure 3: Same trajectory as in Fig. 2 but as a function of the internal time
t̄.
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Figure 4: Transformed time t vs. internal time t̄.
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Figure 5: A trajectory q(t) of the simplified system using the modified time
transformation (c = 5).
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