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Abstract

We show that, given a wheel with nonnegative edge lengths and pairs
of terminals located on the wheel’s outer cycle such that the terminal pairs
are in consecutive order, then a path packing, i. e., a collection of edge
disjoint paths connecting the given terminal pairs, of minimum length can
be found in strongly polynomial time. Moreover, we exhibit for this case
a system of linear inequalities that provides a complete and nonredundant
description of the path packing polytope, which is the convex hull of all
incidence vectors of path packings and their supersets.

1 Introduction

The topic of packing paths, trees, Steiner trees etc. into graphs has received
considerable and strongly growing attention in the recent fifteen years. Two
sources nourish the development; one is the increasing demand from VLSI design
for routing algorithms, the other is the discovery of beautiful results such as the
Okamura-Seymour theorem [7] that provide new insights and are the basis of
many modifications and generalizations. Excellent surveys of these developments
can be found, for instance, in [2] and [8].

Most of these results are of the following type. Given a graph (with some addi-
tional properties) and a collection of sets of terminals, then a packing of paths (or
trees or Steiner trees etc.) exists provided that some conditions (typically condi-
tions on certain cuts in the graph) hold. Frequently, the proofs yield polynomial
time algorithms for finding such a packing. Unfortunately, the graph properties
needed for the existence of such results are very restrictive and only occasionally
helpful for solving problems in VLSI design. Questions of this type are NP-hard
not only in general but even for classes of graphs that appear rather special.

VLSI designers are usually happy to find some routing of the given terminal
sets; however, they would be much more interested in determining routings that
are minimal with respect to certain criteria such as the total wire length. This
problem turns out to be NP-hard for basically all practically relevant cases.
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Nevertheless, currently the first steps are being made to attack the optimum
packing problem by means of branch and cut algorithms (and the like) that have
the potential to produce optimum or provably good solutions, see [4], [5]. To
our knowledge, there are only very few special cases known for which optimum
packing problems can be solved in polynomial time (see, for instance, [3]). We
present another such case here. We show that if a wheel with nonnegative edge
lengths is given and if the terminal pairs are consecutively located on the wheel’s
outer cycle, then a list of pairwise edge disjoint paths connecting the terminals
pairs (short: a path packing) that has minimum total length can be found in
polynomial time. Moreover, we are able to give a complete linear description of
the path packing polytope, i e., the convex hull of all incidence vectors of path
packings and supersets of path packings. This seems to be the first result of this
type.

The polyhedral description of the path packing polytope in this case requires
technical effort and is rather surprising. If there is an even number of terminal
pairs polynomially many inequalities suffice, while for an odd number of terminal
pairs, exponentially many inequalities are needed.

2 A Polynomial Time Algorithm

In this chapter we present a polynomial time algorithm that solves the problem
of packing edge disjoint paths on a wheel, provided that the terminals li, ri are
consecutively located on the outer cycle of the wheel (i = 1, . . . , k). Before
explaining the algorithm let us introduce some notation that we use throughout
this paper.

We denote a graph by G = (V,E), where V is the node set and E the edge set.
Our graphs do neither have parallel edges nor loops. An edge e with endnodes
u and v is denoted by uv or, if possible ambiguity requires it, by [u, v]. Let
K = (v0, e1, v1, e2, . . . , vl−1, el, vl) be a sequence of nodes and edges, where each
edge ei is incident with the nodes vi−1 and vi for i = 1, . . . , l, and where the edges
are pairwise different and the nodes distinct (except possibly v0 and vl). K is
called a path (or a [v0, vl]−path), if v0 �= vl, and a cycle, if v0 = vl and l ≥ 2. For
our purposes, it is appropriate to consider a path P or a cycle C , respectively, as
a subset of the edge set.

A wheel consists of a cycle and a center connected to all nodes of the cycle by an
edge, more formally: a wheel with n spokes and center z is a graph G = (V,E)
consisting of n nodes numbered {1, . . . , n} and a special node z, i. e., V :=
{1, . . . , n} ∪ {z}, and an edge set E := C ∪S with C := {[i, i+1] | i = 1, . . . , n}
and S := {[z, i] | i = 1, . . . , n}. The edges in S are called spokes, and we
assume that the nodes of C are numbered in clockwise order around z. (To
make index computations notationally easier we identify an index i > n with
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((i − 1) modulo n) + 1.) We call a list of node sets T1, . . . , Tk, k ≥ 2 of the
outer cycle C in consecutive order, if all nodes li, ri ∈ Ti, li < ri, i = 1, . . . , k,
appear in the sequence l1, r1, l2, r2, . . . , lk, rk by walking along C . We denote the
cut {uv ∈ E | u ∈ X, v �∈ X} induced by some node set X ⊆ V by the symbol
δ(X). For c ∈ IRE and F ⊆ E, we define c(F ) :=

∑
e∈F ce.

Finally, to facilitate technical arguments when dealing with a wheel with n spokes
and center z, we introduce, for i ∈ {1, . . . , n} and j ∈ {0, . . . , n−1}, the following
symbols.

Nodes on the interval along C from i to i+ j:

[i : i+ j] := {i+ r | r = 0, . . . , j}.
Spokes connecting the interval [i : i+ j] to the center:

S(i : i+ j) := {[z, i+ r] | r = 0, . . . , j}.
Edges of the interval [i : i+ j]:

C(i : i+ j) := {[r, r+ 1] | r = i, . . . , i+ j − 1}, if j > 0,
C(i : i+ j) := ∅, if j = 0.

Closed fan of the interval [i : i+ j], i. e., all edges of the interval and the corre-
sponding spokes:

F [i : i+ j] := C(i : i+ j) ∪ S(i : i+ j).

Open fan of the interval [i : i+ j], i. e., closed fan without outer spokes:

F (i : i+ j) := C(i : i+ j) ∪ S(i+ 1 : i+ j − 1), if j ≥ 2,
F (i : i + j) := C(i : i+ j), if j = 1,
F (i : i+ j) := ∅, if j = 0.

Right open fan of the interval [i : i+ j], i. e., closed fan without right outer spoke:

F [i : i+ j) := C(i : i+ j) ∪ S(i : i+ j − 1), if j > 0,
F [i : i+ j) := ∅, if j = 0.

Using this notation, our path packing problem can be formulated as follows.

Problem 2.1 (Packing paths with consecutive sets of terminals on a
wheel)

Instance:
A wheel G = (V,E) with nonnegative edge lengths we ∈ IR, e ∈ E.
A number k ∈ IN and a list of node pairs T = {{l1, r1}, . . . , {lk, rk}} with
l1 < r1 < l2 < r2 < . . . < lk < rk.

Problem:
Find edge sets P1, . . . , Pk ⊆ E such that

(i) Pi contains a path in G from li to ri for i = 1, . . . , k,
(ii) The sets P1, . . . , Pk are mutually edge disjoint,
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(iii)
k∑

i=1

∑
e∈Pi
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Figure 1:

Each node in {l1, r1, l2, r2, . . . , lk, rk} is called a terminal, and each pair of nodes
{li, ri} (i = 1, . . . , k) is called a terminal pair. We call an edge set P a packing
of paths or a path packing if P can be partitioned into edge sets P1, . . . , Pk that
satisfy (i) and (ii) of Problem 2.1. A path packing P is called edge-minimal if,
for every e ∈ P , the set P \ {e} is not a packing of paths. These definitions
slightly deviate from the literature standard since what we term edge-minimal
path packing is usually called path packing.

We have the following reasons for this modification. We are interested in VLSI
routing, and the length functions coming up in this area are always positive. In
this case, every optimum path packing is obviously edge-minimal. Thus, our
model can be used to solve problems of this type. Moreover, if negative lengths
are allowed then, for general graphs, the shortest path problem is NP-hard and
no linear description of the shortest path polytope is known. Therefore, it seems
hopeless to investigate edge-minimal path packings with more than one termi-
nal pair. Although it is not difficult to design a polynomial time shortest path
algorithm for wheels even if negative lengths are allowed we thought that con-
centrating on nonnegative length functions and investigating path packings and
their supersets seems to be the more promissing and probably further reaching
approach.

For arbitrary graphs, the problem of finding an optimal packing of paths is, of
course, NP-hard. Even for several special cases, this problem remains NP-hard,
e. g., if G is a grid graph ([6]). However, if we restrict G to be a wheel and if we
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require that the terminal pairs are consecutively located on the outer cycle of G,
an optimal packing of paths can be determined in polynomial time.

The idea of this algorithm is based on two observations which we briefly describe
now.
It is easy to see that, for every instance of Probem 2.1, there always exists an
optimal path packing that is edge-minimal and that has the property that, for
every i ∈ {1, . . . , k}, the path that connects the two terminals li and ri uses
edges only from the set F [ri−1 : li+1]. Hence, such a path from li to ri may only
be in “conflict” with such a path from li−1 to ri−1 or with such a path from li+1

to ri+1. Further, the number of different paths from li to ri in the subgraph
([ri−1 : li+1] ∪ {z}, F [ri−1 : li+1]) of the wheel is polynomial in n.

Let P 1
i , . . . , P

si
i denote the different paths from li to ri in the subgraph ([ri−1 :

li+1] ∪ {z}, F [ri−1 : li+1]). We define a digraph H as follows. With every path
P u
i (i = 1, . . . , k, u = 1, . . . , si) we associate a node that we denote by pui . We

set X := {pui | i = 1, . . . , k, u = 1, . . . , si}. For every pair pui , p
v
j of nodes in

X we introduce the arc (pui , p
v
j ) if and only if j = i + 1 and the paths P u

i and
P v
j do not share a common edge. Such an arc receives the length of the path

P u
i . Let Y denote this set of arcs. In the digraph H = (X, Y ) we now look for a

shortest directed cycle which, as we will see, corresponds to an optimal packing of
paths on the given wheel. Consequently, Problem 2.1 can be solved in (strongly)
polynomial time.

In the following we discuss this procedure in more detail. We always assume
that G = (V,E) is a wheel with nonnegative edge lengths we ∈ IR, e ∈ E.
Moreover, T = {{l1, r1}, . . . , {lk, rk}}, is the list of consecutive terminal pairs
and we assume that l1 < r1 < l2 < r2 < . . . < lk < rk.

Note that every edge-minimal path packing P can be partitioned into k edge
disjoint paths P1, . . . , Pk linking li and ri, i = 1, . . . , k. We call paths P1, . . . , Pk

with this property a path partition of P . Path partitions are not necessarily
unique.

Lemma 2.2 Let P be an edge-minimal packing of paths. Then, P can be par-
titioned into paths P1, . . . , Pk such that for every i ∈ {1, . . . , k} the following
conditions are satisfied.

(i) F (li, ri) ∩ Pt = ∅ for all t ∈ {1, . . . , k} \ {i}.

(ii) F [ri : li+1] ∩ Pt = ∅ for all t ∈ {1, . . . , k} \ {i, i+ 1}.

Proof.
We prove (i). We assume that an edge-minimal path packing P exists that cannot
be partitioned into k paths satisfying (i). If P1, . . . , Pk is any path partition of
P , we set T (P1, . . . , Pk) := {(i, t) | i, t ∈ {1, . . . , k}, i �= t and F (li : ri) ∩ Pt �=
∅}. Among all path partitions of P we choose a partition P1, . . . , Pk such that
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|T (P1, . . . , Pk)| is minimum. To contradict the assumtion we construct a path
partition P ′

1, . . . , P
′
k with |T (P ′

1, . . . , P
′
k)| < |T (P1, . . . , Pk)|.

By assumption there are indices i, t ∈ {1, . . . k}, i �= t, such that F (li : ri)∩Pt �= ∅.
Since Pt does not contain a cycle one of the edges [li, li + 1] or [ri − 1, ri] must
belong to Pt, say [li, li+1], and moreover, the center z must belong to V (Pi). Let
us denote the subpath of Pi linking li to z by Pli and the subpath of Pi linking
ri to z by Pri, i. e., P = Pli ∪Pri . Clearly, Pli ∩F (li : ri) = ∅. We distinguish the
following two cases.

• [ri−1, ri] ∈ Pt: Then obviously Pri∩F (li : ri) = ∅. We set P ′
i := Pt∩F (li, ri)

and P ′
t := (Pt \ F (li : ri)) ∪ Pi.

• [ri − 1, ri] �∈ Pt: Then z ∈ V (Pt). Let Q denote the subpath of Pt from li
to z. We set P ′

i := Pri ∪ Q and P ′
t := (Pt \ F (li : ri)) ∪ Pli .

Since P is edge-minimal, in both cases, the edge sets P ′
i and P ′

t are paths linking
li to ri and lt to rt, respectively. Setting P ′

j := Pj , j = 1, . . . , k, i �= j �= t, we
have constructed a path partition of P with |T (P ′

1, . . . , P
′
k)| < |T (P1, . . . , Pk)|

contradicting the minimality assumption. This implies that P must have a path
partition satisfying (i).

(ii) follows directly from (i).

Let P be an edge-minimal packing of paths. Due to Lemma 2.2 we know that P
can be partitioned into k edge disjoint paths that satisfy the conditions (i) and
(ii). Moreover, it is easy to see that these paths are unique. For the remainder
of this paper, we denote, for a given edge-minimal packing of paths P , by Pi the
(unique) path from li to ri that satisfies F [li : ri]∩Pt = ∅ for all t ∈ {1, . . . , k}\{i}
and F [ri : li+1] ∩ Pt = ∅ for all t ∈ {1, . . . , k} \ {i, i + 1}. Instead of P we also
write (P1, . . . , Pk).

Lemma 2.3 For a given i ∈ {1, . . . , k}, let Pi denote the set of edge-minimal
paths from li to ri in the subgraph ([ri−1 : li+1] ∪ {z}, F [ri−1 : li+1]). The value
|Pi| is bounded by O(n2).

Proof. Let Pi ∈ Pi. If z �∈ V (Pi), then Pi is uniquely determined. If z ∈ V (Pi),
there are exactly two edges that are incident to z and that are contained in Pi.
Let uz and vz denote these edges. Clearly, u, v ∈ V (C) and u �= v. W. l. o. g. we
may assume v ∈ [u : li+1] and hence, the path Pi is the union of the path from li
to u in the subgraph ([ri−1 : li+1], C(ri−1 : li+1)) and the path from ri to v in the
subgraph ([ri−1 : li+1], C(ri−1 : li+1)) and the set {uz, vz}. Since the number of
edges incident to z is bounded by n, the statement follows.

For i ∈ {1, . . . , k}, let P 1
i , . . . , P

si
i denote the different paths from li to ri in

the subgraph ([ri−1 : li+1] ∪ {z}, F [ri−1 : li+1]). We now define the digraph
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H := (X, Y ) with arc costs c as follows. With every path P u
i (i = 1, . . . , k, u =

1, . . . , si) we associate a node which we denote by pui . We define X as the
corresponding set of nodes. For every pair pui , p

v
j of nodes in X we introduce

the arc (pui , p
v
j ) if and only if j = i + 1 and the paths P u

i and P v
j do not share

a common edge. We denote this set of arcs by Y . Finally, we define the cost
c(pui , p

v
i+1) of some arc (pui , p

v
i+1) ∈ Y as the length w(P u

i ) of the path P u
i .

Figures 2 and 3 illustrate this construction. In Figure 2, a wheel G with the
terminal set T = {{l1, r1}, {l2, r2}, {l3, r3}, {l4, r4}} is shown. For every 1 ≤ i ≤ 4,
there exist exactly 5 paths P 1

i , . . . , P
5
i in the subgraph ([ri−1 : li+1], F [ri−1 : li+1]),

namely P 1
i = [li, ri], P

2
i = [li, z] ∪ [ri, z], P

3
i = [li, z] ∪ [ri, li+1] ∪ [li+1, z], P

4
i =

[ri, z] ∪ [ri−1, li] ∪ [ri−1, z] and P 5
i = [li+1, z] ∪ [li+1, ri] ∪ [ri−1, li] ∪ [ri−1, z]. Every

such path is represented by a node in H as it is shown in Figure 3. An arc
(pui , p

v
i+1) in H is introduced if the two paths P u

i and P v
i+1 do not intersect.
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Due to Lemma 2.3, the size ofH is polynomial in n. Moreover, if P = (P1, . . . , Pk)
is a path packing in G, then every such path Pi, i = 1, . . . , k, corresponds
to a node pui

i for some ui ∈ {1, . . . , si}. Since Pi and Pj for i �= j do not
share a common edge, the arcs (pu1

1 , pu2
2 ), (pu2

2 , pu3
3 ), . . . , (puk

k , pu1
1 ) in Y define a

directed cycle in H. The cost c(T ) of the directed cycle T is equal to the length
w(P ) of the path packing P by definition. Conversely, every directed cycle T =
{(pu1

1 , pu2
2 ), (pu2

2 , pu3
3 ), . . . , (puk

k , pu1
1 )} in H corresponds to paths P ui

i from li to ri
in the subgraph ([ri−1 : li+1]∪ {z}, F [ri−1 : li+1]) (i = 1, . . . , k). By construction,
P ui
i and P

uj

j , j �= i, do not intersect in some edge. Hence, P := (P u1
1 , . . . , P uk

k )
is a packing of paths in G and the length w(P ) is the same as the cost c(T ) of
the cycle T .
By applying shortest path or max flow techniques, a directed cycle in H of min-
imal cost can be computed in time and space complexity that is polynomial in
the encoding length of the data. Consequently, an optimal path packing in G
can be determined in polynomial time. In fact, strongly polynomial algorithms
can be derived. See [1] for a survey of known algorithms of this type.

3 The Path Packing Polytope

Let W = (V,E) be a wheel and let T = {{l1, r1}, . . . , {lk, rk}}, li, ri ∈ V ,
i = 1, . . . , k be a list of consecutive terminal pairs. The path packing polytope
PP (W, T ) is the convex hull of all incidence vectors of path packings P , i.e.,

PP (W, T ) := conv {χP | P is a solution of Problem 2.1}.

Here, χP ∈ IRE denotes the incidence vector of the set P ⊆ E, i.e., χP
e := 1 if

e ∈ P and χP
e := 0 if e �∈ P .

In this section we start the investigation of the path packing polytope PP (W, T ).
In particular, we introduce the class of 1-cut, the class of 2-cut and the class of
windmill inequalities. We will show in the subsequent section that, for a wheel,
the trivial inequalities and these three classes of inequalities completely describe
the path packing polytope.

If cTx ≥ γ is a valid inequality for the polytope PP (W, T ), every path packing
P such that cTχP = γ is called a root (of the inequality cTx ≥ γ). If, in addition,
the path packing P is edge-minimal, we say that P is an edge-minimal root.

Obviously, the whole edge set E and, for every e ∈ E, the set E \ {e} are path
packings in W . The incidence vectors of these edge sets are affinely independent.
Hence, PP (W, T ) is full dimensional, i.e., dim(PP(W, T )) = |E|.
Let us now introduce some inequalities that define facets for PP (W, T ).

Obviously, the trivial inequalities xe ≥ 0 and xe ≤ 1, e ∈ E, are valid for the path
packing polytope. It is also easy to show that they define facets for PP (W, T ).
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Let U be a node set that is an interval on the cycle C and that contains exactly
one terminal, say li0 or ri0. The inequality

x(δ(U)) ≥ 1,

called 1-cut inequality, is valid for PP (W, T ), since every packing of paths P
connects li0 to ri0 and, hence, at least one edge from the cut δ(U) must be used.

Now, let U be an interval on the cycle C that contains exactly two terminals that
do not form a terminal pair, i.e., there is an index i0 such that U ∩⋃k

i=1{li, ri} =
{ri0, li0+1}. The inequality

x(δ(U)) ≥ 2,

called 2-cut inequality, is valid for PP (W, T ), since every packing of paths P
connects ri0 to li0 and li0+1 to ri0+1. Hence, at least two edges from the cut δ(U)
must be used.
All 1-cut and 2-cut inequalities define facets of PP (W, T ). The proofs of these
facts are straight-forward, so we omit them. The number of different 1-cut and
2-cut inequalities is at most O(n2).

Let us now turn to the windmill inequalities.

Definition 3.1 For i = 1, . . . , k, choose an edge set Fi ⊆ C(li : ri) with 1 ≤
|Fi| ≤ 2 and some node u0

i ∈ [ri : li+1]. We define a vector a := a(F1, . . . , Fk,
u0
1, . . . , u

0
k) ∈ IRE by

ae =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2, if {e} = Fi for some i ∈ {1, . . . , k},
2, if e = zv with v ∈ [ri : li+1] \ {u0

i} for some i ∈ {1, . . . , k},
2, if e = zv with v ∈ [li : ri] \ {li, ri} for some i ∈ {1, . . . , k}

and C(li : v) ∩ Fi = ∅ or C(v : ri) ∩ Fi = ∅,
0, if e = zu0

i for some i ∈ {1, . . . , k} or
if e ∈ C \ ∪k

i=1Fi,
1, otherwise.

The inequality

a(F1, . . . , Fk, u
0
1, . . . , u

0
k)

Tx ≥ 2
k
2
�

is called windmill inequality.

For an illustration of a windmill inequality, see Figure 4. The coefficients of a
windmill inequality are determined by the following principles. For every interval
whose endnodes form a terminal pair, we choose one or two special edges con-
tained in this interval. If we choose one edge the corresponding component of a
is set to 2, if we choose two edges the corresponding components of a are set to
1; the components of a corresponding to the other edges of the interval are set to
0. Moreover, for every edge of the outer cycle C that does not belong to such an
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interval the corresponding component of a is also set to 0. The coefficients cor-
responding to spokes can be determined as follows. From every interval [ri : li+1]
(we say that [ri : li+1] forms a consecutive mixed interval) we choose a node u0

i .
The coefficient of a corresponding to the spoke zu0

i is set to 0. If u0
i+1 = u0

i + 1
then there are no spokes between u0

i and u0
i+1. Otherwise, the coefficients of the

spokes S(u0
i + 1 : u0

i+1 − 1) of the open fan F (u0
i : u0

i+1) are computed in the
following way. For every v ∈ [u0

i + 1 : u0
i+1 − 1], let Ql and Qr denote the path

from v to li+1 and from v to ri+1, respectively, using edges only of C(u0
i : u

0
i+1).

Then avz := max{∑e∈Ql
ae,

∑
e∈Qr

ae}.
Note that, if in Definition 3.1 all edge sets Fi (i = 1, . . . , k) have cardinality 1,
the windmill inequality coefficients are zero or two, so it can be devided by two
to obtain an inequality in standard coprime form. In this case, we speak of the
1-windmill inequality, otherwise of the 2-windmill inequality. Figure 5 illustrates
an example of a 1-windmill inequality.

Lemma 3.2 The windmill inequalities are valid for PP (W, T ).

Proof. We start with the 1-windmill inequalities. For i = 1, . . . , k, let Fi :=
{[ti, ti + 1]} ⊆ C(li : ri) and ui ∈ [ri : li+1] be given. Then, by summing up the
2-cut inequalities x(δ([ti+1 : ti+1])) ≥ 2 and the trivial inequalities −xzui ≥ −1,
for i = 1, . . . , k, dividing the resulting inequality by 2 and rounding the right
hand side and the coefficients of the left hand side up, we obtain the 1-windmill
inequality 1

2
a(F1, . . . , Fk, u1, . . . , uk)

Tx ≥ 
k
2
�.

Now consider a 2-windmill inequality. For i = 1, . . . , k, let Fi = {[t1i , t1i +
1], [t2i , t

2
i + 1]} ⊆ C(li : ri) and ui ∈ [ri : li+1] be given, where, in case |Fi| = 1,
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the nodes t1i and t2i coincide. We sum up the following inequalities

1
2
a({[t11, t11 + 1]}, . . . , {[t1k, t1k + 1]}, u1, . . . , uk)

Tx ≥ 
k
2
�,

1
2
a({[t21, t21 + 1]}, . . . , {[t2k, t2k + 1]}, u1, . . . , uk)

Tx ≥ 
k
2
�,

x(δ([t2i + 1 : t1i+1])) ≥ 2, for i = 1, . . . , k,
−xzui ≥ −1, for i = 1, . . . , k.

Dividing the resulting inequality by 2 and rounding the right hand side and
the coefficients of the left hand side up, results in the 2-windmill inequality
a(F1, . . . , Fk, u1, . . . , uk)

Tx ≥ 2
k
2
�.

The proof of Lemma 3.2 shows that windmill inequalities do not define facets of
PP (W, T ), if k is even. However, in case k is odd, they do. The proof follows
by standard arguments and is easy but lengthy. We thus refrain from stating the
details.
Summing up our discussions, we have shown that the path packing polytope
PP (W, T ) is contained in the polytope that is described by the trivial inequalities,
the 1- and 2-cut inequalities and the windmill inequalities. In the subsequent
section we will prove that both polytopes are equal.

4 A Complete Description of PP (W� T )

In this section we show that the inequalities introduced in the last section, i. e., the
trivial inequalities, the 1- and 2-cut inequalities, and the windmill inequalities,
completely describe the polytope PP (W, T ), if W is a wheel and T a list of
consecutive terminal pairs. We prove this in two steps. First, we show that every
facet-defining inequality that is not a trivial or a cut inequality has a number of
properties:
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Theorem 4.1 Let W = (V,E) be a wheel and T = {{l1, r1}, . . . , {lk, rk}} a
list of consecutive terminal pairs. Let cTx ≥ γ be a facet-defining inequality of
PP (W, T ) that is neither trivial nor a cut inequality. Then cTx ≥ γ satisfies the
following:

(a) c ≥ 0 and γ > 0.

(b) ce = 0 for all e ∈ C(ri : li+1), i = 1, . . . , k.

(c) For every i = 1, . . . , k, there exists exactly one node u0
i ∈ [ri : li+1]

with czu0
i
= 0.

(d) czu = max{c(C(li : u)), c(C(u : ri))}, for all u ∈ [li : ri] \ {li, ri},
i = 1, . . . , k.

(e) czu = c(C(li : ri)), for all u ∈ [u0
i−1 : li] \ {u0

i−1} and all
u ∈ [ri : u

0
i ] \ {u0

i }, i = 1, . . . , k.

(f) c(C(li : ri)) = c(C(lj : rj)), for all i, j = 1, . . . , k.

(g) γ = 
k
2
� · c(C(l1 : r1)).

The subsequent Lemmas 4.2 through 4.11 collectively prove Theorem 4.1. In
the second step, see Theorem 4.12, we show that every inequality that satis-
fies the properties of Theorem 4.1 is a nonnegative linear combination of wind-
mill inequalities. This shows that, indeed, the trivial inequalities, the 1- and
2-cut inequalities, and the windmill inequalities provide a complete description
of PP (W, T ).

We suppose from now on that cTx ≥ γ is a facet-defining inequality that is not a
trivial or a cut inequality. Set Fc := {x ∈ PP (W, T ) | cTx = γ}. Recall that, for
each edge-minimal path packing P there is a unique path partition P1, . . . , Pk of
P satisfying the properties of Lemma 2.2. Then, the following lemmas hold.

Lemma 4.2 Theorem 4.1 (a) is true.

Proof. For each e ∈ E, there exists a root P with e /∈ P , otherwise Fc would be
contained in the face induced by the trivial inequality xe ≤ 1. Then, P ′ := P∪{e}
is also a path packing with cT (χP ′

) ≥ γ, and we obtain 0 ≤ cT (χP ′
)−cT (χP) = ce.

Moreover, since cTx ≥ γ is facet-defining and not one of the trivial inequalities
xe ≥ 0, e ∈ E, we conclude that γ > 0.

Lemma 4.3 Theorem 4.1 (b) is true.
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Proof. Suppose Theorem 4.1 (b) does not hold. Then, there exist indices i ∈
{1, . . . , k} and r ∈ [ri : li+1 − 1] such that c[r,r+1] > 0. We pick one such i and
select r as follows. If c[ri,ri+1] > 0, we choose r := ri, otherwise we choose r such
that c[s,s+1] = 0, for all s ∈ [ri : r − 1]. Set e := [r, r + 1]. Since cTx ≥ γ is
a nontrivial facet-defining inequality, there exists an edge-minimal root P with
e ∈ P . W. l. o. g. we assume that e ∈ Pi (the other case e ∈ Pi+1 can be
shown analogously). From Lemma 2.2 (ii) we know that there exists a node
t0 ∈ [r + 1 : li+1] with zt0 ∈ Pi. Thus,

(∗) czt ≥ ce + czt0 > 0, for all t = ri, . . . , r.

Moreover, there exists a node p ∈ [li : ri − 1] with c[p,p+1] > 0, since ce > 0.
Among all such nodes we choose the right-most node, i. e., we choose p := ri−1, if
c[ri−1,ri] > 0, otherwise we choose p such that c[p′,p′+1] = 0 for all p′ ∈ [p+1 : ri−1].
Furthermore, the choice of p and ce > 0 imply in case p �= ri − 1 that

czt ≥ ce + czt0 > 0, for all t = p+ 1, . . . , ri − 1.

Summing up, we conclude that cf > 0, for all f ∈ δ([p + 1 : r]). Since cTx ≥ γ
is a facet-defining inequality that is not a 1-cut inequality, there exists an edge-
minimal root P ∗ with χP ∗

/∈ {x ∈ PP (W, T ) | x(δ([p + 1 : r])) = 1}, i. e.,
|P ∗ ∩ δ([p + 1 : r])| ≥ 2. The facts that P ∗ is an edge-minimal root and that
cTx ≥ γ is valid imply that e ∈ P ∗

i+1. Lemma 2.2 (ii) implies that there exists a
node t1 ∈ [ri : r] with zt1 ∈ P ∗

i+1. Thus,

czt ≥ ce + czt1 > 0, for all t = r + 1, . . . , li+1.

Together with (∗), we obtain that czt0 ≥ ce + czt1 ≥ 2ce + czt0 . This relation and
Theorem 4.1 (a) imply ce = 0, a contradiction.

Lemma 4.4 For all i = 1, . . . , k, there exists a node u ∈ [ri : li+1] with czu = 0.

Proof. Suppose, there exists an index i ∈ {1, . . . , k} such that czu > 0, for all
u ∈ [ri : li+1]. We prove that, in this case, cTx ≥ γ is a multiple of a 2-cut
inequality. First, we show that there is a positive edge on the path C(li : ri).
Since cTx ≥ γ is a nontrivial facet-defining inequality, there exists a root P with
[ri − 1, ri] /∈ P . Therefore, c(Pi) > 0. Obviously, P ′ := P \ Pi ∪ C(li : ri) is
also a packing of paths where 0 ≤ cTχP ′ − cTχP = c(C(li : ri)) − c(Pi). Thus,
c(C(li : ri)) ≥ c(Pi) > 0. Analogously, we obtain that c(C(li+1 : ri+1)) > 0.
Among all nodes pi in [li : ri − 1] such that c[pi,pi+1] > 0 we choose the right-
most node, i. e., if c[ri−1,ri] > 0, we choose pi := ri − 1, otherwise we choose pi
such that c[p′,p′+1] = 0 for all p′ ∈ [pi + 1 : ri − 1]. Similarly, among all nodes
pi+1 in [li+1 : ri+1 − 1] such that c[pi+1,pi+1+1] > 0 we choose the left-most node,
i. e., if c[li+1,li+1+1] > 0 we choose pi+1 := li+1, otherwise we choose pi+1 such
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that c[p′,p′+1] = 0 for all p′ ∈ [li+1 : pi+1 − 1]. We now show that all edges in
δ([pi + 1 : pi+1]) are positive. If pi �= ri − 1, consider a node u ∈ [pi + 1 : ri − 1]
and let f ∈ S(ri : li+1) ∩ P . Obviously, P̄ := P \ {f} ∪ (C(u : ri) ∪ {zu}) is
also a path packing. Due to Theorem 4.1 (b) and the choice of pi we obtain that
0 ≤ cTχP̄ − cTχP = czu − cf . Hence, czu ≥ cf > 0. Analogously, if pi+1 �= li+1,
we get that czu > 0, for all u ∈ [li+1 + 1 : pi+1]. Summing up, we conclude that
ce > 0, for all e ∈ δ([pi + 1 : pi+1]).
Now, consider any root P ∗. It is easy to check that |P ∗

i ∩δ([pi+1 : pi+1])| = 1 and
that |P ∗

i+1∩ δ([pi+1 : pi+1])| = 1. From Lemma 2.2 we know that |P ∗
t ∩ δ([pi+1 :

pi+1])| = 0 for all t ∈ {1, . . . , k} \ {i, i+ 1}. Therefore, cTx ≥ γ is a multiple of
the 2-cut inequality x(δ([pi + 1 : pi+1])) ≥ 2, a contradiction.

In the following we denote, for i = 1, . . . , k, by P i
min ⊆ F (li : ri) a path from li to

ri such that c(P i
min) = min{c(H) | H is a path from li to ri with H ⊆ F (li : ri)}.

Lemma 4.5 Consider an index i ∈ {1, . . . , k}. If c(P i
min) > 0, then

• czu = 0, for at most one u ∈ [ri−1 : li].

• czu = 0, for at most one u ∈ [ri : li+1].

Proof. Let Ui−1 := {u ∈ [ri−1 : li] | czu = 0} and Ui := {u ∈ [ri : li+1] | czu = 0}.
Since c(P i

min) > 0 and because of Theorem 4.1 (b), it is easy to check that it
is impossible that both |Ui−1| ≥ 2 and |Ui| ≥ 2 hold. Suppose w. l. o. g. that
|Ui−1| ≥ 2 and |Ui| = 1, say ui−1, v ∈ Ui−1 with v ∈ [ui−1 + 1 : li] and Ui = {ui}.
We use this assumption to construct from a root P of cTx ≥ γ a path packing
P̄ with cTχP̄ < γ, which contradicts the validity of cTx ≥ γ. Since c(P i

min) > 0,
there exists a node p ∈ [li : ri − 1] with c[p,p+1] > 0. We consider two cases:

(a) p = ri − 1. Since cTx ≥ γ is a nontrivial facet-defining inequality, there
exists a minimal root P with zui /∈ P . Then, we know that c(Pi) > 0 and that
Pi+1 ∩ C(ri : ui) = ∅. Moreover, Pi−1 ∩ C(v : li) = ∅ and zv /∈ Pi−1, since
czui−1 = 0 and v ∈ [ui−1 + 1 : li]. This means that P̄ := P \ Pi ∪ (C(ri :
ui) ∪ {zui, zv} ∪ C(v : li)) is also a path packing with c(P̄ ) = c(P ) − c(Pi) < γ,
a contradiction.

(b) p �= ri − 1. Let H∗ ⊆ F [p + 1 : ri) be a path from ri to z such that
c(H∗) = min{c(H) | H ⊆ F [p + 1 : ri), H is a path from ri to z}. In case
c(H∗) > 0 we obtain a contradiction by the same construction as in (a). Suppose,
c(H∗) = 0. Since cTx ≥ γ is a nontrivial facet-defining inequality, there exists
an edge-minimal root P ∗ with [p, p + 1] ∈ P ∗. Thus, c(P ∗

i ) > 0 and we can
assume w. l. o. g. that P ∗

i−1 ∩ C(v : li) = ∅ and zv /∈ P ∗
i−1, since czui−1 = 0 and

v ∈ [ui−1 + 1 : li]. Then, P̄ := P ∗ \ P ∗
i ∪ (H∗ ∪ {zv} ∪ C(v : li)) is also a path

packing with c(P̄ ) = c(P ∗)− c(P ∗
i ) < γ, a contradiction.

Summing up, both cases lead to a contradiction, and we conclude that |Ui−1| =
|Ui| = 1.
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Lemma 4.6 Consider an index i ∈ {1, . . . , k}. If c(S(ri : li+1)) > 0, then
c(P i

min) > 0 and c(P i+1
min) > 0.

Proof. Let v ∈ [ri : li+1] with czv > 0. From Lemma 4.4 we know that there
exists a node u ∈ [ri : li+1] with czu = 0. W. l. o. g. we assume that v ∈ [u : li+1]
(the other case u ∈ [v : li+1] can analogously be shown). Since cTx ≥ γ is
a nontrivial facet-defining inequality, there exists an edge-minimal root P with
zv ∈ P . If zv ∈ Pi, we get that P ′ := P \ {zv} ∪ {zu} is also a path packing
with c(P ′) < c(P ) = γ, a contradiction. Thus, we know that zv ∈ Pi+1. Since
P ′ := P \ Pi+1 ∪ P i+1

min is also a path packing with 0 ≤ c(P ′) − c(P ) = c(P i+1
min)−

c(Pi+1), we get that c(P i+1
min) ≥ c(Pi+1) > 0, since zv ∈ Pi+1. Now, suppose

c(P i
min) = 0. In this case we can assume w. l. o. g. that Pi = P i

min. Then,
P ′ := P \ {zv}∪ (C(u : v)∪ {uz}) is also a path packing with c(P ′) < c(P ) = γ,
a contradiction.

Theorem 4.1 (c) can now be derived from Lemma 4.5 and Lemma 4.6: Since
γ > 0, there exists an index i0 with c(P i0

min) > 0. Applying Lemma 4.5 we
conclude that c(S(ri0 : li0+1)) > 0, since |[ri0 : li0+1]| ≥ 2. From Lemma 4.6 we
obtain that c(P i0+1

min ) > 0 as well. Continuing this way, we get that c(P i
min) > 0,

for all i = 1, . . . , k. This together with Lemma 4.5 and Lemma 4.6 implies
Theorem 4.1 (c).

In the following we denote by u0
i ∈ [ri : li+1] the unique node with czu0

i
= 0, for

i = 1, . . . , k. In order to prove Theorem 4.1 (d) we need the following lemma.

Lemma 4.7 Consider an index i ∈ {1, . . . , k}. Let P be an edge-minimal root
such that Pi contains at most one of the edges zu0

i−1 and zu0
i . Then, c(Pi) =

c(C(li : ri)).

Proof. First of all, note that, for all edge-minimal roots P , c(Pi) ≤ c(C(li : ri)),
since P \Pi∪C(li : ri) is also a path packing. Now suppose, there exists an edge-
minimal path packing P with |{zu0

i−1, zu
0
i} ∩ Pi| ≤ 1 such that c(Pi) < c(C(li :

ri)). Obviously, z ∈ V (Pi). Let u, v ∈ [u0
i−1 : u

0
i ] with zu, zv ∈ Pi. W. l. o. g. we

can assume that v ∈ [u0
i−1 : u] and u �= u0

i . Since cTx ≥ γ is a nontrivial facet-
defining inequality, there exists an edge-minimal root P ′ with zu0

i−1 /∈ P ′. If
P ′
i = C(li : ri), we have that P ∗ := P ′ \ P ′

i ∪ Pi is also a path packing (note that
u �= u0

i ) with c(P ∗) = c(P ′) − c(P ′
i ) + c(Pi) < γ, a contradiction. We conclude

that z ∈ V (P ′
i ). Now, consider the unique path Hlz in P ′

i from li to z. Since
zu0

i−1 /∈ P ′, we get that c(Hlz) = 0. This fact, however, means that there cannot
exist a root P̄ that contains the edge zw, for any w ∈ [ri−1 : li] \ {u0

i−1}. Thus,
cTx ≥ γ is not a facet-defining inequality, a contradiction.

Lemma 4.8 Theorem 4.1 (d) is true.
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Proof. Let i ∈ {1, . . . , k} be an index with li + 1 �= ri and u ∈ [li + 1 : ri − 1]
be given. Since cTx ≥ γ is a nontrivial facet-defining inequality, there exists an
edge-minimal root P with zu0

i /∈ P . Due to Lemma 4.7 we can assume that
Pi = C(li : ri). Then, P

∗ := P \ Pi ∪ (C(li : u) ∪ {zu, zu0
i} ∪ C(ri : u

0
i )) is also a

path packing with 0 ≤ c(P ∗)− c(P ) = czu − c(C(u : ri)). Thus,

(1) czu ≥ c(C(u : ri)).

Analogously, there exists an edge-minimal root P̄ with zu0
i−1 /∈ P̄ , and we con-

clude

(2) czu ≥ c(C(li : u)).

Since c(C(li : ri)) ≥ c(P i
min) > 0, it follows from (1) and (2) that czu > 0. Hence,

there exists an edge-minimal root P̃ with zu ∈ P̃i. Since P̃ is edge-minimal,
either C(li : u) ⊂ P̃i or C(u : ri) ⊂ P̃i. In the first case, we conclude that
c(C(u : ri)) ≥ czu, since P̃ \{zu}∪C(u : ri) is also a path packing. This together
with (1) implies czu = c(C(u : ri)), and, because of (2), c(C(u : ri)) ≥ c(C(li : u)).
In other words, czu = max{c(C(u : ri)), c(C(li : u))}. In the latter case (i. e.,
C(u : ri) ⊂ P̃i), we get that c(C(li : u)) ≥ czu, since P̃ \ {zu} ∪ C(li : u)
is also a path packing. By the same arguments as in the first case we obtain
czu = max{c(C(u : ri)), c(C(li : u))} in this case as well.

Lemma 4.9 Theorem 4.1 (e) is true.

Proof. Let i ∈ {1, . . . , k} be an index with ri �= u0
i and u ∈ [ri : u0

i − 1].
Since cTx ≥ γ is a nontrivial facet-defining inequality and czu > 0 by Theorem
4.1 (c), there exists an edge-minimal root P with zu ∈ P . Moreover, zu ∈ Pi,
because u0

i ∈ [u + 1 : li+1]. Then, P ∗ := P \ {zu} ∪ C(li : ri) is also a path
packing with 0 ≤ c(P ∗) − c(P ) = c(C(li : ri) \ Pi) − czu. Thus, we have that
c(C(li : ri)) ≥ c(C(li : ri) \ Pi) ≥ czu. Furthermore, there exists an edge-minimal
root P ′ with zu0

i−1 /∈ P ′. Due to Lemma 4.7 we can assume w. l. o. g. that
P ′
i = C(li : ri). Since u0

i ∈ [u + 1 : li+1], we know that zu /∈ P ′
i+1, and thus

zu /∈ P ′. This implies that P ∗ := P ′ \ P ′
i ∪ (C(u0

i−1 : li) ∪ {zu0
i−1, zu} ∪ C(ri : u))

is also a path packing with 0 ≤ c(P ∗)− c(P ′) = czu − c(C(li : ri)). Thus, we also
have that czu ≥ c(C(li : ri)), and we conclude that equality must hold. In an
analogous way it can be shown that czu = c(C(li : ri)) for all u ∈ [u0

i−1 + 1 : li],
if u0

i−1 �= li.

Lemma 4.10 Theorem 4.1 (f) is true.

Proof. Consider an index i ∈ {1, . . . , k}. We know that there exists an edge-
minimal root P with zu0

i−1 /∈ P . Lemma 4.7 implies that we can assume
w. l. o. g. that Pi = C(li : ri). This means that zu0

i ∈ Pi+1, since otherwise
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P ′ := P \Pi∪Q, where Q := C(u0
i−1 : li)∪{zu0

i−1, zu
0
i}∪C(ri : u

0
i ), is a path pack-

ing with cTχP ′
< γ. Moreover, we conclude from Lemma 4.7 that zu0

i+1 ∈ Pi+1

and, thus, c(Pi+1) = 0. Hence, P ∗ := P \ (Pi ∪ Pi+1) ∪ (Q ∪ C(li+1 : ri+1)) is
also a packing of paths with 0 ≤ c(P ∗)− c(P ) = c(C(li+1 : ri+1)) − c(C(li : ri)).
Thus, c(C(li+1 : ri+1)) ≥ c(C(li : ri)). Iterating this argument proves Theorem
4.1 (f).

Lemma 4.11 Theorem 4.1 (g) is true.

Proof. First, we construct a packing of paths P whose value c(P ) is equal to

k
2
� · c(C(l1 : r1)). For i = 1, . . . , k we define

Pi :=

{
C(li : ri), if i is odd,
C(u0

i−1 : li) ∪ {zu0
i−1, zu

0
i} ∪ C(ri : u

0
i ), if i is even.

It is easy to check that Pi is a path from li to ri (i = 1, . . . , k) and that P1, . . . , Pk

are mutually disjoint. Thus, P := ∪k
i=1Pi is a packing of paths. By applying

Lemma 4.10 we obtain that

c(P ) =
∑
i odd

c(Pi) +
∑
i even

c(Pi)

=
∑
i odd

c(C(li : ri))

= 
k
2
� · c(C(l1 : r1)).

This implies that γ ≤ 
 k
2
� · c(C(l1 : r1)).

Now, consider any root P . Let πi := |Pi ∩ {zu0
i−1, zu

0
i}| for i = 1, . . . , k. From

Lemma 4.7 and Lemma 4.10 we know that c(Pi) = c(C(li : ri)) = c(C(l1 : r1)),
if πi ≤ 1. On the other hand, the number of indices i ∈ {1, . . . , k} with πi = 2
is at most � k

2
�. Thus, γ = c(P ) ≥ ∑

{i|πi≤1} c(Pi) =
∑

{i|πi≤1} c(C(l1 : r1)) ≥

k
2
� · c(C(l1 : r1)).

In the following theorem we show that each inequality cTx ≥ γ that satisfies
Theorem 4.1 is a nonnegative linear combination of windmill inequalities.

Theorem 4.12 Let cTx ≥ γ, c ∈ ZZE, be an inequality satisfying Theorem 4.1.
Then, there exists a set of windmill inequalities aTi x ≥ αi (i = 1, . . . , l) such that
λ
∑l

i=1 ai = c and λ
∑l

i=1 αi = γ, where λ = 1
2
, if c(C(l1 : r1)) is odd, and λ = 1,

otherwise.

Proof. Let cTx ≥ γ be an inequality satisfying Theorem 4.1. By appropriate
scaling of c we can assume that c(C(li : ri)) is even. It is thus sufficient to prove
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Theorem 4.12 for all integral inequalities cTx ≥ γ with c(C(l1 : r1)) even. We
show this by induction on η := c(C(l1 : r1)).

η is positive because of Theorem 4.1 (a) and (g). If η = 2, cTx ≥ γ is obviously
a windmill inequality, see Definition 3.1 and the explanation thereafter.

Now let η ≥ 4. We suppose that Theorem 4.12 is true for all inequalities bTx ≥ β
that satisfy Theorem 4.1, and for which b(C(l1 : r1)) < η and even. In the
following we construct a windmill inequality. For i = 1, . . . , k, let Ui := {uv ∈
C(li : ri) | cuv > 0}. Suppose, Ui = {e1, . . . es}, s ≥ 1, where e1, . . . , es are
numbered in clockwise order by walking from li to ri. If s = 1, set Fi := Ui,
otherwise set Fi := {e1, es}. Then,

a(F1, . . . , Fk, u
0
1, . . . , u

0
k)

Tx ≥ 2 · 
k
2
�

is a windmill inequality. Let a0 := a(F1, . . . , Fk, u
0
1, . . . , u

0
k) and α0 := 2·
k

2
�, and

set b := c− a0 and β := γ − α0. We show that bTx ≥ β satisfies Theorem 4.1 (a)
through (g). Theorem 4.1 (a) to (c) hold by construction (note that β > 0, since
η ≥ 4). Moreover, b(C(li : ri)) = c(C(li : ri))− 2, for all i = 1, . . . , k and, for all
u ∈ [u0

i−1 + 1 : u0
i − 1], we have that

bzu =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

czu − 2, if u0
i−1 �= li and u ∈ [u0

i−1 + 1 : li],
czu − 2, if u0

i �= ri and u ∈ [ri : u
0
i−1 − 1],

czu − 2, if li �= ri − 1, u ∈ [li + 1 : ri − 1] and
c(C(li : u)) = 0 or c(C(u : ri)) = 0,

czu − 1, otherwise.

This obviously shows Theorem 4.1 (d) to (f). Finally, β = γ−2·
 k
2
� = 
k

2
�·c(C(l1 :

r1)) − 2 · 
k
2
� = (c(C(l1 : r1)) − 2) · 
k

2
� = b(C(l1 : r1)) · 
k

2
�, which yields

Theorem 4.1 (g). Since b(C(l1 : r1)) < η and even, there exists, by induction
hypothesis, a set of windmills aT

i x ≥ αi, i = 1, . . . , l such that
∑l

i=1 ai = b

and
∑l

i=1 αi = β. Summing up, we obtain that c = b + a0 =
∑l

i=0 ai and∑l
i=0 αi = α0 +

∑l
i=1 αi = α0 + β = γ.

Summarizing the results presented in Section 3 and 4 we have shown the following.

Theorem 4.13 Let W = (V,E) be a wheel with nonnegative edge lengths we ∈
IR, e ∈ E, and let T = { {l1, r1}, . . . , {lk, rk}} be a list of consecutive terminal
pairs. Then, for k even, a complete and nonredundant linear description of the
path packing polytope PP (W, T ) is given by the following system of inequalities:

Trivial inequalities: 0 ≤ xe ≤ 1 for all e ∈ E.

1-cut inequalities: x(δ(U)) ≥ 1 for all intervals U of the outer cycle C of W
containing exactly one of the terminals {l1, r1, . . . , lk, rk}.

18



2-cut inequalities: x(δ(U)) ≥ 2 for all intervals U of the outer cycle C of W
containing exactly two terminals of {l1, r1, . . . , lk, rk} that do not form a
terminal pair.

If k is odd, the following inequalities are needed in addition.

Windmill inequalities: a(F1, . . . , Fk, u
0
1, . . . , u

0
k)

Tx ≥ 2
k
2
�, for all edge sets

Fi ⊆ C(li : ri) with 1 ≤ |Fi| ≤ 2 and all nodes u0
i ∈ [ri : li+1] (i = 1, . . . , k)

and with a(F1, . . . , Fk, u
0
1, . . . , u

0
k) ∈ IRE as in Definition 3.1.

We remark that Theorem 4.13 can be generalized slightly. Namely, we also have
a complete description of the path packing polytope (given a set of consecutive
terminal pairs on the outer cycle) if, in the underlying wheel, every edge is re-
placed by a path (of arbitrary length). The polynomial time algorithm of Section
2 can trivially be adapted.

Final Remarks

To our knowledge, the algorithm presented in this paper for the minimum length
path packing problem on wheels with consecutive terminal sets is one of very
few (strongly) polynomial time algorithms for the optimization version of a path
packing problem. It would be interesting to find extensions to more general or
different cases. For instance, can one replace wheels by planar graphs or some
class of planar graphs more general than wheels? Can one allow crossing terminal
pairs on the outer face? Certainly, not in general, since even the existence of path
packings cannot be shown in polynomial time unless additional evenness or other
additional conditions such as in the Okamura-Seymour theorem are added. What
about shortest tree or Steiner tree packings?

Our complete (and nonredundant) description of the path packing polytope for
wheels with consecutive terminal pairs is a first step towards establishing a closer
link between path packing theory and polyhedral combinatorics. We do not know
any other result of this type and ask, similarly, for possible generalizations of the
class of wheels and the properties of terminal pairs that allow explicit complete
descriptions of the associated packing polytope. We were quite surprised when
we discovered that in the case of an even number of terminal pairs the trivial
and the 1-cut and 2-cut (and thus a polynomial number of inequalities) suffice
but that for an odd number of terminal pairs a new class of inequalities, which
we call windmill inequalities and that grows exponentially with the number of
terminal pairs, is necessary in addition. Maybe more surprises and large classes
of computationally useful inequalities are waiting for their discovery.
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