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Abstract

The paper describes a fast algorithm for the discrete periodic wavelet trans-
form and its inverse without using the scaling function. The approach permits to
compute the decomposition of a function into a lacunary wavelet basis, i.e. a basis
constituted of a subset of all basis functions up to a certain scale, without mo-
dification. The construction is then extended to operator–adapted biorthogonal
wavelets. This is relevant for the solution of non–linear evolutionary PDEs where
a priori information about the significant coefficients is available. We pursue the
approach described in [FS94] which is based on the explicit computation of the
scalewise contributions of the approximated function to the values at points of
hierarchical grids. Here, we present an improved construction employing the car-
dinal function of the multiresolution. The new method is applied to the Helmholtz
equation and illustrated by comparative numerical results. It is then extended for
the solution of a nonlinear parabolic PDE with semi–implicit discretization in time
and self–adaptive wavelet discretization in space. Results with full adaptivity of
the spatial wavelet discretization are presented for a one–dimensional flame front
as well as for a two–dimensional problem.
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� Introduction

In recent years the development of multiresolution techniques and wavelets has had a
tremendous impact on signal and image processing and many other fields. One of them
is the numerical solution of partial differential equations where related ideas have been
popular for a long time. It is beyond the scope of this introduction to survey all the

relevant literature on this subject in detail. A recent attempt has been made by Jawerth
and Sweldens [JS94] to which the reader is refered for more comparative information.

The currently existing algorithms that employ a wavelet basis for the solution of PDEs
can, very roughly, be divided in two categories. The first ones use the localization of

the wavelets in space and frequency for the representation of operators by means of
sparse matrices [Jaf92, BCR91] which is discussed in [Mey90] from a theoretical point
of view. This results in efficient multilevel preconditioners for the iterative solution of
the resulting linear systems, e.g. [DK92]. A regular fine grid is generally still present

in this class of methods so that they are close to the multigrid philosophy. Although
we have only cited relatively few references here, the majority of the present wavelet
methods falls into this category.

The second approach, which is also adopted in the present paper, employs an adap-
tively selected set of wavelet basis functions to represent the solution of the PDE

[LT90, MPR91, MR92, BMP92]. Apart from using the above localization properties
this aims at savings by adapting the set of basis functions according to the actual shape
of the solution, a strategy similar to adaptive hierarchical finite elements [DLY89]. The

present algorithm is direct. It avoids the solution of any linear system by diagonali-
zing the stiffness matrix through an appropriate choice of test and trial functions in
a Petrov–Galerkin method. The approach exploits the compression property, similarly
as a wavelet analysis of a signal. In contrast to most signal processing tasks, however,

avoiding a costly regular fine grid for the solution of a PDE requires a bottom–up stra-
tegy of successive local refinements. Only the subset of the relevant amplitudes is to
be computed. This loss of regularity in the index set is an essential difficulty of the
approach which we overcome in a particular way in the present paper. Recall that the

classical Mallat algorithm can no longer be employed in the lacunary case as it is based
on the use of the scaling functions’ coefficients on each scale which do not exhibit the
same lacunarity as the wavelet coefficients. In that case it is not clear how to define a
suitable projection on the lacunary basis.

Let us note that the need of repeated transforms between physical space, i.e. the values
at certain grid points and coefficient space, originates in the nonlinearity of the PDE
to be solved. For linear operations such as derivation, multiplication by powers of the
independent variable etc. the conversion to operations on the wavelet coefficients is pos-

sible [Lem91, EOZ94]. For simple nonlinearities the approximate evalution in coefficient
space has been studied by Beylkin [Bey93] and others. But for general nonlinear terms
such as encountered in combustion modelling the evalutation in physical space seems to
be unavoidable.
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Different strategies to cope with locally refined wavelet basis have been developed. Plan-

tevin [Pla92] constructs an orthonormal basis for a given locally refined dyadic grid. As
each modification of the grid requires a new basis construction this can become very
costly and seems not to be appropriate for the use in the adaptive discretization of
unsteady solutions of PDEs. Ponenti [Pon94] aims at retaining as much of the unmo-

dified compactly supported wavelet basis as possible and succeeds in modifying only
those functions that live near the border of the index set of retained wavelets. Howe-
ver, the projection step onto the space spanned by these functions is left unconsidered.

Sweldens [Swe94] has developed a strategy which allows almost arbitrary spacing of
grid points. A completly irregular discretization however makes it difficult to take into
account differential operators and to consider smooth bases.

The present construction retains the wavelet basis as it is. A lacunary subset is accessed
through a simple hierarchical subtraction strategy which permits to compute individual

coefficients of the wavelet series with linear operation count [FS94].

In the first part of the paper we start with a detailed description of the algorithm
for a pure wavelet decomposition and improve the former algorithm by employing the
cardinal Lagrange function. This is important as it results in speed up, facilitates the

implementation, and allows a clearer analysis of the procedure. Up to here, the approach
is similar to the partial collocation method briefly sketched in [MR92] and the multilevel
collocation for frames of [VPS95].

The next important step is to incorporate the differential operator into the basis as first
proposed in [Tch87] and employed in [LT90]. Thereby, the related stiffness matrix is

diagonalized avoiding its assembly and inversion. This is particularly favorable when
frequently changing the set of active basis functions. We show how the hierarchical
decomposition into a lacunary basis of the first step can be adapted to this situation.
Thereby, we arrive at an interpolatory transform for a fully adaptive operator–orthogonal

wavelet–vaguelette decomposition. It is implemented to solve elliptic problems in one
and two space dimensions.

In a final step the algorithm is applied to unsteady reaction–diffusion problems where
the semi–implicit time discretization requires the solution of an elliptic problem in each

time step. The set of relevant coefficients to be computed is furnished by an adaption
strategy in coefficient space. Note that different boundary conditions can be applied in
a later stage by means of an imbedding strategy such as proposed by [QW93, GRWZ93].

The paper is organized as follows. We start in Section 2 with the case of a pure wavelet

decomposition. This permits to introduce the relevant notation and properties. Fur-
thermore, the inverse transform described here will be retained later on in the complete
algorithm. In Section 3 we develop the wavelet–vaguelette decomposition and demon-
strate its relation to PDEs. For clearness and ease of notation the method is outlined

in these first sections considering the real line. The practical implementation, however,
makes use of periodicity. Hence assembling some remarks related to this topic in a se-
parate section seems to be appropriate (Section 4). With the ground prepared in such a
way the description of the two–dimensional algorithm in Section 5 can be rather brief.
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In Section 6 we investigate the essential decay properties of the employed basis function

by means of numerical experiments. We finally report sample computations for one–
and two–dimensional flames which illustrate the properties of the presented method.

� Recursive interpolatory transform for orthogonal wa�

velets

The following approach is by no means restricted to orthonormal wavelets but can
rather be applied to any basis exhibiting scale separation (even when this only holds in

a qualitative way as in [BFF95]). Since orthogonality of the employed basic wavelets is
crucial for the later discretization of a PDE we formulate it in these terms right from
the beginning.

2.1 Multiresolution and interpolation

Assume the set of closed subspaces {Vj}j∈ZZ with Vj ⊂ Vj+1 being a multiresolution

analysis (MRA) of L2(IR). Let it be generated by some function b(x) through dyadic
dilation and translation, i.e.

bj,k(x) = 2j/2 b(2jx− k) , bj = bj,0 (2.1)

with {bj,i}i constituting a Riesz basis of Vj , not necessarily being orthogonal. The index
convention for other functions below will often be slightly different from (2.1) but made
precise each time. Dropping the second index for zero shift is used throughout. The

orthonormal scaling function and wavelet function for this MRA are denoted φ and ψ,
respectively. The function φ can be obtained from b through orthonormalization, but
occasionally we also set b = φ right from the start. Furthermore, we suppose that ψ
has M + 1 vanishing moments. Due to the MRA–structure any function fJ ∈ VJ can

be written as

fJ(x) =
∑
k

cJ,k φJ,k(x) =
∑
k

c0,k φ0,k(x) +
J−1∑
j=0

∑
k

dj,k ψj,k(x) (2.2)

employing (2.1) for the definition of shift and scale index. Bounds for the translation
indices are left unspecified throughout as these will later be governed by the periodiza-
tion. The scale index j = 0 in (2.2) is arbitrary and chosen for later convenience. The

filters

Gj
n = 〈φj,n, ψj−1,0〉 , Hj

n = 〈φj,n, φj−1,0〉 (2.3)

are classically used for the transition between both representations. They can be obtai-
ned in physical space for compactly supported bases and in Fourier space through

Ĥ∗(ω) = φ̂(2ω)/φ̂(ω) , Ĝ∗(ω) = ψ̂(2ω)/φ̂(ω) (2.4)
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where the notation of (8.5) is employed to emphasize the periodicity of these expressions

with respect ot ω. Given a function f ∈ L2(IR), a projection PJ has to be applied to get
fJ = PJ f . At this point there exists a certain liberty. In [SP94] different quadrature
formulas are developed for this task. The algorithms below rely on the collocation
projection as it allows for easy connection to values in physical space and for successive

coarsening of the employed grids. It is defined by

fJ(
k

2J
) = f(

k

2J
) (2.5)

Hence, fJ in (2.2) is determined through

fJ(x) =
∑
k

f(
k

2J
) SJ(x− k

2J
) (2.6)

with the cardinal Lagrange function SJ of VJ defined by

SJ(
i

2J
) = δi,0 , VJ = span{SJ,k = SJ(x− k

2J
)}k (2.7)

(The scale index for this function is defined without the factor 2j/2 for ease of notation.)
Combining (2.2) and (2.6), the coefficients cJ,k in (2.2) are computed by application of
the interpolation filter

IJn = 〈SJ,n, φJ,0〉 , ÎJ = 2−3J/2 Î(
ω

2j
) , Î∗(ω) = Ŝ(ω)/φ̂(ω) (2.8)

to the sampled values {f( k
2J
)}k.

Note that when using wavelets for the discretization of a PDE one would like to exploit
the regularity of these functions to obtain efficient approximation of smooth functions.
If, however, the projection step has a truncation error of order much lower than this

regularity, it is useless to employ regular wavelets. The classical projection cJ,i = f(xJ,i)
to determine fJ in (2.2), for example, converges only like O(h) with h = 2−J .

Let us remark that in the L2 setting considered so far interpolation has no meaning.
However, as soon as the basis functions have sufficient regularity the same multireso-
lution can be viewed as a multiresolution in Hr, (r ≥ 1) without any further change

[BN93].

The existence of a cardinal Lagrange function SJ of VJ is guaranteed by

theorem 1. [Wal92] For a reproducing kernel Hilbert space V spanned by a Riesz basis
{b(x− k)}k∈ZZ such that b̂∗(ω) �= 0, a cardinal Lagrange function exists and is given by

Ŝ(ω) =
b̂(ω)

b̂∗(ω)
, ω ∈ IR (2.9)

Remark: In [Wal92] the assertion is first proved for b = φ constituting the kernel of the
reproducing kernel Hilbert space V . Eq. (2.9) then is deduced as Riesz bases can be
converted from one into the other and S is unique modulo discrete shifts. For spline
spaces this equation has already been used by Schoenberg [Sch69].
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2.2 Recursive interpolatory transform

Consider the points of nested dyadic grids in IR

xj,i =
i

2j
, i, j ∈ ZZ (2.10)

verifying the trivial recursion

xj+1,2i = xj,i , xj+1,2i+1 =
1
2
xj,i +

1
2
xj,i+1 (2.11)

In the following the cardinal interpolation function will play the role of the scaling
function employed in the classical algorithm. We therefore define the filters

Dj,j−1
m = 〈Sj,m, ψj−1,0〉 (2.12)

representing collocation projection onto Vj and subsequent projection onto Wj−1 when
applied to the values {f(xj,i)}i. In the sequel Dj

m = Dj,j−1
m for conciseness.

Similar to recursions in j for Ĥj , Ĝj one can show

theorem 2. The filters Dj in (2.12) verify the recurrence relation

̂(Dj−1)k = 23/2 ̂(Dj)2k (2.13)

Proof. Equations (2.3), (2.8), (2.12) yield

Dj
m =

∑
l

Gj
l I

j
l−m

Transfer to Fourier space and application of (2.4) and (2.8) back and forth for j− 1 and
j, respectively, gives the assertion.

The following theorem describes the biorthogonality of the sampled wavelets and DJ .

theorem 3. Given ψji and D
J
n defined by (2.12)

∑
n

DJ
n−2k ψj,l(

n

2J
) = δj,J−1 δl,k , j < J (2.14)

Proof. The sampling theorem in VJ yields

ψj,l(x) =
∑
n

ψj,l(
n

2J
) SJ,n(x) , j < J (2.15)

Applying scalar products with ψJ−1,k on both sides and using (2.12), together with the
orthogonality of the wavelets proves (2.14).
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corollary 1.

∑
n

nk Dj
n = 0 , k = 0, . . . ,M , j ∈ ZZ (2.16)

Proof. Equation (2.16) follows from (2.15) with ψ(x) replaced by xk. Scalar products
with ψJ−1,k on both sides allow to use the moment conditions for ψ.

The above shows that in fact the filters Dj correspond to finite difference formulas of
order M +1. With the present construction these filters do generally not have compact

support which results in most cases from the appearance of the cardinal function. In
particular, their decay is algebraic for the multiresolutions of Meyer wavelets employed
below and exponential for Spline wavelets. The latter also holds for Daubechies wavelets

since their cardinal function has non–compact support (except the Haar case) and decays
exponentially [Wal92].

Up to now we have used the filter Dj only with j = J . The following algorithm
accomplishes a wavelet transform by successively coarsening the samples.

Algorithm 1: Wavelet transform

given samples {f(xJ,i)}i for some J ∈ IN with xJ,i from (2.10).

step 0 fJ (xJ,i) = f(xJ,i), set j = J .

step 1 Compute

dj−1,k =
∑
n

fj(xj,n) D
j
n−2k , k = . . . (2.17)

step 2 Substract the contribution from Wj−1 at the even grid points

fj−1(xj−1,i) = fj(xj,2i) −∑
k

dj−1,k ψj−1,k(xj−1,i) , i = . . . (2.18)

iterate step 1 and step 2 down to j = 0.

finally Compute {c0,i}i using {I0n}n from (2.8).

The algorithm exploits the fact that if fj is known to belong to Vj , the values at the
points xj,i uniquely determine the decomposition in this space by the sampling theo-
rem. In the periodic case the algorithm even becomes slightly simpler as the final step

almost disappears. If furthermore the entire set of coefficients in (2.2) is to be com-
puted, it is more economical to use fast convolution by means of FFT employing the
technique described in [FS94]. But this is not the aim here as we consider non–uniform
discretization.
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2.3 Inverse transform

Similar to the above algorithm we can now devise an inverse transform based on the

following relation.

theorem 4. With Sj,i and D
j
n from (2.7) and (2.12), respectively,

∑
i

Sj−1,k(xj,i) D
j
i−2k = 0 (2.19)

Proof. Analogeously to Theorem 3, equation (2.19) is proved starting from

Sj−1,k(x) =
∑
i

Sj−1,k(xj,i) Sj,i(x)

The resulting algorithm reads as follows

Algorithm 2: Inverse wavelet transform

given coefficients {c0,i}i, {dj,i}j=0,...,J−1 , i.

step 0 Set j = 0 and

f0(x0,i) =
∑
k

c0,k φ0,k(x0,i)

step 1 Compute fj+1 at even grid points

fj+1(xj+1,2i) = fj(xj,i) +
∑
k

dj,kψj,k(xj,i) , i = . . . (2.20)

step 2 Compute fj+1 at odd grid points,

fj+1(xj+1,2i+1) =
∑
k

fj(xj,k)Sj,k(xj+1,2i+1) +
∑
k

dj,kψj,k(xj+1,2i+1) , i = . . .

(2.21)

iterate step 1 and step 2 for j = 1, . . . , J − 1.

Using (2.7) and (2.11) step 1 and 2 can be assembled in

fj+1(xj+1,i) =
∑
k

fj(xj,k)Sj,k(xj+1,i) +
∑
k

dj,kψj,k(xj+1,i) , i = . . . (2.22)

which again makes obvious the role of the cardinal function as a substitute for the scaling
function.
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2.4 Transform for a lacunary basis

In many applications a priori information can be used for adapting the index set of

required coefficients in (2.2) to a given function f . In most cases local importance of
fine scale coefficients is due to the presence of singularities or almost–singularities in f .
The decay of the wavelet coefficients in scale and space depends on the strength of the
singularity and is well known, see [Jaf89, Mey90] and others. Then, the relevant indices

for dj,i fulfil a so-called cone condition. It roughly means that at a given point x with
finest local scale jx all basis functions on scales j < jx of which the (numerical) support
contains x are retained. This property is no prerequisite for the sequel but increases the

efficiency of the method.

Although generally having non–compact support the filters Dj , ψj,i exhibit rapid decay
and can therefore be truncated in space up to some prescribed tolerance. The operations
in step 1 and step 2 of Algorithm 1 then are only carried out on subgrids of {xj,i}i. This
increases savings in each step and requires f to be known only at the union of the

involved truncated grids. At the price of a slight error, appart from the one due to the
neglection of small coefficients, it yields an O(N) operation count where N is the number
of employed basis functions. The operation count for the inverse transform is the same
as for Algorithm 1 since the sums in (2.21) are shorter than the one in (2.17). Observe

that the error from truncation of the filters does not affect the perfect reconstruction
property of the transform and its inverse which is preserved by construction. This was
not necessarily the case in [FS94] where furthermore a grid finer than {xj,i}i was required
for the computation of {dj−1,i}i to avoid aliasing. As a consequence, the restriction to
wavelets well localized in Fourier space such as the Meyer wavelets is removed by the
present method.

� Operator�adapted bases

An essential step is now the extension of Algorithm 1 to biorthogonal vaguelettes. These
can be adapted to certain operators so that such an algorithm may be applied to solve
(pseudo–) differential or integral equations by a Petrov–Galerkin scheme. The result is
a so–called wavelet–vaguelette decomposition of solution and right hand side introduced

by Tchamitchian [Tch87]. Although wavelets are employed to furnish better bases for
numerical algorithms than trigonometric polynomials the analysis below heavily relies
on the Fourier transform. This technique is well suited for the considered operators and
furnishes powerfull tools.

3.1 Biorthogonal vaguelettes

Let us denote by σ(x, ξ) =
∑s

m=0 am(x) (2πi ξ)m the symbol of a linear operator L
of order s ∈ IN0 given by Lu =

∑s
m=0 am(x) (∂x)

mu(x). In the following we consider
inhomogeneous elliptic differential operators with constant coefficients characterized by
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σ(x, ξ) = σ(ξ) > 0 and aim to solve the equation

L u = f (3.1)

for u(x). The inverse L−1 is represented by the symbol 1/σ(ξ) and the adjoint L∗ by the

complex conjugate σ(ξ). The corresponding homogeneous operator which is obtained
by only retaining the highest order term of L is denoted L̇ with symbol σ̇ = as ξ

s.

Under suitable conditions (cf. below) one can define the functions

θj,i = (L∗)−1 ψj,i , μj,i = Lψj,i (3.2)

ηj,i = (L∗)−1 φj,i , νj,i = Lφj,i (3.3)

By construction these fulfill the bi–orthogonality relations

〈θj,i, μk,m〉 = δjk δim , 〈ηj,i, νj,k〉 = δik (3.4)

Observe that scale invariance (2.1) no longer holds. Apart from a scaling factor depen-
ding on s the reason is that an inhomogeneous operator (in contrast to a homogeneous

one) involves spatial scales on its own determined by the ratios of different coefficients.
These ratios are not altered with j in (3.2),(3.3). The functions θj,i, μji are called va-
guelettes [Mey90] as they have similar properties as wavelets (not necessarily being
orthogonal) apart from dilation invariance. In particular, they have vanishing moments

and fast decay which is shown below. The latter property is of primary concern since it
affects the length of the involved filters in the proposed method.

As limj→∞ Lψj,i = L̇ψj,i the homogeneous operator in some sense constitutes a worst
case limit of L. We now analyse the functions in (3.2),(3.3) as well as the required

operator–adapted cardinal functions. Replacing L with its homogeneous counterpart
permits to verify that for j → ∞, i.e. for strong refinement, no degradation occurs.

Let us start with the following statement which can be deduced from classical Fourier
analysis [SW71]. It determines the decay of a function in physical space by the regularity

of its Fourier transform.

theorem 5. Let
(dω)

kf̂ ∈ L1(IR), k = 0, . . . , n (3.5)

for some n ∈ IN0, possibly k ∈ IN0.

Then xnf ∈ L∞(IR). This yields (Riemann-Lebesque)

lim
|x|→∞

xn f = 0 (3.6)

A priori, the Fourier transform in (3.5) has to be understood in a distributional sense.
However, in all applications below the considered expressions belong to L2(IR) as well
(without being mentioned explicitly every time) so that f̂ has the classical L2–meaning.
Theorem 5 can now be applied to the functions defined above.

10



theorem 6. Let L be an inhomogeneous elliptic operator of order s ∈ IN with symbol

σ > 0. Let L̇ be the corresponding homogeneous operator containing only the highest
order term of L. Consider an MRA with the orthogonal wavelet ψ fulfilling

| dkω ψ̂(ω) |≤
Ck

(1+ | ω |)r+1+ε
k = 0, . . . , n, n ∈ IN0 (3.7)

for some r ≥ s, ε > 0 and positive constants Ck. Suppose further that∫
xl ψ(x) dx = 0 l = 0, . . . ,M (3.8)

with M ≥ s.

Then the functions θ, μ, η, ν as defined in (3.2),(3.3) (j = i = 0) have the same asympto-
tic decay rate as φ and ψ. This remains true for θ, μ, ν when replacing the inhomogeneous

operator by the homogeneous one.

Before turning to the proof a few remarks are appropriate. It will become clear that the
above assumptions are no necessary conditions for the required decay rates but rather
sufficient ones. They are oriented towards the typical MRAs and well suited for the

present examples.

An r–regular MRA as defined by [Mey90] is a special case of the considered MRAs and
is obtained for k ∈ IN0 in (3.7). The above setting partly results from the desire to cover
Meyer wavelets which need not be r–regular. Let us sum up the different parameters

characterise the MRA: r determines the differentiability of φ and ψ, M specifies the
number of vanishing moments, and n describes the decay of φ, ψ and their derivatives
up to order r. For particular MRAs these parameters are coupled differently. The Meyer
MRA corresponds to infinite r and infiniteM while n depends on the construction (n = 4

in the present computations). Spline wavelets are related to r = m− 1,M = m− 1 and
infinite n, where m denotes the (even) order of the spline.

Proof. Equation (3.7) yields

dkω ψ̂(ω) ∈ L1(IR) k = 0, . . . , n (3.9)

Hence from Theorem 5

| ψ(x) |≤ C

(1+ | x |)n (3.10)

for some positive C .

As the wavelet and the orthogonal scaling function are intimately related by construc-
tion, (3.7) and therefore (3.10) apply for φ as well.

Obviously, the power r is not required in the above. It serves however to prove the
same decay for the derivatives in space dkxφ and dkxψ up to k = r as these are reflected
by multiplication with ωk in Fourier space. Hence, ν and μ which are just sums of
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derivatives up to order s ≤ r decay similarly to (3.10). This is not modified when

replacing L with L̇.

Let us now consider θ defined by θ̂ = ψ̂/σ. The existence of the derivatives of ψ̂ up
to k = n and σ ∈ C∞, σ > 0 show that dkω θ̂, k = 0, . . . , n exist. For small ω the
symbol tends to a constant while σ ∼ ωs for large ω. Hence, if dkωψ̂ ∈ L1(IR) so is dkωθ̂.

Application of Theorem 5 shows the decay rate (3.10). The same arguments apply to η.

Switching to the homogeneous operator with σ̇(0) = 0 may produce a singularity when
dividing by the symbol. As φ̂(0) = 1, the function η can not be constructed in a classical
sense. In other words, the equation L̇η = φ can not be solved for the rhs. φ. This is
different for L̇μ = ψ. In Fourier space (3.8) reads

dlω ψ̂(ω) |ω=0 = 0 , l = 0, . . . ,M (3.11)

As M ≥ s, the expression θ̂ = ψ̂/σ̇ still has a zero at ω = 0. Therefore θ̂ and its
derivatives exist and remain integrable close to the origin also for the homogeneous

case. For large ω the situation is the same as before.

Theorem 6 has been formulated for the scale j = 0. Due to the rescaling property (2.1)
for the functions ψj,i it holds for all j. Inequality (3.10) is just modified by supplementary
factors 2js or 2−js in the constants and rescaling of x by 2j . Other properties can be
deduced immediately by similar reasoning.

corollary 2. Under the conditions of Theorem 6 it can be shown that ψ, φ ∈ Hr,

μ, ν ∈ Hr−s, and θ, η ∈ Hr+s which holds, apart from η, for the homogeneous case as
well. Furthermore, θ and μ have M + 1 vanishing moments. In the homogeneous case
this number modifies to M + 1 − s and M + 1 + s, respecively.

3.2 Operator–adapted multiresolutions

We now turn to the cardinal Lagrange functions and define the spaces

VL;J = span{LbJ,i}i = span{νJ,i}i (3.12)

Cardinal functions of these spaces are obtained similarly to the orthogonal case:

theorem 7. Under the conditions of Theorem 6 the spaces VL;J have a cardinal La-
grange function SL;J if ∑

k∈ZZ
σ(ω + 2Jk) (b̂J)(ω + 2Jk) �= 0 (3.13)

It is given by

ŜL;J(ω) =
σ(ω) b̂J (ω)

2J
∑

k∈ZZ σ(ω + 2Jk) (b̂J)(ω + 2Jk)
(3.14)

The same remains true for L replaced by L̇.
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theorem 8. Under the conditions of Theorem 6 the functions S, SL, and SL̇, if they

exist, fulfill the same decay rates in space as φ and ψ.

Proof. Ŝ can be obtained through deviding φ̂ by φ̂∗, a 1–periodic function. The condition

| φ̂∗ |≥ C > 0 has to be fulfilled for S to exist. Hence, | Ŝ |≤ 1
C
| φ̂ |. By construction

φ̂∗ has the same number of derivatives as φ̂ so that Ŝ fulfills the conditions (3.7) and
therefore the assertion.

ŜL is obtained as Ŝ replacing φ̂ by ν̂. Using Theorem 6 the above remarks apply
identically to ŜL and ŜL̇.

It can be shown that the sets {2−sjμj,i}, {2sjθj,i}, and {2−sjνj,i} form Riesz bases of the
spaces they generate [FS94], [Pon94]. Considering the homogeneous case we have seen

that an algorithm involving the functions ηj,i would not be practical for large j. Ponenti
[Pon94] points out that with increasing j these functions more and more tend to the
Greens function of the (inhomogeneous) operator. The common shape for all j destroys
the essential zooming–in property. Hence, the functions {2sjηj,i} do not form a Riesz

basis in the limit j → ∞ [Pon94]. This important observation triggered the construction
in the cited reference where the unknown u in (3.1) is developed in terms of θj,i (and
not in terms of ψj,i as below). To avoid the use of the unstable set ηJ,i a modified basis
is constructed by means of some finite difference operator compensating the singularity

in Fourier space. This makes the construction rather complicated. Furthermore, the
projection step depends on this filter and is not obvious.

The present algorithm has been developed independently from [Pon94]. It is different
in the following sense. We do not assume u ∈ Hr+s, as with the representation in terms

of θj,i, but rather u ∈ Hr and approximate the unknown u in (3.1) by some uJ ∈ VJ
[LT90]

uJ(x) =
∑
i

c0,i φ0,i(x) +
J−1∑
j=0

∑
i

dj,i ψj,i(x) (3.15)

The right hand side f is then approximated accordingly by fL;J ∈ VL;J . With the
functions defined above

fL;J (x) =
∑
i

〈f, ηJ,i〉 νJ,i(x) =
∑
i

〈f, η0,i〉 ν0,i(x) +
J−1∑
j=0

∑
i

〈f, θj,i〉 μj,i(x) (3.16)

Inserting (3.15), (3.16) in (3.1) and applying a Petrov-Galerkin method with test func-

tions {η0,i, θj,i} shows that having computed the rightmost term of (3.16) the solution
uJ is obtained with c0,i = 〈f, η0,i〉, dj,i = 〈f, θj,i〉 in (3.15). In order to determine these
coefficients we use the representation of fL;J in terms of the cardinal Lagrange function
SL;J of VL;J analogeously to (2.6)

fL;J(x) =
∑
i

f(
i

2J
) SL;J(x− i

2J
) (3.17)
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The task then is to accomplish a basis transform from {SL;J,i} to {ν0,i, μj,i} when f

is given at the required grid points. Due to Theorem 8, the limit j → ∞ does not
constitute a problem in the construction. Of course, the sums of φ0,i and ν0,i in (3.15)
and (3.16) can be replaced by linear combinations of S0,i and SL;0,i, respectively. This
avoids another type of filters.

3.3 Adaptive discretization of an ODE

The biorthogonal basis is now used in the adaptive algorithm of the previous section
replacing SJ,m with SL;J,m and Dj

m with

Dj
L;m = 〈SL;j,m , θj−1,0 〉 (3.18)

One can prove that this filter fulfills analogeous relations as Dj apart from scale inva-
riance. Its decay is determined by Theorems 6 and 8. Another reasoning is illustra-

tive and more direct. It uses the equivalent of Theorem 5 for the Fourier transform
f̂∗(ω), ω ∈ TT (see Appendix).

theorem 9. Under the conditions of Theorem 7 the filter Dj
L;m has the same decay

with m as Dj
m.

Proof. Inserting (3.14) and the definition of θj,i (3.2) in (3.18) leads to cancellation of

the symbol σ and

Dj
L;m =

∫
TT

b̂j,0(ω) ̂ψj−1,0(ω) e
−2πimω

2J
∑

k∈ZZ σ(ω + 2Jk) (b̂J)(ω + 2Jk)
dω (3.19)

The denominator is a smooth non–zero bounded 2π−periodic function which does not
alter the decay properties in physical space. Without this factor the remainder is Dj

m.

In [Mey90] a similar argument is applied to the orthonormalization procedure for the
classical wavelets.

We now obtain the following algorithm for the adaptive solution of (3.1):

Algorithm 3: Operator–adapted decomposition

given index set Λd ⊂ ΛJ = {(j, i)| j = 0, . . . , J − 1, i ∈ ZZ} for the amplitudes dj,i of a
lacunary wavelet basis in VJ with some J ∈ IN0,
a method to evaluate f .

step 0 Compute Dj
L, μj,0, j = 0, . . . , J where J−1 is the finest scale in Λd.

Truncate these in space according to a given precision.

14



step 1 Determine the index set Λx of points xj,i required in the subsequent quadratures.

Require the r.h.s. at these points

fJ (xj,i) = f(xj.i) , (j, i) ∈ Λx (3.20)

Set j = J .

step 2

dj−1,k =
∑

(j,i)∈Λx

fj(xj,i) D
j
L;i−2k , (j−1, k) ∈ Λd (3.21)

step 3

fj−1(xj−1,i) = fj(xj,2i) − ∑
(j−1,k)∈Λd

dj−1,k μj−1,k(xj−1,i) , (j−1, i) ∈ Λx (3.22)

iterate step 2 and step 3 down to j = 0.

final step compute c0,i by the filter I jL;n = 〈SL;j,n, ηj,0〉 with j = 0, analogeous to (2.8).

In short, the proposed algorithm for the solution of an ODE (3.1) reads as follows:
given the values of the rhs. at an appropriate set of points, Algorithm 3 is employed
to determine the coefficients in the development (3.15) of the solution u. The value of

the solution at a point of the grid is then obtained by Algorithm 2. Hence we employ a
vaguelette–decomposition and a wavelet–reconstruction to solve (3.1). This algorithm
has been implemented in a periodized version which is discussed in the following section.
Observe that when the filters applied in both steps are not truncated and the entire set

of basis functions is used, the method is exactly equivalent to a collocation algorithm
on the grid {xJ,i}i. The inversion of a linear system is replaced by the application of
filters into which the inverse of the operator has been incorporated. As soon as these
are truncated this yields a method which is neither a Galerkin nor a collocation method

but a hybrid one. It relies on both, the localization in space and frequency as well as
the orthogonality of the wavelets.

� Transition to periodic multiresolutions

This section serves to detail some implementational aspects. In particular it gives a
comprehensive understanding of what sometimes is just subsumed by the term periodi-

zation.

4.1 Mapping from the real line to the circle

Starting from a MRA on the real line, a MRA on the circle TT can be constructed
through the projection

f̃(x) =
∑
n∈ZZ

f(x+ n) (4.1)
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from L2(IR) onto L2(TT ) [PB89, Mey90]. In Fourier space it reads

̂̃
f(n) = f̂(n) , n ∈ ZZ (4.2)

(see Appendix). This generates the periodic analogues b̃j,k, φ̃j,k, ψ̃j,k of the functions
bj,k, φj,k, ψj,k and the periodic MRA of the spaces Ṽj = span{b̃ji}i=0,...,2j−1, j ∈ IN0. The

index range is due to the periodicity f̃j,i = ˜fj,i+ k 2j , (k ∈ ZZ) introduced by (4.1). It

carries over to all filters and functions in L2(TT ) below. By construction the orthogonality
between shift invariant functions is preserved under (4.1). Furthermore φ̃j,k = 1 for j ≤ 0
as the functions {φj,i}i constitute a partition of unity and S̃0,0 = φ̃0,0 for the same reason.
Denoting this function ψ̃−1,0 for brevity, any f̃J ∈ ṼJ can then be written as

f̃J (x) =
J−1∑
j=−1

�2j−1�∑
k=0

dj,k ψ̃j,k(x) (4.3)

In the periodic setting the indices in scale do no longer refer to an afine transform
such as (2.1) but rather to applying (2.1) for the non–periodic counterpart followed

by (4.1). A result is that functions and filters are related through recurrence relations
in Fourier space [PB89]. In other words they are obtained from their non–periodic
counterparts through coarser and coarser sampling for decreasing j. The values of
H̃j

n = 〈φ̃j,n, ˜φj−1,0〉, n = 0, . . . , 2j − 1, for example can be obtained by

̂
(H̃j)k = 2−jĤ∗(

k

2j
) , k = 0, . . . , 2j − 1 (4.4)

with Ĥ∗ from (2.4). Using the mapping (4.1) a cardinal Lagrange function is readily

obtained similarly to Theorem 1:

theorem 10. Let b fulfil the requirements of Theorem 1 and let Ṽj = span{b̃j,i}i=0,...,2j−1

(j ∈ IN0) be defined through (2.1), (4.1). Then a cardinal Lagrange function of Ṽj exists
and is given by

̂̃
Sj(n) =

̂̃
bj(n)

2j (̂b̃j)n

, n ∈ ZZ (4.5)

Proof. Since Vj is spanned by shifts of Sj, Ṽj is spanned by shifts of
∑

k∈ZZ Sj(x + k).
Obviously, the interpolation property is preserved through periodization so that this

sum indeed is again a cardinal Lagrange function of Ṽj and therefore defines S̃j due to
its uniqueness. Using (2.9), (4.2), and (8.4) yields (4.5). Nonvanishing denominator is
ensured by the condition on b.

4.2 Implementation for spline– and Meyer wavelets

The required filters in the algorithms devised above have to be determined in a pre-
processing step. Throughout, we first compute the exact values and only subsequently
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truncate the filters with respect to their length. We employ multiresolutions of Battle-

Lemarié spline wavelets of even order and Meyer wavelets. As both have non-compact
support, a few remarks are appropriate.

In the present cases the filters H,G, I,D,DL for the non–periodic MRAs are given
explicitly in Fourier space. Recall that these expressions are 1–periodic functions in ω

(cf. equation (2.4)). Hence, no error is introduced through the periodization by replacing
ω with k/2j . This property is not shared by the functions φ, ψ, S, μ, etc., they can be
defined in Fourier space but have large or unbounded support in ω. Therefore the exact
values of these functions have to be deduced from the filters. The values ˜ψJ−1,0(xJ,i) for

example are computed by a standard inverse wavelet transform having initialized with
dji = δj,J−1 δi,0. In the particular case of Meyer wavelets the compact support in Fourier
space can be used to alternatively obtain the function’s values by a DFT of appropriate
length since the sum in (8.6) contains at most two entries. As the symbol σ does not

alter the support in frequency space this holds for θ̃, μ̃, S̃L as well.

For spline wavelets the procedure is more involved. We first compute an interpolation
function in the non-periodic case. Thereto, Lbj = 2j/2LNm(2

jx) with Nm designating

the B-spline of m–th order. Relating N̂m
∗
to the derivative of the cotangent function

[Chu92], formulae for L̂bj
∗
are deduced to express ŜL;j(ω). This defines the operator

adapted interpolation filter Î jL
∗
(ω). Due to the linearity of the operator L the functions

μ, ν fulfil the same refinement equation as ψ, φ. Hence, Ĝj
L

∗
= Ĝj

∗
. The resulting

expression for D̂j
L

∗
(ω) is then sampled to accomplish the transfer to the periodic setting.

Subsequently, the values of μ̃j,0 at grid points are generated by the filters as described
above.

Finally note that different MRAs can of course be used to start from. However, we
conjecture that a construction in which all the required filters are of compact support can

not be obtained. Daubechies wavelets for example have compact support, but the related
cardinal function has not. The autocorrelation of the Daubechies scaling functions does
furnish compactly supported cardinal functions. However, these MRAs do not permit
compactly supported orthogonal wavelets. Also the construction of [DW93] of compactly

supported operato–adapted wavelets does not lead to full (bi–)orthogonality of the basis.
Further research is required to elucidate this question.

	 Two
dimensional adaptive algorithm

The use of an additional Fourier series for the discretization of a two–dimensional pro-

blem as in [FS94] is straightforward and skipped here. Instead, we have extended the
present method to two–dimensional tensorproduct MRAs [Mey90]. In this framework
the solution u is developed as

uJ(x, y) =
∑
kx

∑
ky

c0,kx,ky φ0,kx,ky(x, y) +
J−1∑
j=0

∑
kx

∑
ky

3∑
ε=1

dεj,kx,ky ψ
ε
j,kx,ky(x, y) (5.1)
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with

φj,kx,ky(x, y) = φj,kx(x) φj,ky(y) (5.2)

and

ψε
j,kx,ky(x, y) =

⎧⎪⎨
⎪⎩
ψj,kx(x) φj,ky(y) ; ε = 1
φj,kx(x) ψj,ky(y) ; ε = 2
ψj,kx(x) ψj,ky(y) ; ε = 3

(5.3)

The method previously described for the solution of an ODE in space can now be applied
analogeously to the discretization of a PDE in two dimensions. Periodicity is accounted
for by the technique of section 4.1.

� Applications and numerical results

6.1 Truncation of filters

As a preliminary step the precision of the above wavelet transform has been investigated
for different truncations. Setting f = ψj,0, (j = −1, . . . , J − 1) all coefficients are
computed up to J−1. The left part of Table 1 reports

E1 = max
jkm

{| fo〈ψj,0, ψk,m〉Q − δj,k δ0,m |} (6.1)

where the indexQ of the scalar product denotes its evaluation by the described recursive

quadrature of Algorithm 1. In an analogeous way the inverse transform has been tested.
The error E2 is defined similarly to (6.1) replacing ψj,0 with the function generated by
the inverse transform and 〈·, ·〉Q by the exact scalar product. This is realized in starting
from dj,0 = 1 for one particular value of j and all other coefficients zero. An inverse

transform with truncation and a subsequent exact forward transform without truncation
are then executed.

E1 E2

K Meyer m = 6 m = 4 Meyer m = 6 m = 4

full grid 8.7 E-14 5.7 E-14 3.4 E-14 5.5 E-14 7.7 E-14 5.7 E-14
40 2.7 E-5 3.8 E-5 5.6 E-7 8.9 E-6 1.4 E-5 2.2 E-7
30 1.6 E-4 4.1 E-4 1.8 E-5 9.1 E-5 1.2 E-4 5.7 E-6
20 8.6 E-4 4.5 E-3 5.3 E-4 6.3 E-4 1.2 E-3 1.6 E-4

Table 1. Projection error E1 of Algorithm 1 and E2 of Algorithm 2 for Meyer wavelets, cubic

spline wavelets (m = 4) and quintic spline wavelets (m = 6). K denotes the number of points

from the center of Dj, Sj and ψj,i at which summations are stopped, respectively. Finest scale

is J = 10.
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6.2 Helmholtz problem

A practically relevant example for the presented method is a Helmholtz–type equation
arising e.g. from a semi–implicit time discretization of parabolic equations as applied

below. Hence, for the remainder we set

L = λ − ∂xx , λ ∈ IR>0 (6.2)

i.e. σ(ξ) = λ + 4π2ξ2, s = 2. In the sample computations λ = 150 has been used

corresponding to the time stepping for the PDE below.

Similar to Table 1 we first consider the influence of the truncation on the orthogonality
of the basis functions in the operator–adapted case. Some examples are assembled in
Table 2. The error E3 is defined as in (6.1) replacing ψj,0 by μj,0 and ψk,m by θk,m (un-
fortunately, comparison to a similar table in [FS94] is not possible for implementational

reasons). The level of round off errors is given by the first line. The precision achieved
with truncated filters increases if these have stronger decay, i.e. in case of low regularity
of the basis.

KD , Kμ Meyer m = 6 m = 4

full grid 1.5 E-12 2.8 E-12 3.5 E-12

60, 60 3.5 E-5 1.1 E-5 3.0 E-8
40, 40 3.5 E-4 8.5 E-4 2.2 E-5
30, 30 1.6 E-3 8.9 E-3 6.1 E-4

80, 60 1.6 E-5 7.7 E-7 2.6 E-9
40, 30 3.4 E-4 1.1 E-3 5.3 E-5

Table 2. Projection error E3 of Algorithm 3 for Meyer wavelets and quintic and cubic spline

wavelets. KD, Kμ denote the number of points from the center of DL;j and μj,i at which

quadrature and summation are stopped, respectively. Finest scale is J = 10.

Next, we report the precision obtained for the solution of the Helmholtz equation (3.1),

(6.2), with a right hand side such that the exact solution is

uex(x) = e−γ2(x− 1
2
)2 ; γ2 = 16000 (6.3)

Figure 1 displays the resulting L2–approximation error when computing all wavelet am-
plitudes of the solution, the L∞–error behaves analogeously. As stated before, the use
of untruncated filters results in a pure collocation method the convergence rate of which
is determined by the regularity of the basis functions. With truncated filters the appro-

ximation can not be improved beyond the level induced by the defect in orthogonality.
Hence, the error tends to a constant with increasing J when this level is reached. Ob-
serve that the values in Figure 1 nicely correspond to those of Table 2 (in general a
multiplicative factor appears). Furthermore, the result with Meyer wavelets can be
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Fig. 1. L2–error of the Helmholtz problem solved with Algorithm 3 and different basic multiresolutions.

Left: Meyer wavelets. Right: quintic and cubic spline wavelets (all curves of the latter are virtually

identical).

compared to Fig.7 of [FS94]. They exhibit an improvement by roughly two orders of

magnitude or, in other terms, half the filter size for the same precision.

Due to the interpolatory approach it is also possible now to use spline wavelets in
the solution procedure. The results in the right part of Figure 1 support the above
interpretation. For m = 6 only the stronger truncation influences the accuracy whereas

with m = 4 the filters could still be shortened without loosing considerable precision
with respect to the exact result on the respective grids.

To assess the amount of adaptivity which is possible by the approach, Table 3 finally
displays the number Nε of coefficients which are larger in absolute value than the trun-
cation error ε = |u−uex|2 with the full basis depicted in Figure 1. Employing only these

coefficients in an adaptive computation would lead to drastic savings at the expense of
an O(ε)–error.

In summary, the proposed method permits an h − p–like strategy. On one hand there
are very regular basis functions and longer filters leading to higher precision on large

scales. On the other hand there are bases with low regularity which lead to shorter filters
but steeper cones in the index space arround singularities or almost–singularities of the
solution. The actual choice has to depend on the convergence rate in the non-truncated
case and the size of the filters which is needed to maintain the required precision.
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J 7 8 9 10

M full 18 98 508 508

M 80,60 18 98 146 146
M 40,30 18 56 66 66

S6 full 18 74 116 148
S6 80,60 18 74 116 148
S6 40,30 18 56 58 58

S4 full 12 26 38 58

S4 80,60 12 26 38 58
S4 40,30 12 26 38 58

Table 3. Number Nε of significant amplitudes in the computations of Figure 1 (see text).

6.3 Adaptive solution of a nonlinear parabolic PDE

The above discretization has been devised for the adaptive solution of a PDE with

evaluation of nonlinear terms in physical space. As an example it is applied here to a
reaction diffusion equation originating from laminar premixed combustion and amply
discussed e.g. in [DH92]. In the one–dimensional case with unitary Lewis number the

equations simplify for certain initial and boundary conditions to

∂tT̃ − 1

L2
x

∂xxT̃ = ω̃ +
1

L2
x

dxxs , x ∈ TT (6.4)

ω̃ =
β2

2
(1 − T̃ − s) e

β(T̃+s�1)

1+α(T̃+s�1)

The smooth function s(x) is used for periodization [DH92], T̃ and ω̃ are the (periodic)

temperature perturbation and the reaction rate, respectively, and Lx is the physical
size of the domain. Suitable initial conditions result in a steadily propagating front.
The stiffness of the problem is governed by β as increasing its value reduces the size of
the reaction zone, i.e. the region where ω̃ >> 0. We employ the second order semi–

implicit time scheme and the adaptive selection procedure for the wavelet coefficients
of [FS94]. The solution is advanced in time by performing a backward transform of the
actual solution to the locally refined grid of quadrature points (Algorithm 2), evolution
of the rhs., and finally a decomposition into the operator adapted basis (Algorithm 3)

to compute the wavelet amplitudes of the solution of the new time step.

A result is reported in Figure 2. This computation for Lx = 30, α = 0.8, β = 10
has been performed with cubic spline wavelets and Δt = 0.01, J = 10, ε = 1.e−5.
The adaptive discretization follows the front without problem requiring a number of

significant coefficients of about Nε = 66 most of the time. Nevertheless the very sensitive
reaction rate is well approximated. With respect to former computations [FS94] the new
projection method leads to reduced cpu time (factor of about 4 for this particular setting)
and a reduced number of quadrature points. This is particularly advantageous when
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Fig. 2. Physical temperature T = T̃ +s and reaction rate ω̃ (devided by 2.5 for presentation) versus x

for a left–traveling thermodiffusive flame front. The dotted curves correspond to t = 1, the continuous

ones to t = 7. The tics below indicate the centers of the adaptively selected wavelet basis functions

involved at the respective times. A number larger than Nε is required by the algorithm employed for

the adaptive selection of basis functions. The second cloud for t = 7 at x = 0.5 is due to the periodizing

function s(x).

the evaluation of the rhs is costly.

6.4 Two–dimensional adaptive computation

Figure 3 reports a sample computation for the two–dimensional analogue of (6.4) for
(x, y) ∈ TT × TT with s ≡ 0 and Lx = Ly = 30. The initial state is given by an inclined
elliptical flame front which then propagates in outward direction. Due to the physical
stability of thermodiffusive flames at unitary Lewis number [Siv77] the front relaxes to

a circle. This example has been selected as its solution is difficult to resolve e.g. by
parametrized mapping techniques.

The left part of the figure shows level lines of the solution at t = 1. The right part
presents the instantaneous set of adaptively selected coefficients in (5.1). Only these are

computed while the remaining ones are set to zero. The algorithm for the determination
of the relevant amplitudes in the actual time step is based on proximity relations in scale
space. They can be defined similarly to the one–dimensional case. The finest scale in
this computation was J = 7 yielding 128×128 possible degrees of freedom. At t = 1 only

1510 i.e. roughly 10% of them are required to represent the solution with the desired
accuracy (ε = 10−5). The employed MRA is based on cubic splines. Observe that
although the basis functions reflect to some extent the orthogonal coordinate system
this does not degrade the adaptive discretization in oblique directions.

22



20 40 60 80 100 120

20

40

60

80

100

120

Fig. 3. Computation of an elliptic two–dimensional flame front. Left: Level lines of the temperature

at t = 1. Right: Active coefficients in (5.1) located in the standard way [Dau92, p.315]: dεj,kx,ky
is

positioned at x = 2j(1� δε,3) + kx, y = 2j(1� δε,1) + ky.

� Conclusion

The present algorithm is a step towards an atom–like use of wavelet basis functions
for the solution of PDEs. We have developed the method in one dimension and have
analyzed the resulting filters. The approach has also been extended to a truely two–
dimensional fully adaptive wavelet discretization in space. Essential boundary conditi-

ons can now be implemented using imbedding strategies as mentioned in the introduc-
tion. With respect to earlier work [FS94] the improved methodology results in a clearer
presentation, an easier analysis and increased efficiency.

On the other hand it is evident that the employed filters are still unsatisfactory as

they do not have compact support right from the start and have to be truncated. The
basic multiresolutions with non–compactly supported cardinal functions are not the
only reason for this fact. A further difficulty results from the incorporation of the
operator inverse which is related to the Greens function. Its advantage is that no

linear system needs to be solved. Other approaches in the literature such as [BCR91],
[CP95] start from the representation of the inverse of an operator by means of a wavelet
basis (standard or non–standard form) and determine an approximation by cancelling
small matrix entries. This operation is similar to the employed truncation of filters.

Hence, the requirement of truncation is no particularity of the present construction but
rather a general feature which, nevertheless, would be convenient to overcome. In [JS93]
diagonalization for the Helmholtz operator is obtained at the price of non–constant

weight in the scalar product and O(h2) convergence of the final algorithm and a low
order projection. Future research will be concerned with the construction of improved
bases for the presented algorithm.
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 Appendix� Definition of the employed Fourier transforms

The employed Fourier transforms of square integrable functions are

f̂(ω) =
∫
IR
f(x) e−2πiωx dx , ω ∈ IR (8.1)

̂̃
f (n) =

∫
TT
f̃(x) e−2πinx dx , n ∈ ZZ (8.2)

in the non-periodic and the periodic case, respectively. The symbol TT designates the

circle or one–dimensional torus TT = IR/ZZ. The brackets around n ∈ ZZ in (8.2) are
motivated by (4.2). They serve to distinguish (8.2) from the discrete Fourier transform
(DFT) of length 2j with some j ∈ IN0 defined by

̂̃
f k =

1

2j

2j−1∑
n=0

f̃(
n

2j
) e−2πink/2j , k = 0, . . . , 2j − 1 (8.3)

Considering a 1–periodic function f̃ , the coefficients of a DFT with 2j entries are related

to
̂̃
f (n) through the ’aliasing relation’

̂̃
fk =

∑
z∈ZZ

̂̃
f(k + 2j z) , k = 0, . . . , 2j − 1 (8.4)

Finally, the transform

f̂∗(ω) =
∑
n∈ZZ

f(n) e−2πiωn , ω ∈ TT (8.5)

is obtained from the sampled values of f . It fulfils

f̂∗(ω) =
∑
k∈ZZ

f̂(ω + k) , ω ∈ TT (8.6)

due to the Poisson summation formula. Eqs. (8.3)–(8.6) remain valid for k ∈ ZZ, ω ∈ IR,

since
̂̃
f k and f̂∗ are periodic with period 2j and 1, respectively.
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americana, 3, 1987.

[VPS95] O.V. Vasilyev, S. Paolucci, and M. Sen. A Mulitlevel Wavelet Collocation Method for
Solving Partial Differential Equations in a Finite Domain. J. Comp. Phys., 120:33–47,
1995.

[Wal92] G. Walter. A sampling theorem for wavelet subspaces. IEEE Trans. Inform. Theory,
38:881–884, 1992.

26


