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Abstract

The interaction potential of molecular systems which are typically used
in molecular dynamics can be split into two parts of essentially different stiff-
ness. The strong part of the potential forces the solution of the equations
of motion to oscillate on a very small time scale. There is a strong need for
eliminating the smallest time scales because they are a severe restriction for
numerical long-term simulations of macromolecules. This leads to the idea
of just freezing the high frequency degrees of freedom (bond stretching and
bond angles). However, the naive way of doing this via holonomic constraints
is bound to produce incorrect results. The paper presents a mathematically
rigorous discussion of the limit situation in which the stiffness of the strong
part of the potential is increased to infinity. It is demonstrated that the
average of the limit solution indeed obeys a constrained Hamiltonian system
but with a corrected soft potential. An explicit formula for the additive po-
tential correction is given and its significant contribution is demonstrated in
an illustrative example. It appears that this correcting potential is definitely
not identical with the Fixman-potential as was repeatedly assumed in the
literature.

Keywords: Smoothed dynamics, running average, molecular systems, Ha-
miltonian systems, strong constraining potential, high frequency degrees of
freedom, weak convergence, Virial Theorem, correcting potential, Fixman
potential, bond angle potential, bond stretching potential.
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Introduction

In classical molecular dynamics (MD) one is interested in a description of the
dynamical behavior of a (macro)molecular system in the scope of classical
mechanics. The description is fully microscopic, i.e., the unknowns are the
positions ¢; € R? and momenta p; € R? of all atoms in the system. The
atomic trajectories are assumed to obey classical Hamiltonian equations of
motion connected to the Hamiltonian:

H(q,p) = %pTM‘lp + V(q) (1)

with ¢ = (¢f ,...,q3) e R, pT = (pf,... . pI) € R*), and M the diago-
nal mass matrix. In classical MD, quantum theory is only used in order to
construct the interaction potential V in the context of Born-Oppenheimer
approximation. In most systems — in particular in biomolecular ones like
nucleic acids, proteins, or polymers — this potential is of special structure.
It consists of a sum of atom-to-atom potentials representing the contribution
of different types of interaction between the atoms: non- or weak-binding
long distance interactions (e.g. electrostatic or van der Waals), or binding
interactions representing the bond-structure of the molecule. The motions
effected by the bond-interactions are nonlinear vibrations around an equilib-
rium position: dihedral-angle, bond-angle, and bond-stretching oscillations.
Therefore, typical MD-simulations show nonlinear highly-oscillatory behav-
ior on multiple time scales in which the fastest vibrations have periods of
about a few femtoseconds (fs).

Up to now, this highly oscillatory behavior is one main bottleneck of
classical MD: Using standard techniques, the numerical integration of the
equations of motion in a typical MD-simulations requires a stepsize 7 which
is small compared to the shortest period of oscillation [13], i.e., 7 &~ 1fs in
a typical case. Indeed, this stepsize restriction is a necessary condition for
stability and accuracy of any explicit discretization like, e.g., the commonly
used Verlet-method, cf. [6]. For that reason, the maximal time span of a
MD-simulation is restricted to at most a few nanoseconds, thus precluding
the simulation of the important long-term dynamics of macromolecules.

The fastest of the molecular vibrations are caused by the bond-angle
and bond-stretching interactions, because mostly the forces effected by these
both types of potentials are two orders of magnitude stronger than all other
forces. Thus, the potential V can be divided into strong and soft contribu-
tions. In order to indicate this separation we rewrite the potential as the



sum

V(o) = V() + 5 Ula),

where U represents the strong parts (e.g. sum of all bond-angle and bond-
stretching potentials) and V' the collection of all soft contributions. The
number € > 0 is small (e < 1) and 1/¢* gives the scale ratio of the different
kinds of oscillations (i.e., the spectral norms of the Hessian matrices of U
and V' are comparably to each other). Thus, we are concerned with the
following Hamiltonian equations of motion:

G = M7p = M+ DVT(q) + = DUT(q) = 0, (2
p — —DVT _ 6_2DUT q (]) + €2 (q) ] ( )
in which D denotes derivation with respect to ¢ € R3%. The U-part of the
potential effects oscillations on time scale O(e), the soft V-part those on
scale O(1).

Mostly, we do not want to compute all the “unessential” oscillatory de-
tails on scale O(¢). But we want to get correct information about the phys-
ically relevant dynamical behavior of the considered system, i.e., we cannot
simply ignore or eliminate the bond dynamics. The idea of smoothed MD
is to compute the “running average” of the exact solution ¢ of (2) only. In
the simplest case we have ¢(t) = ¢°(t) + asin(27t/T) with ¢° oscillating on
scale O(1) and T'= O(¢). Its running average is defined by

. t+T/2
i) = 7 [ aois = Lo, g
t—T/2

which is not any longer affected by the small time scale T'. Thus, a direct
numerical computation of § would allow larger timesteps and, in turn, larger
maximal time spans for MD-simulations.

In many previous approaches the computation of the fastest oscillations
has been avoided using the following physical argument: If ¢ is small enough,
i.e., the bonds stiff enough, the strong binding force nearly fizes the cor-
responding bonds to their equilibrium position; only small deviations are
possible. Thus, the U-part of the potential can be considered as a static
constraint, which forces the atomic trajectories on the manifold M of the
equilibrium positions of the fastest vibrations:

M = {q: DU(q) = 0}.
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Figure 1: Illustration of running average and limit average. The subfigures on the right
hand side show the oscillating solutions of a system with strong binding potential for
two different sizes of the strength parameter e. The “original” strength in the molecular
system under consideration may be associated with € = ¢. The corresponding solution
q° is shown on top together with its running average g°. The picture below shows the
solution for a typical case 0 < € < ¢¢ which intermediately will appear in the limit process
e — 0. Note, that its running average is about identical with the running average on top.
For € — 0 it converges to a slowly oscillating limit average ¢° shown on the left hand side.
This limit average gives us a good approximation of the running average §° for the case
of interest € = eg. Compare Figures 2 and 3 in addition.



Hence, one switches from system (2) to the constrained Hamiltonian system

Mg + DVT((]) + DQU(‘])'A =0 (4)
DU(q) = 0,

the solution of which is slowly varying. This approach can only be justi-
fied if the potential U fulfills some quite restrictive conditions. Interestingly
enough, the bond-stretching potentials are of the required type, which ex-
plains the success of this approach applied to them. However, in general
equation (4) leads to completely wrong results. It fails, for example, if U
contains bond-angle potentials; this will be extensively demonstrated in Sec-
tion 3. The concern of our paper is a correction of this approach for such
cases.

To this end, we look at a limit average: We mathematically study the
dynamical behavior of a molecular system in the limit situation in which the
period of the fastest oscillation is artificially decreased to zero, i.e., the limit
€ — 0 (see Fig. 1). In other words, we rigorously investigate the motion of
a molecular system in which the strong parts of the potential are infinitely
stiff. This somewhat artificial limit should give a good resemblance of the
situation for very strong potentials. Now, the question is posed whether
one can derive a differential equation governing this limit solution. This
question has been addressed — within a wide ranging gradation of mathe-
matical rigor — in many previous works in various different contexts: For
example, in the discussion of the realization of holonomic constraints in
mechanics [3][4][10][11][18][20][22] or in connection to problems of plasma
physics [19][15] and, indeed, for motivating smoothed numerical solution for
oscillatory mechanical systems [14]. In this paper, we will mainly refer to
our paper [5] which reviews this work in a generalized mathematical set-
ting. Moreover the question was addressed in classical statistical mechanics
[7], particularly concerning the free energy contribution of stiff potentials in
thermal equilibrium [12][17], and in the context of smoothed MD [16].

Using the theorems of our paper [5] we will present a rigorous statement
of the correct limit equation for the case that the total energy is bounded in
the limit € — 0. It should be emphasized that — in contrast to the previous
approach [16] — no additional assumptions are involved in this derivation.
We will demonstrate that, for bounded energy:

e The limit equation can in fact be written as a constrained Hamiltonian
system, whose constraints are indeed given by the manifold M.

e The limit average is slowly varyingin the above sense, i.e., the infinitely
fast oscillations normal to M need not be computed.



e However, the energy stored in these oscillations have to be consid-
ered correctly. This energy can explicitly be computed and leads to a
correction W of the soft potential V.

The limit equation finally reads as:

M+ DV +W)Hg) + D*Ufg)- A = 0 (%)
DU(q) = 0.

An explicit formula for the correcting potential W will be given in Sec-
tion 2.2. The final results show that it is not the so called Fixman-potential.
This should be contrasted with results in the approaches which use statisti-
cal physics, e.g., [7][16][17].

For means of clear distinction in the following let us call equation (5)
the corrected constrained system and (4) the naively constrained system.

Acknowledgements: It is a pleasure to thank P. Deuflhard whose steady support for
the concept of a smoothed MD initiated this work. We also thank S. Reich for many
controversial discussions on the subject and for pointing out references [18][20] which were

an important key for the explicit construction of the correcting potential.

1 Different Types of Convergence for ¢ — 0

We now consider the sequence ¢ : [0,T] — R3? of solutions of the equation
(2) of motion parametrized by e. That is, we do not fix € to the small spe-
cific value which corresponds to the bond-potential in question, but rather
approximate this case by the limit situation ¢ — 0. To that end we have
to investigate in which sense and under which conditions our sequence ¢°
converges to a limit ¢°. Since the main goal is the derivation of a differen-
tial equation for ¢°, we rewrite the equation of motion as the second order
equation

i+ Pl + 5 Gl =0, (6)

with forces F(q) = M~'DVT(q) and G(q) = M~'DU”T(q). For the sake
of notational simplicity we set M = I throughout, which corresponds to a
simple redefinition of the potentials V and U.

In order to give an answer to the question posed we have to introduce a
concept of averaging

e which is independent from the special form of the oscillations (which
in general are not harmonic) and



e which is connected to the limit ¢ — 0 allowing a rigorous analysis of
the type of convergence of ¢¢ — ¢°.

1.1 Weak Convergence as a Concept for Averaging

These requirements on a concept of averaging in the limit are met by the
notion of weak convergence. Here, one only requires that the averages with
respect to a certain class of test functions converge to the corresponding
averages of the limit function. A particular important type of weak conver-
gence is given by the weak*-convergence in L°°[0,T]: We have ¢¢ = ¢ if
and only if

1. ¢° is uniformly bounded in L*°[0,T], i.e., there exists a C' > 0 with
ll¢¢]] < C for all € > 0.

2. For each compact subinterval I C [0,T] the averages converge:

/qe(t) dt — /qo(t) dt for € = 0.
I I

Condition 2 links the weak*-limit with the running average of the intro-
duction. It may be illustrated for the easiest situation, i.e., for sequences of
harmonic oscillations:

e In the case of constant amplitude with period e, i.e.,
(1) = (1) + asin(t/o) ™)

we have ¢¢ = ¢ (Riemann-Lebesgue-Lemma) but no strong conver-
gence.

e If the amplitude a is of order O(e) also, e.g.,
¢(0) = () + esin(t/e), (%)
we get strong convergence ¢ — 7.

Furthermore, it is easy to understand the central problem of averaging:
The strong (pointwise) convergence ¢° — ¢° of functions implies the strong
convergence f(¢°) — f(q°), where f is a function continuous in the point

argument ¢. However, ¢¢ = ¢° does not imply f(¢°) = f(¢°). For example,
we get

sin?(t/e) 2> % # 0.
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This fact — continuous functions do not in general constitute weak*-conti-
nuous operators — appears to be the reason for the necessity of the potential
correction W mentioned above.

An equivalent formulation of weak*-convergence ¢ — ¢° for a sequence
q° € L™ is given by the convergences of the averages

/ 40 St dt / (1) (1) dt

for all ¢ € L'. Here we can avoid the assumption of uniform boundedness.
An even “weaker” notion of weak convergence is given, if we restrict these
test functions ¢ to the space of infinitely continuous functions with compact
support, which gives us the notion of weak convergence in the space of

distributions &', ¢° 2 q°. The following important implications hold
74 J
“ 2 = = = =

which we will use later on. One should however note, that the notion of
weak*-convergence has the advantage of offering compactness results which
are not supplied by the space of distributions &’. This is used in the proofs
of Theorem 1.1, 2.1, and 2.3.

1.2 Type of Convergence — Bounded and Unbounded En-
ergy

Let us now turn back to the sequence of solutions of (6) and ask whether
they converge strongly or weakly. It appears that the answer to this question
essentially depends on the choice of the sequence of initial values for position
and velocity:

¢°(0) = g5 and  ¢°(0) = g,
and on the corresponding sequence of total energies given by these initial
values:

€ 1 *€ € 1 €
B = §|‘]0|2 + Vi) + 5 Ulg)-

If we again inspect the simple harmonic case U(q) = |¢|?/2 we immediately
observe that I° can only be bounded if ¢f and ¢° behave like O(¢) (and
4o and ¢ like O(1)). That is, for bounded E°, the positions ¢° converge
strongly and the velocities ¢° converge in general only weakly (cf. Fig. 2).

The demand for bounded energy seems to be natural in this situation.
But we should keep in mind that the whole limit ¢ — 0 is a mathematical
“trick” without specific physical reality. To the opinion of the authors the
following two different scenarios should be considered:
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Figure 2: Illustration of Scenario 1 for the system (6) in the two-dimensional collinear
case with V(q) = ¢} and U(q) = (g2 — q1)?/2: on the left hand side the first component
qi of the solution versus time for e decreasing from top to bottom (e = 1/30, 1/50, 1/120),
on the right hand side the corresponding derivatives ¢f in the corresponding order. The
total energy is identical in all three cases. Note that gf converges strongly to its running
average while ¢f converges only weakly.

Scenario 1: ¢ is a bounded sequence.

Scenario 2: F° is unbounded, i.e., K¢ — oo for € — 0.

Indeed, these two scenarios characterize the type of convergence of ¢¢, ¢¢, and
§°. Firstly, our observation from above can be put to a rigorous statement,
which is proved in our paper [5].

Theorem 1.1 The sequence (E€) of total energies is bounded, i.e., there is
a bound C' > 0 such that |E¢| < C for all € > 0, if and only if the following
three conditions hold (up to a possible extraction of subsequences):



1. ¢° converges strongly in C9: ¢ — ¢Y.

*

N qo.

2. ¢° converges weakly in L*°: ¢°

3. §¢ = 0(et) converges in the sense of distributions: {* 2 qo.

As a consequence of this theorem, a lack of strong convergence of ¢¢ to
¢° implies that E° is unbounded, i.e., the case that ¢¢ = ¢° weakly but not
strongly corresponds to Scenario 2 (cf. Fig. 3).

91 1
5 —r 100 !
0 e= & 0
-5 -100
0 1 2 3 0 1 2 3
5 , , 100
0 e=2 O
-5 -100
0 1 2 3 0 1 2 3
5 , , 100
0 e=L 0
-5 -100
0 1 2 ;3 0 1 2 , 3

Figure 3: Illustration of Scenario 2 for the same system as in Fig. 2: on the left hand
side the first component g of the solution versus time for e decreasing from top to bottom
(e = 1/30,1/50,1/80), on the right hand side the corresponding derivatives ¢i in the
corresponding order. The initial values are identical in all cases, i.e., the total energy is
increasing from top to bottom. Note that gf converges only weakly to its running average
while the amplitude of ¢f increases like 1/e.

In the next section we will derive the limit equation for Scenario 1. As
has already been said the limit equation will be a constrained Hamiltonian



system with constraining manifold M = {q : DU(q) = 0}. This is definitely
not the case in Scenario 2 as the following simple example shows:

We investigate the simple 1-dimensional case with a vanishing soft po-
tential V = 0 and a nonlinear, differentiable strong potential U:

)
_ s ¢ <0
Ulg) = { 2¢° : x>0
Furthermore, we fix the initial values ¢ = 1 and ¢; = 0 leading to an

unbounded sequence K¢ = 2/¢? of energies. The sequence of solutions is
given by ¢°(t) = ¢'(t/¢) with a 37 /2-periodic function ¢! with

cos(2t) : 0<t<nw/4
() = —2sin(t—n/4) @ w/4<t<b5r/4
sin (2t — 57 /2) : Hw/4 <t < 3w/2

Thus, we have

3m/2
« 2
g — . / ql(s)ds = —2/77:(]0,
0

for which we get DU(¢°) = —2/7 # 0. This shows that the limit average
q° is not constrained to M. Conclusively, we find the characterization of the
situation as illustrated in Fig. 4.

Scenario 1:

Evolution on

q
Energies (F¢) bounded <= | ¢ 0
i () M={q: DU(q) =0}

Scenario 2:

7“9 A0
Energies (F¢) <= e 2 g — Evolution not
unbounded T —4q necessarily on M
qe — 0(6—2)

Figure 4: Characterization of the different types of convergence and their implications.
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The importance of this unbounded energy scenario can be illustrated if
we take a look at a potential U with several minima, i.e., points of equi-
librium. As an example let us consider M = 1, V' = 0, the 1-dimensional
double well potential

Ulg) = (¢# - 1)°,

and initial values go > 1 on the right hand side of the minimum ¢ = 0.
For realization of bounded energy, one has to take ¢§ = 1 + O(¢), and for
example, ¢5 = 0. But then, ¢° converges strongly to ¢° = 1, i.e., the motion
gets trapped in the minimum ¢ = 1 for increasing stiffness. Hence, the
essential property of the potential, the existence of two connected minima,
is lost and this kind of artificial limit is not appropriate for such potentials.
Instead of it, the limit which increases the stiffness of U should conserve the
form of the potential, i.e., we should

1

replace the model V(gq) = 2 U(g) by Vig) = Ulq/e).

Now, the equation of motion reads
.o€ 1 T €
i+ DU /) = 0,

and useful initial values are, e.g., ¢; = 2¢ and ¢; = 0 which again lead to
bounded energy. By the substitution 2 = ¢/¢ this transforms to

1
i+ 5 DUT (%) = 0, (9)
€

with initial values z§ = 2 and & = 0. Now, the new system (9) may be
associated with the U/e? model but with unbounded energy F¢ = 9/¢?!
Hence, 2¢ converges only weakly. Since all energies IV¢ are large enough, all
x€ visit both minima with the same rate and, because of symmetry, the limit
is ° = 0. Thus, we have ¢¢ — 0 which definitely is a better representation
of the geometry of the potential. Conclusively, this example shows that the
case of unbounded energy is important because it is deeply connected to
scenarios in which one wants to conserve the geometry of the potential in
the limit ¢ — 0. Thus, the U/€? model is limited to those potentials U
which are strictly convex in directions orthogonal to the manifold M of its
equilibrium positions with

Ulpy =0 and DUy = 0.

This is the typical case for bond potentials.

11



2 Limit Equation and Correcting Potential

We now restrict our investigation to Scenario 1, i.e., to the case of bounded
energies (F°) yielding ¢° — ¢°. We ask whether the limit average ¢° is given
by the naively constrained system (4), i.e., by

"+ F(¢°) + DG(¢°) - A = 0
0 (10)

Glg") = 0,

or whether some kind of correction will appear.

This is the point to introduce a notation which will be useful in the
following: The orthogonal projection of a position ¢ on M = {¢q : G(q) = 0}
will be denoted with ¢ps. Fach position ¢ in a sufficiently small neighborhood
of M can uniquely be written as the sum of its projection and the distance
vector gy normal to the manifold: ¢ = qas + qn. We herein may always
assume that ¢¢ is in such a neighborhood, because its distance to M is of

order O(e).

2.1 Limit Equation

To this end, let us note two relatively simple implications from Theorem 1.1:

First implication: The strong convergence of ¢¢ implies F(¢?) — F(q°)
and G(q) = G(q°). Moreover, it is §° = O(1/¢). We multiply equation (6)
with ¢? and use these facts to get

E§ + EF) + Glg) = 0.
[ S——
—0 —0 —>G(q0)

Thus, we observe that the limit average ¢* fulfills G(¢") = 0, i.e., ¢° indeed
lives on the constraints manifold M.
Second implication: By the same means we directly get from (6):

M3 € 1 €

i +Fa)+ =G4 =0 (11)
N —

%’_@/—611_% G(q¢)/ e

Herein, G(¢%)/e* = O(1/e€) only converges in the sense of distributions. In
order to compute the desired Z’-limit one can use Taylor expansion of G(¢°)
around the projection ¢j,; of ¢ on M. A careful treatment of the different
convergences (strong, weak*, weak in &' ) in this expansion leads to the
following theorem, which is proved in our paper [5].

12



Theorem 2.1 For the case of bounded energy the limit average ¢° fulfills

© + F(¢®) + DG(¢) A + §DG("): 8 =

o) = o, 7

where n° /e 20\ and n° @0t = X with the quantity 1° = (¢° — ¢§;)/€ — 0.

Thus, we indeed arrive at a limit equation with constraints on M. Un-
fortunately, A and X are not directly known. Note, that although we have
7 = 0 in general

S £0

holds because squaring a function is not a weak*-continuous operation as
we have already observed above.

Hence, we found an additional term D2G : X/2 which does not appear
in the simple approach (10). In certain situations this term vanishes or
gives only a correction of the Lagrange parameter A, e.g., if (G is linear or
for pure bond-stretching potentials, as we will see later on. In general how-
ever, it is an important contribution, in particular for bond angle potentials.
But Theorem 2.1 does not give us an explicit possibility for computing the
correction; this gap must be bridged.

2.2 Correcting Potential for Codimension 1

Many previous approaches demonstrated, that the energy stored in the os-
cillations of ¢° normal to the manifold M is responsible for correcting the
soft potential V' in the limit € — 0, cf. [5]. We will now explain that there is
a connection between the correction D?G : ¥3/2 from above and this normal
energy. For the sake of simplicity the discussion will herein be restricted to
the case in which M is of codimension one. This will be sufficient in order
to discuss that the bond-angle potentials cause a nonvanishing correction of
the soft potential and how this corrections may correctly be computed.

In a neighborhood of ¢§, the strong potential U is harmonic with “spring
constant”

W g) = DXU(g),  qeM, (13)

where Dy denotes the derivation normal to M. D% U is a positive scalar
value because M is of codimension 1 and U is assumed to be strictly convex
in normal direction to M. Thus, w is a positive scalar function on M. Since
¢° — ¢y = O(¢), one intuitively assumes that the normal oscillation of ¢¢ is
nearly harmonic with this frequency w(qj,).

13



The normal energy corresponding to a state (¢, ¢) may be defined as

, 1 1
En(q,q) = §|qu2 + 5w2 (g (1) 4 - (14)
N———
=Tn =Uy

It turns out that, in the limit ¢ — 0, the normal energy E5 = En(q°, ¢°)
is equipartioned into its kinetic part 75, and its potential part Uy, i.e.,
T% = US = EY /2. This equipartition is a well known fact for the time
averages of these energy parts for harmonic oscillations and is connected
to the so called Virial Theorem of Statistical Mechanics, a mathematical
result which has the appearance of an ergodic theorem, but no ergodicity is
assumed, cf. [1][9][21]. The observation of equipartition in the limit leads
to the following theorem, which is proved in our paper [5].

Theorem 2.2 The sequence I, = En(q%, ) converges strongly, Ky —
EY;. The magnitude E$ /w(q®) is an adiabatic invariant of the motion in
the limit ¢ — 0, i.e., it exists a constant © € R such that

S
w(q?)’
where Yy denotes the normal part of the matriz 3. This constant © can
uniquely be determined via the initial positions ¢§ = lim._o q§ of the limit

EY = Ow(q"), YNN = (15)

average ¢° int =0,

0 = EX(0)/w(g)- (16)
Since g5 = O(€), the total energy splits as
1 ~€ € €
B = Sl * + Vi) + Ex + 0(e).
Hence, in the limit we have
1.
E? = Sl + Viad) + Ex

i.e., the limit of the normal energy occurs as a correction of the soft potential
V in the limit of total energy. Indeed, EY turns out to be the corresponding
Hamiltonian of the limit equation, as is proved in [5].

Theorem 2.3 The limit average ¢° obeys the following constrained Hamil-
tonian system

Q@ + DV +W) (¢ + DU(®)-A = 0

PUW) = o, "

14



in which the correcting potential W is given by the limit of the normal energy
Wi(g) = ©w(q)
for g € M.

Herein, © denotes the constant of Theorem 2.2, i.e., W can explicitly be
computed. Thus, for the case of codimension 1, the general correction D?G :
Y/2 can be computed via the second normal derivative of U and the limit of
the initial conditions. These results can be extended to general codimension
if certain resonances and singularities can be excluded beforehand, cf. [5].

Before we go into the details of an illustrative example, in which W is
an important correction, let us state some situations in which the corrected
constrained system (17) may indeed be reduced to the naively constrained
system (10).

2.3 Vanishing Potential Corrections

In specific situations the correction potential W vanishes or gives only a
correction of the Lagrange parameter A. For the case of codimension 1
we can easily determine these situations by the condition that the gradient
DW vanishes. There are two possibilities: the initial conditions lead to a
constant © = 0 (vanishing normal energy), or w is constant on M (constant
gully width). In fact, using the general result of Theorem 2.1, we have shown
in [5] that the correction does not contribute in precisely these two cases —
independently of the codimension of M.

1. Vanishing normal energy. The correction W is zero if E5(0) — 0.
The corresponding implication is well-known: The simple approach
(10) is correct if the initial velocity has no component normal to M.
This can already be proved by standard perturbation theory, cf. [14].
For this case it can be shown that ¢ = O(e?) which implies the strong
convergence 1° — 0 and therefore ¥ = n*® n° — 0.

2. Constant gully width. The correction does only change the Lagrange
parameter A if the second normal derivative of U is constant along M:

DJZVU‘M = const. (18)

This is the so called Arnold-theorem [2][5][8]. It is of particular interest
for MD, because condition (18) is fulfilled if U is a collection of bond-
stretching potentials only.
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3 Illustrative Example

In this section the necessity of the correction of the soft potential for the
direct computation of the correct limit average is illustrated. Moreover,
the explicit evaluation of the correction is demonstrated for an bond-angle
potential with codimension 1 and the resulting potential is compared with
the Fixman-potential in this case.

3.1 The Test System

For simplicity we choose a test system with 2-dimensional position space (cf.

Fig. 5):

Manifold M of

equilibrium positions

/o
VAV AV AV AN AN A Y4

Figure 5: Illustration of the test system. In addition to a soft spring the motions of the
mass point are effected by a stiff potential with equilibrium positions for angles ¢ = ¢o.

A mass point with mass m = 1 and position ¢ € R? is subjected to the
potential V (¢) = (|g| — 1)?/2 of a soft spring and an angle-dependent stiff
potential

Uq) = %(COS(b((]) — cos ¢o)?, cosp(q) = %, (19)

with equilibrium angle ¢y = 7 /4. Clearly, this system reflects the situation
of a stiff bond-angle potential and an additional soft one. The manifold
of constraints is M = {ueny, p € R} with epy = (1,1)7/+/2 being the
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tangential unit vector. The corresponding unit vector normal to M is ey =
(1, —=1)T/+/2. Obviously, M is of codimension 1. The initial values are fixed
to
g =en and g = (3,-2)7,
which corresponds to Scenario 1 (bounded total energy), but leads to a
nonvanishing normal component of the initial velocities:
1

v = = (5, —5)7T.
DN 2(7 )

Thus, according to (14) the initial normal energy is:

25

1.
B (0) = Slignl? = 2

The initial values for the limit average ¢ are obtained as limits of the
projection of ¢ and ¢; onto M:

o =ey and o= (1,17

25

(V+W)(a)

151 1

101 N

0 0.5 1 15 2 25 3
q

Figure 6: Comparison between the original soft potential V' (solid line) and the corrected
one V + W (dotted line).
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3.2 Correction of Soft Potential

For computing the correcting potential W we have to find the second deriva-
tive of U normal to M which implies the position dependent frequency w of
the normal oscillations. It is given by

L (@ 1
L wlg) = ——
2 |q|? V21|

for ¢ € M. Thus, the constant © of Theorem 2.2 results from (16) to be

DU(g) = D*U(q) :en @ en =

25
0= —v2
4 9

which gives us the explicit form of the potential- and force-correction for

q e M:
251

25 ¢
Wiq) = Zm -

4 1qP

Fig. 6 illustrates that the effect of this correction is essential.

DW(q) = (20)

Figure 7: Comparison of the highly oscillatory solution ¢¢ of (6) for ¢ = 1/100 (on top)
with the smooth limit average ¢°, which is the solution of the limit equation with corrected
soft potential. The running average of the trajectory on top and the limit average would
be indistinguishable in “picture-norm”.

Now, we can compute the limit average ¢° directly from our limit equa-
tion (17) with the potential correction W due to (20). Moreover, we are
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interested in the solution ¢° of the naively constrained system (10) without
potential correction. We find what we have expected: ¢" is nearly identical
with the running average of ¢° for small € > 0 (see Fig. 7) and ¢° essentially
deviates from ¢° (see Fig. 8).

22

02 ‘ :
0 5 10 t 15

Figure 8: Comparison of the solution ¢° of the naively constrained system (10) without
correction (dotted line) with the smooth correct limit average ¢° (solid line).

3.3 Comparison with Fixman-Potential

As already stated before, some previous approaches [16][8] argued mistak-
enly that the potential correction must be given by the so called Fixman-
potential, which is for U(q) = g(¢)?/2 defined as follows:

Veis(a) = S logdet (Dy(q) - Dy ()

with a constant parameter § which is statistically interpreted via the “tem-
perature” of the system (see [16]). For the herein considered test system we
compute for ¢ € M:

) =  DVpix(q) = = ¢ 4 (21)

lq]?’

1)
Vrix = -1
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which is definitely different from the correct result (20). In comparison with
(20) the best choice of the free parameter seems to be

A comparison of the resulting solution gpiy (limit equation with Fixman-
correction W = Vix) with the correct limit average ¢° is given in Fig. 9. Tt
demonstrates that gpix is wrong in amplitude and frequency.

2.6
241 b
qFix

221 N

1.8

16

14

1.2

0.8

06 ‘ 4
0 5 10 t 15

Figure 9: Comparison of the correct limit average q° computed via the exact potential-
correction W with the limit average qrix computed via the fitted Fixman-potential Vix
due to (21). Note that the Fixman-limit average is wrong in amplitude and frequency.

Remark. This discussion proves that the Fixman potential is not the right
potential correction in order to establish a limit equation for ¢° — although
the statements of [16] are often interpreted in this way. However, the Fix-
man potential has been suggested in [16] on the base of additional physical
assumptions, which considerably change the problem: embedding of the
molecular system in a heat bath of constant temperature. Thus, the paper
[16] does not deal as claimed with the limit situation for the Hamiltonian
system (2), which describes a single molecular system. Rather it deals with
a statistical ensemble of those systems and applies standard modeling tech-
niques of statistical physics to it, e.g., thermalization. In this context the
Fixman potential could be a good model, however, a justification of this
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model is still missing and can in practice only be given on the basis of
comparisons with reliable simulations of ensembles or with experiments.

3.4 Deviations for ¢ > 0

Our starting point has been the search for a rigorous approach to smoothed
MD. We have learned, that we can compute a slowly varying solution ¢°
which is the correct limit average of the sequence ¢° of solutions of the
original equations of motion for ¢ — 0. Naturally, the potentials are fixed
for a given particular molecular system, leading to a fixed specific value

L L L L L L L L L
0 2 4 6 8 10 12 14 16 t 18 20

Figure 10: Deviations between correct limit average q° and oscillatory solutions ¢° for
values of e significantly larger than 0. ¢° still is a good approximation of the running
average ¢° for e = 1/20 (right hand side) but there are significant deviations for e = 1/5
(left hand side).

¢g > 0 of the parameter €. The question remains, for which ¢y the limit
average ¢° constitutes still a good approximation of the running average ¢°
of ¢°. The spectral gap between frequencies resulting from U/e* and those
effected by V is steadily increased in the limit ¢ — 0, which, in turn, leads
to a decoupling of possibly resonant scenarios. Thus, we expect essential
deviations between the running average ¢¢ and ¢° if ¢ is too large. We will
not address this question in more detail; as an illustration of the situation,
a direct comparison of some ¢¢ with ¢° may be found in Fig. 10.
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4 Concluding Remarks

The interaction potential V of molecular systems can be split into two parts

V(o) = V(o) + 500

according to the essentially different time scales of the involved poten-
tials. The aim of long term MD-simulations for macromolecules requires
a “smooth” solution, i.e., a solution in which the fast oscillations effected by
the stiff U-part are correctly averaged.

In this paper we have studied the kind of motion which appears if this
stiffness is increased to infinity, i.e., we studied the limit ¢ — 0 and asked
for an initial value problem, which is obeyed by the limit ¢° of the sequence
of solutions ¢¢. Let us once more collect the essential results:

The type of convergence of ¢° crucially depends on the sequence E° of
total energies. The sequence ¢° of positions converges strongly to a ¢V if
FE* is bounded; this is the interesting case for potentials U representing
molecular bond-stretching and bond-angle interactions. The convergence
of the positions is only weak, if £ is unbounded; this case appeared to
be connected to the potentials with several minima, e.g., dihedral angle
potentials. However, besides very special situations the sequence p° = M¢*
of momenta converges only weakly in either case.

We discussed the case of bounded energy in detail: The strong poten-
tial forces the motion on the manifold M of equilibrium points. The limit
average ¢" can be computed as the unique solution of a certain constrained
Hamiltonian system with corrected soft potentials V + W. The limit func-
tion ¢° is “smooth” in the required sense, i.e., the fast oscillations normal
to M need not be computed. But the energy F5; stored in these oscillations
must be considered correctly. Its limit EY, can be evaluated and allows the
construction of an explicit formula for the correcting potential W which de-
pends on the initial normal energy and on the second normal derivative of
the strong potential U.

It appears that this correcting potential W is definitely not the Fixman
potential as repeatedly assumed in the literature. Moreover, we observed
that W does not contribute if U includes bond stretching potentials only,
while it is of essential importance for bond angle potentials. Consequently,
this paper shows how to evaluate the correct limit solution for molecular
systems with strong bond angle interactions. A realistic application includ-
ing a comparison with the average of MD-trajectories is the subject of a
forthcoming paper.

22



References

(1]
(2]

[12]

[13]

[14]
[15]
[16]

[17]
[18]

R. ABRAHAM AND J. E. MARSDEN. “Foundations of Mechanics”. Addison-Wesley
Publ. Co., Redwood City, New York, Bonn, 1985 printing of the 2nd edition (1985).

V. I. ArNoLD, V. V. KozLov, AND A. [. NEISHTADT. Mathematical Aspects of
Classical and Celestial Mechanics. In V. I. ARNOLD, editor, “Dynamical Systems
II1”. Springer-Verlag, Berlin, Heidelberg, New York (1988).

G. BENETTIN, L. GALGANI, AND A. GIORGILLI. Realization of holonomic contraints
and freezing of high frequency degrees of freedom in the light of classical perturbation
theory. I. Commun. Math. Phys. 113, 87-103 (1987).

G. BENETTIN, L. GALGANI, AND A. GIORGILLI. Realization of holonomic contraints
and freezing of high frequency degrees of freedom in the light of classical perturbation
theory. II. Commun. Math. Phys. 121, 557-601 (1989).

F. A. BORNEMANN AND CH. SCHUTTE. “Homogenization of Highly Oscillatory
Hamiltonian Systems”. Konrad-Zuse—Zentrum, Berlin (1995). Preprint SC 95-39.

M. M. CHAWLA. On the order and attainable intervals of periodicity of explicit
Nystroem methods for y" = f(¢,y). SIAM J. Numer. Anal. 22, 127-131 (1985).

M. FixmaN. Classical statistical mechanics of constraints: a theorem and applications
to polymers. Proc. Nat. Acad. Sci. 71, 3050-3053 (1974).

G. GALLAVOTTI. “The Elements of Mechanics”. Springer-Verlag, Berlin, Heidelberg,
New York (1983).

H. GoLDSTEIN. “Classical Mechanics”. Addison-Wesley Publ. Co., Cambridge (1953).

J. KOILLER. A note on classical motions under strong constraints. J. Phys. A: Math.
Gen. 23, L521-L527 (1990).

H. KoppPE AND H. JENSEN. Das Prinzip von d’Alembert in der Klassischen Mechanik
und in der Quantenmechanik. Sitz.-Ber. Heidelb. Akad. Wiss. Math.- Naturwiss. Kl.,
5. Abh. (1971).

K. Kuczera. Conformational free energy from thermodynamic integration simula-
tion. Technical report, University of Kansas, Lawrence (1995).

B. J. LEIMKUHLER, S. REICH, AND R. SKEEL. Integration methods for molecular
dynamics. In J.P. MEsirRov, K. SCHULTEN, AND D.W. SUMNERS, editors, “Math-
ematical Approaches to biomolecular structure and dynamics”, volume 82 of “IMA
Volumes in Mathematics and its Applications”, pages 161-187, New York (1995).
Springer.

CH. LuBicH. Integration of stiff mechanical systems by Runge-Kutta methods. Z.
angew. Math. Phys. 44, 1022-1053 (1993).

T. G. NorTHROP. “The Adiabadic Motion of Charged Particles”. Interscience Pub-
lishers, New York, London, Sydney (1963).

S. REICH. Smoothed dynamics of highly oscillatory Hamiltonian systems. Physica D
to appear (1995).

S. REIcH. Torsion dynamics of molecular systems. Phys. Rev. E to appear (1996).

H. RuBIiN AND P. UNGAR. Motion under a strong constraining force. Comm. Pure
Appl. Math. 10, 65-87 (1957).

23



[19] L. SPITZER JR. “Physics of Fully Tonized Gases”. Interscience Publishers, New York,
London, Sydney (1956).

[20] F. TAKENS. Motion under the influence of a strong constraining force. In Z. NITECKI
AND C. ROBINSON, editors, “Global Theory of Dynamical Systems, Evanston 1979”.
Springer-Verlag, Berlin, Heidelberg, New York (1980).

[21] M. Topa, R. KuBo, aND N. SA1T6. “Statistical Physics 1. Equilibrium Statistical
Mechanics”. Springer-Verlag, Berlin, Heidelberg, New York, 2nd edition (1988).

[22] N. G. vaN KAMPEN. Elimination of fast variables. Phys. Rep. 124, 69-160 (1985).

24



