

Konrad-Zuse-Zentrum für Informationstechnik Berlin

Ulrich Nowak

A Fully Adaptive MOL–Treatment of

Parabolic 1D–Problems

with Extrapolation Techniques

Preprint SC 95–25 (December 1995)

Ulrich Nowak

A Fully Adaptive MOL–Treatment of Parabolic

1D–Problems with Extrapolation Techniques

Abstract. A fully adaptive method is presented for the numerical solution
of highly nonlinear, coupled systems of parabolic differential equations in one
space dimension. Time discretization is by means of the linearly–implicit
Euler discretization. Space discretization is by finite differences on non–
uniform grids. Both basic discretizations are combined with extrapolation.
Based on local error estimates for both the time and the space discretization
error, the accuracy of the numerical approximation is controlled and the
discretization stepsizes are adapted automatically and simultaneously. The
algorithm is implemented in a user friendly software package, PDEX1M. To
be a powerful tool for users coming from applications the package has been
equipped with some additional useful devices.

1 Introduction

Consider a system of npde partial differential equations (PDEs) of reaction–
diffusion type with possibly mild convection,

B(x, t, u, ux)ut = f(x, t, u, ux, (D(x, t, u)ux)x), (1)

u(x, t0) = u0(x), (2)

α(x)u + β(x, t, u)ux = γ(x, t, u) or ut = δ(x, t, u), (3)

x ∈ [xL, xR] , t ∈ [t0, tend]. (4)

The matrix B may be singular but we assume that, after space discretization,
the resulting system of differential–algebraic equations (DAEs) is of index
≤ 1. A popular approach to solving (1)–(4) is a method–of–lines (MOL)
treatment. In this approach, space discretization is applied first and the
resulting large semi–discrete system of DAEs is then solved by an adaptive
time integrator of BDF, Runge–Kutta or extrapolation type. In a classical
MOL treatment, the spatial mesh is fixed throughout the whole integration.
However, except for very simple problems, an efficient and robust solution
procedure requires frequent adaptation of the space discretization during the
time integration. There are three major strategies for spatial adaptation –
mesh refinement and coarsening (static regridding), mesh motion (moving
grids) and order variation. A large number of methods have been developed
which use one or more of these techniques, see, for example, [1, 5, 7, 10, 11,

1

14, 16]. However, only a few methods use an integrated adaptation strategy
which is based on comparable a posteriori error estimates in space and time.

In this paper, we employ extrapolation techniques in space and time. The
basic space discretization is done by means of standard finite differences,
see, for example, [18]. For time discretization, we apply the linearly–implicit
Euler method [3, 4]. Because of its linearly–implicit one–step structure, this
method avoids the solution of nonlinear systems and allows an easy change
of the computational grids after each time step.

This paper is intended to give an overview of the current state of the method
proposed in [15] (Sections 2, 3.1), to present some new features which make
the associated software package, PDEX1M, an interesting tool for users (Sec-
tion 4), and to demonstrate the algorithmic behavior by means of some nu-
merical experiments (Section 5).

2 Basic Discretizations

2.1 Time Discretization

For ease of presentation, we first consider the time discretization method
applied to a system of DAEs of the form B(t, y)y′ = f(t, y), y(t0) given. To
determine an approximation yk to y(tR) at tR = tL +kΔt, k steps of the basic
linearly–implicit Euler discretization are applied:

(Bl − ΔtA)(yl+1 − yl) = Δtf(tl+1, yl) , l = 0, 1, . . . , k − 1, (5)

with y0 = y(tL), where A = (f − By′)y, the Jacobian matrix of the residual
at t = tL, or a sufficiently good approximation to it. Under the assumption
that there exists an asymptotic Δt–expansion for the approximation error,

yk − y(tR) = e1(tR)Δt + e2(tR)Δt2 + e3(tR)Δt3 + . . . + O(ΔtN+1), (6)

Richardson extrapolation can be applied to construct approximations of
higher order. In general, only perturbed expansions exist and this may re-
strict the maximum attainable (classical) order. Nevertheless, extrapolation
can be applied successfully as further extrapolation still reduces the approx-
imation error [12].

Assume that a so–called basic stepsize ΔT and an associated expected ex-
trapolation stage number s is given. Then, one constructs approximations
to y(tL + ΔT) using the discretization method (5) with stepsizes Δtj =
ΔT/nj, j = 1, . . . , κ = s+1, where {nj} is the step number sequence. For the
linearly–implicit Euler method, the harmonic sequence {nj} = {1, 2, 3, . . .}

2

may be applied. Denoting the approximation obtained at tR with internal
stepsize Δtj by Tj,1 = y(tL + ΔT ; Δtj), the t–extrapolation tableau is

Tj,k = Tj,k−1 +
Tj,k−1 − Tj−1,k−1

(nj/nj−k+1) − 1
, 2 = 1, . . . , κ , 2 = 1, . . . , j. (7)

A general order and stepsize control technique for extrapolation methods has
been derived in [2] and is used, except for minor changes and additions, in
the time discretization part of our method. Its essential features are:

• Abstract Convergence Model: Models the average convergence behavior.

• Subdiagonal Error Estimate: Componentwise error estimates are ob-
tained from the subdiagonal difference Ej−1 = Tj,j−1 − Tj,j.

• Convergence Monitor: For j = 2, . . . , κ, there is a check if convergence
can be expected at least in stage s + 1.

• Order Window: The convergence check εj−1 = ||Ej−1|| ≤ tolt is per-
formed only for j = κ− 1, κ, κ + 1.

• Order and Stepsize Optimization: After a successful step (say within s
stages), the following stepsize estimates (predictors) are calculated:

ΔT new
k = k+1

√
tolt/εk ΔT , k = 1, . . . , s . (8)

In case of step failure, (8) is used to compute a stepsize corrector. A stepsize
estimate for the stage s + 1 is based on the estimate εs and the abstract
convergence model. The optimal stepsize/stage combination is derived by
minimizing the (estimated) amount of work per unit step. So, with proposed
values ΔT new, snew and with the approximation Ts+1,s+1 as starting value, the
integration is continued.

2.2 Space Discretization

To discretize the space derivative terms in (1), centered 3–point finite dif-
ference approximations are applied on non–uniform grids. Consider a grid
G = {xL = x1 < . . . < xnx = xR} of dimension nx with nodes xi and
subintervals Δxi = xi+1 − xi. The first derivative vector ux is approximated
(componentwise) by

∂u(xi, t)

∂x
≈ 1

Δxi−1 + Δxi

[
Δxi−1

ui+1 − ui

Δxi

+ Δxi
ui − ui−1

Δxi−1

]
. (9)

Except for the approximation (9), the same space discretization as presented
in [18] is used. On uniform grids, this finite difference (FD) approximation is

3

second order accurate. On non–uniform grids, however, the local truncation
error is formally only linear in the discretization stepsizes Δxi. In order to
overcome this formal difficulty and to derive an analogue of the basic stepsize
ΔT of the time discretization, one may introduce (see e.g. [17]) a sufficiently
differentiable virtual grid function ξ(r) on [0, 1] which is implicitly defined
by

xi = ξ(ri) , i = 1, ..., nx

ri = (i− 1)Δr , Δr = 1/(nx − 1) , i = 1, . . . , nx .

The following expansion for the local trunction error of the FD-approximation
of (1) at each interior node xi can be derived:

τΔr(xi, t) =
K/2∑
k=1

Δr2kΞk(xi, t) + O(ΔrK+1) , i = 2, ..., nx − 1 .

The error order at the boundary nodes may be perturbed. However, provided
that the problem is of parabolic nature, these local perturbations of the
truncation error are damped out within each time step and do not appear in
the approximation error of the step.

3 Extrapolation in Space and Time

3.1 Error Estimates

First, we assume that a grid function ξ(r) is given explicitly. Basic stepsizes
ΔT and ΔR = 1/(nx − 1) as well as prescribed numbers of subdivisions, say
j̄ and μ̄, may be given. Furthermore, a space step sequence {mμ} is required,
e.g. {1, 2, 4, . . .}. Then, similar to the time stepsize subdivision, a sequence
of computational grids

Gμ = {xμ
i |xμ

i = ξ(ri), ri = (i− 1)Δrμ, i = 1, . . . ,mμ(nx − 1) + 1}

can be constructed. Now, integrating from tL to tR with method (5) for a
sequence of time stepsizes Δtj = ΔT/nj, j = 1, . . . , j̄ on all grids Gμ, μ =
1, . . . , μ̄ yields approximations

{U(xμ
i , tR; Δrμ,Δtj)}j=1,...,j̄

μ=1,...,μ̄ .

For the approximation errors, at best a perturbed expansion can be derived.
Furthermore, even for quite simple problems, severe order restrictions exist
[13]. Here, we assume that the following expansion describes the essential

4

error behavior of one integration step:

U(xμ
i , tR; Δrμ,Δtj) − u(xμ

i , tR) =
ρ=M,l=N∑

ρ=0,l=0;(ρ,l) �=(0,0)

eρ,l(x
μ
i , tR)Δr2ρ

μ Δtlj

+ O(Δr2M+1
μ) + O(ΔtN+1

j) . (10)

Numerical experiments show that the dominant error terms behave according
to (10); see [15].

As an extension of the notation for one dimensional extrapolation, we iden-
tify Tμ,1,j,1 with U(x̄i, tR; Δrμ,Δtj). As r–extrapolation is possible only at
common nodes, say {x̄i}, this identification may include an appropriate re-
striction operation. For a fixed index pair (μ, 1), the t–extrapolation process
is applied to construct approximations Tμ,1,j,k. For a fixed pair (j, k), r–
extrapolation uses the scheme

Tμ,ν,j,k = Tμ,ν−1,j,k +
Tμ,ν−1,j,k − Tμ−1,ν−1,j,k

(mj/mμ−ν+1)2 − 1
, μ = 2, . . . , μ̄; ν = 2, . . . , μ.

(11)
The sequences of t– and r–extrapolations are interchangeable, that is, t–
extrapolation may be applied to any fixed (μ, ν) pair. Using (10), the leading
error terms of the approximations Tμ,ν,j,k can be derived:

Tμ,ν,j,k − u(x̄i, tR)
.
= (−1)ν+1βμ,νeν,0(x̄i, tR)ΔR2ν

+ (−1)k+1γj,ke0,k(x̄i, tR)ΔT k, (12)

with βμ,ν = (mμ−ν+1 · . . . ·mμ)
−2 and γj,k = (nj−k+1 · . . . · nj)

−1 . The leading
mixed error term (∼ ΔR2νΔT k) is neglected as it is usually small compared
to the other terms. In the stepsize control algorithm, this term is taken
into account, but for ease of presentation we suppress this rather technical
extension of the algorithm described below.

The general r–extrapolation scheme has two drawbacks. First, as mentioned
earlier, the highest r–extrapolated approximation is available only on the
coarsest grid. So, to continue the integration, we must obtain sufficiently
accurate initial values on all finer grids. Second, an explicit grid function is
needed. As a consequence, only one space extrapolation is applied and the
extrapolated approximations are used for the error check only. The unex-
trapolated solution on the fine grid is used to continue the integration (on
both the fine and the coarse grids). The fine grid construction uses a uni-
form subdivision of each coarse grid interval. Thus, the associated virtual
grid function is not the same as the one defined implicitly by the coarse grid.
This difference can be interpreted as a small perturbation in the expansion
(10) and can be neglected.

5

The algorithmic realization of our two grid extrapolation scheme is as fol-
lows. First, a full time integration step with t–extrapolation and conver-
gence monitor is taken on the coarse grid. Using the error estimates ε̂t1,k−1 =
||T1,1,k,k−1 − T1,1,k,k||, the convergence monitor fixes κ, the number of sub-
divisions of ΔT to get t–convergence, i.e. ε̂t1,κ ≤ tolt holds. Then, the
whole time integration process is repeated on the fine grid providing the ap-
proximations T2,1,j,k, j = 1, . . . , κ; k = 1, . . . , j. This time, the convergence
monitor is switched off. Using r–extrapolation, the approximations T2,2,j,k

are calculated. The dominant space discretization error and a refined time
discretization error are estimated by

a) ε̂x = ||T2,1,κ,κ − T2,2,κ,κ|| , b) ε̂t = ||T2,2,κ,κ−1 − T2,2,κ,κ||, (13)

respectively. Using (10), the leading error terms turn out to be

a) εx
.
= 1/4||e1,0(x̄i, tR)||ΔR2 , b) εt

.
= γκ,κ−1||e0,κ−1(x̄i, tR)||ΔT κ−1 . (14)

Integration is continued if both convergence checks

a) ε̂x ≤ tolx and b) ε̂t ≤ tolt (15)

are satisfied. Otherwise, the basic time stepsize is reduced.

All estimates are calculated using the weighted root–mean–square norm

||ε|| =

√√√√√ 1

nx

nx∑
i=1

1

npde

npde∑
j=1

(
εj,i
wj,i

)2

, (16)

where εj,i denotes the absolute error estimate of component j of U at the i–
node. The weights wj,i are computed internally from

wj,i = max{|uj,i|, sjabs},

where sjabs are user prescribed thresholds. Special extensions of this simple
weighting are available.

3.2 Stepsize Selection

As usual, we derive formulas for stepsizes ΔR, ΔT which would have been
optimal in the current step, i.e. εx = tolx, ε

t = tolt, and use them for the
next step. Upon expanding the leading error coefficients e.,. in (14) according
to

e.,.(x̄i, tR) = 0 + ΔT
∂

∂t
e., .(x̄i, tL) + . . . ,

6

we derive proposed new values

a) ΔRnew =
2

√
tolx
ε̂x

· ΔT

ΔT new
ΔR , b) ΔT new =

κ

√
tolt
ε̂t

ΔT . (17)

Here, (17b) is the usual formula for time step adaptation; cf. (8). Formula
(17a), however, is not suited for a direct stepsize adaptation. We allow
only a global coarsening (ΔRnew = 2ΔR), refinement (ΔRnew = ΔR/2) or
reuse (ΔRnew = ΔR) of ΔR. Inserting these possible choices into (17a),
three time stepsize restrictions for ΔT new are derived. The optimal triple
(ΔT new

snew , snew,ΔRnew) is then determined by an extension of the principle of
minimizing the work per unit step mentioned earlier. In order to adapt the
spatial mesh locally, we also use the following equidistribution procedure.
Local error estimates ε̂xi of the form (13a) are calculated for each node of
the coarse grid by an obvious nodal application of the weighted root–mean–
square norm (16). Threshold values are defined by

σ+ = ε̂xmax , if ε̂xmax ≤ tolx,

σ+ =
√
ε̂xmax · tolx , if ε̂xmax > tolx,

σ− = 1/6 tolx ,

with ε̂xmax = max{ε̂xi }. The general grid adaptation rules are

• if ε̂xi < σ− : node xi may be eliminated,

• if ε̂xi ≥ σ− : node xi cannot be eliminated,

• if ε̂xi > σ+ : subdivide Δxi−1 and Δxi.

Some heuristics are imposed to regularize the adaptation and the procedure
is completed by a final smoothing process to obtain a quasi–uniform grid
satisfying Δxi/Δxi+1 ∈ [1/q, q] with q = 2.5.

Solution approximations at inserted nodes are computed by means of local
monotone piecewise cubic Hermite interpolation of [8].

In accordance with the well known methods for stiff integration (e.g. the
codes LSODE, SDIRK4, EULSIM) we do not made any attempt to estimate
or to control the global error propagation over the whole integration interval.

4 Special Features

4.1 Moving Grids

A quite popular and widely used approach to increase robustness and effi-
ciency of an MOL treatment of PDE problems is the use of moving grids.
One may distinguish two different categories of moving grid techniques:

7

• the nodes of the grid are moved such that the values of a certain monitor
function are equidistributed in space; see, e.g., [1, 5].

• the nodes are moved to reduce the dynamics of the solution on the new
coordinates; see, for example, [10, 14, 16].

As our method uses a static regridding device to control and equilibrate the
spatial errors, introducing a moving grid with the second objective is quite
natural. Introducing moving nodes, i.e. xi → xi(t), transforms the original
system (1) into an augmented system of the form

B(x, t, u, ux)(u̇− uxẋ) = f(x, t, u, ux, (D(x, t, u)ux)x), (18)

h(x, t, u, ux, . . .) = 0 . (19)

Several choices for the grid determining equation (19) have been proposed.
A widely used approach is to minimize the (weighted) time derivative of the
augmented system

u̇T u̇ + αẋ2 = min .

Solving this minimization problem and equipping the resulting equation with
an additional regularization term (to avoid node crossing) yields the general
grid determination equation for (19)

u̇Tux + αẋ− λxxx = 0 .

This type of equation has been used successfully in several methods. Un-
fortunately, often a problem depending tuning of the parameters α and λ
is required. To have as few tuning parameters as possible in our moving
grid technique, the α–term is omitted. With this a priori decision and λ
in the range [0.01, 0.25], quite good results for a set of typical test problem
can be obtained. Even better results are obtained using special moving grid
equations, e.g. fixing one node to a special solution value combined with
special grid equations for all other nodes. Note that λ must be viewed as
an internally scaled parameter. Changing units of the solution and/or the
coordinates does not change the algorithmic performance.

4.2 Global Solution Representation

At least the graphical solution display requires a solution representation at
points other than on the computational grid. Our global solution represen-
tation and evaluation scheme uses two quite different Hermite interpolation
variants. We observe that doing interpolation first in time then in space gives
better results than vice versa.

Interpolation in Time. The basic idea is to compute accurate approxima-
tions of solution derivatives at the endpoints of each integration interval by

8

extrapolation of divided differences of appropriate solution approximations.
Properties and a general implementation of this approach have been studied
in [9]. For an application in the adaptive MOL context, the basic algorithm
must be modified as the space grid may change from step to step. As the
problem is stiff, derivative information from only the right endpoint tR is
used. As, in general, a matrix B may appear in the left hand side of the
problem formulation (1) the first time derivative can not be calculated di-
rectly via a relationship of the form u′ = f(u). Assume that κ lines of the
time extrapolation tableau have been computed in the step, i.e. the error
of the highest extrapolated solution approximation at tR is proportional to
ΔT κ+1. If we require an interpolation error of at least the same order, an
interpolation polynomial with minimal degree κ is neccessary. Consequently,
(κ− 1) sufficiently accurate derivatives at tR are required, that is, the error
of the approximation to u(k) should be at least of order ΔT κ+1−k. This is
achieved by forming the divided backward differences

r
(k)
j =

1

Δtkj
∇kunj

k = 1, . . . , ρ ≤ κ, j = k, . . . , κ. (20)

For r(k), at best κ+1−k different approximations are available. This allows
extrapolating (κ−k)–times, yielding an approximation error proportional to
ΔT κ+1−k, the minimal required order and the best attainable order under
the given restrictions. So, the only choice for ρ in (20) is κ − 1. Using
Newton’s interpolation formula, the interpolating polynomial is constructed
and by means of a Horner–like scheme evaluated efficiently.

Interpolation in Space. The piecewise cubic monotone Hermite interpolation,
[8], is also used to interpolate for output purposes.

Output Generation. To free the user from writing code for output genera-
tion, some useful output options can be selected. For both time and space
interpolation, four modes are available:

• interpolation at points uniformly distributed between t0 and tend (xL

and xR);

• interpolation at points uniformly distributed within each integration
interval [tL, tR] (grid interval Δxi);

• interpolation such that the maximum interval between two successive
interpolation points is less than or equal to a value ΔtIPmax (ΔxIP

max);

• interpolation at user prescribed output points tIPi (xIP
i).

Usually, the additional amount of work for constructing and evaluating the
interpolants is small compared to the work for solving the PDE.

9

4.3 Root Finding

In principle, PDEX1M offers an option for locating zeros of switching func-
tions

φl(x, t, u(x, t)) = 0, l = 1, . . . , nswif . (21)

In general, the roots of each switching function form a complicated curve in
the (x, t)−plane and it is a challenging problem to approximate this curve
accurately and efficiently. Instead of attacking this general problem, our root
finder tries to determine all roots of the switching functions

φl(x̄, t, u(x̄, t)) = 0, l = 1, . . . , nswif , x̄ ∈ Gs . (22)

Here, Gs denotes a grid (of size ns
x, say) usually the computational (fine)

grid. Switching from (21) to (22) is nothing other than “discretizing” (21)
over the grid Gs. So the roots of ns = nswif · ns

x switching functions of the
form

φi
l = φl(t, u(x̄i, t)) = 0 (23)

must be found. The root finding algorithm uses the continuous solution
representation described above. First, it checks if there was a sign change
in one of the switching functions (23). Then, for all index pairs (l, i) where
the sign of φi

l has changed, a scalar Newton method is invoked to find the
associated zero tl,izero. Finally, the left–most zero tl = min{tl,izero} is determined.
Depending on the user’s choice, the integration is stopped at tl or continued.
Special care has been taken to realize this basic algorithm in a robust and
efficient fashion but details are beyond the scope of our paper.

5 Numerical Examples

The numerical experiments have been carried out using the current version
of the software package PDEX1M. For all results presented below, no specific
adaptation of internal parameters was done. However, the package allows an
easy modification of most of the internal parameters, for example λ, cf. Sec-
tion 4.1. As well, the additional features just mentioned can be selected easily
by setting appropriate option flags. A graphical user interface is currently
under construction.

Example 1: Automobile Catalytic Converter

The model of an automobile catalytic converter [6] leads to a system of 11
PDEs of the general form (1)–(4). The 11 state variables are 3 temperatures
(gas, converter surface and converter hull) and 2 × 4 species concentrations
(gas, converter surface).

10

Umin= 0.00E+00 Umax= 1.10E-02

Xmin= 0.00E+00 Xmax= 1.60E-01 Tmin= 0.00E+00 Tmax= 1.00E+02

X

U

T

Figure 1: Solution component C3H6 (example 1)

To reduce air pollution, the study of the startup phase is of great importance.
The simulation presented in this paper assumes that the polluted air enters
with a linearly increasing temperature (and with constant velocity) at the
left boundary. In Fig. 1, the concentration of the pollutant C3H6 is shown in
the (x, t)–plane. The numerical solution on the computational grid is plotted
at all internally selected integration points. The displayed time interval is
[0, 100] (whereas the actual integration interval was [0, 1000]).

Initially, the converter is rapidly filled with the inflowing gas. This appears
in Fig. 1 as a front moving from left to right. To resolve this fast process (t ∈
[0, 0.2]), small time steps and a grid with local refinements within the front
position arise automatically. After the initial filling process is completed, the
temperature is not yet high enough to start the reaction so that larger time
steps and a coarse grid appear to be appropriate. At t = 25, the reaction
starts and reduces the concentration of C3H6. Steep gradients at the left
boundary require both small stepsizes in time and a very dense grid at the left
boundary. At t = 50, the dynamics of the problem dies out and accordingly
time steps increase. Finally, the process becomes nearly stationary allowing
very large steps. The simulation from t = 100 to t = 1000 requires only 5
more steps.

Table 5 gives a comparison of the amount of work for solving this example
with different prescribed tolerances tolx = tolt = tol. In counting the num-
ber of function evaluations (for numerical Jacobian approximation (nfcnj)
and discretization (nfcn)), LU–decompositions (ndec) and solves (nsol), we
accumulate both the fine grid and the coarse grid calls. CPU–time (CPU) is
in seconds (for SUN SPARC 10). Note that the average number of nodes on

11

the fine grid, n̄F
x , is proportional to 1/

√
tolx.

tol CPU nstep nfcnj nfcn ndec nsol n̄F
x

2.5 · 10−3 167 150 7268 1275 1001 3086 83
1.0 · 10−3 295 176 8878 1804 1316 4511 115
2.5 · 10−4 720 208 10350 2760 1686 7122 205

Table 1: Amount of work for different tolerances (example 1)

Example 2: Shear Band Formation

Umin= -1.00E-01 Umax= 4.00E-01

Xmin= 0.00E+00 Xmax= 1.00E+00

U U

Figure 2: Temperature T (example 2)

This rather challenging test problem, [7], is used to illustrate the special
features mentioned in Section 4. The simulation problem is as follows:

x ∈ [0, 1] , t ∈ [0, 3.3],

ut = v,

vt = (G(T)ux)x + vxx/Re,

Tt = Txx/(PrRe) + (vx)
2/Re,

G(T) =
1

2
((1 + G∞) − (1 −G∞) tanh((T − Tm)/ΔT)),

u(x, 0) = v(x, 0) = T (x, 0) = 0,

T (0, t) = 0 , T (1, t) = 0,

v(0, t) = 0 , v(1, t) = V (t),

12

Xmin= 0.00E+00 Xmax= 1.00E+00 Tmin= 0.00E+00 Tmax= 3.24E+00

T T

Figure 3: Time–space adaptive grid (example 2)

with

V (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V0(t/r), 0 < t < r,
V0, r < t < d− r,
V0(d− t)/r, d− r < t < d,
0, d < t.

The parameters are Re = 100, Pr = 50, G∞ = 0.05, Tm = 0.03, ΔT =
0.01, V0 = 0.5, d = 1.5, and r = 0.05. The numerical solution for the tem-
perature T is displayed in Fig. 2 at 10 output points ti uniformly distributed
in the integration interval. A steep front develops near the right boundary
and stays there during the whole integration. Another front travels slowly
to the left. As the resolution of these fronts is critical for the numerical
solution, dense grids are used in these regions. The computational grid, in
the (x, t)–plane, is plotted in Fig. 3 The behavior of component v is even
more complicated. A front (v ≈ 0.1) travels to the left then back to the right
and finally stops. A second front (v ≈ 0.3) stays for a while at the right
boundary. Finally, this peak is damped and moves to the left.

In Table 2 an integration with the default method is compared to an integra-
tion with the moving grid option switched on (λ = 0.1, prescribed tolerance:
tolx = tolt = 10−3, thresholds: sjabs = 1.). Although this problem is not well
suited for the use of a moving grid, the number of steps is nearly halved.
As the number of PDEs is increased, a loss in the overall efficiency can be
observed. In the last row of Table 2 are the results of a standard run with
the root finding option switched on.

13

variant CPU nstep nfcnj nfcn ndec nsol n̄F
x

standard 82 124 3190 2403 994 2113 152
moving grid 87 73 2550 1259 742 2067 141
root finding 95 124 3190 2403 994 2113 152

Table 2: Amount of work for different variants (example 2)

×****** ×*******

×********
×*********

×*********
×*********

* ×*********
* ×*********

* ×*********
×*******

* ×*** ×***********
* ×*********

* ×*********
×********

×*** ×** ×* ** ******** ** ×****** ***** ×****** *× ** *× **
× ****

× ** *****
×

×
×

×

×
×
×

Figure 4: Roots of switching functions (example 2)

As a simple switching function, we prescribe 0 = v − 0.1 and 0 = T −
0.1, and require the zeros on a fixed equidistant grid with 101 nodes. The
detected zeros are displayed in the (x, t)–plane in Fig. 4. The roots of the
first function (∗) show the front movement (indicated by v = 0.1), first to
the left, then back to the right and finally stationary. The moving front of
the T–component is displayed by the roots of the second switching function
(×). Although quite a large number of roots have to be determined, the
additional amount of work, including the continuous solution representation
in space and time, is less than 20%.

14

References

[1] S. Adjerid, J.E. Flaherty: A Moving Finite Element Method with Error
Estimation and Refinement for One–Dimensional Time Dependent Par-
tial Differential Equations. SIAM J. Numer. Anal., 23 778–796(1986)

[2] P. Deuflhard: Order and Stepsize Control in Extrapolation Methods.
Numer. Math. 41 399–422 (1983)

[3] P. Deuflhard: Recent Progress in Extrapolation Methods for ODEs.
SIAM Review 27 505–535 (1985)

[4] P. Deuflhard, U. Nowak: Extrapolation Integrators for Quasilinear Im-
plicit ODEs. In: P. Deuflhard, B. Enquist, eds., Large Scale Scientific
Computing. Progress in Scientific Computing 7 37–50 (1987)

[5] E.A. Dorfi, L.O’C. Drury: Simple Adaptive Grids for 1–D Initial Value
Problems. J. Comput. Phys. 69 175–195 (1987)

[6] G. Eigenberger, J. Frauhammer, T. Kirchner: private communication
(1993)

[7] J.E. Flaherty, P.K. Moore: Integrated space–time adaptive hp–
refinement methods for parabolic systems. Appl. Numer. Math. 16 317–
341 (1995)

[8] F.N. Fritsch, J. Butland: Piecewise Cubic Hermite Intepolation Package.
Preprint UCRL–87285, Lawrence Livermore Nat. Lab. (1985)

[9] E. Hairer, A. Ostermann: Dense Output for Extrapolation Methods. Nu-
mer. Math. 58 419–439 (1990)

[10] J.M. Hyman: Moving Mesh Methods for Partial Differential Equations.
In: L. Goldstein, S. Rosencrans, G. Sod, eds., Mathematics Applied to
Science 129–153 (1988)

[11] J. Lawson, M. Berzins: Towards an Automatic Algorithm for the Nu-
merical Solution of Parabolic Equations using the Method of Lines. In:
J.R. Cash, I. Gladwell, eds., Proc. of the 1989 ODE Conference IMA
Conference Series (1992)

[12] Ch. Lubich: Linearly Implicit Extrapolation Methods for Differential–
Algebraic Systems. Numer. Math. 55 129–145 (1989)

[13] Ch. Lubich, A. Ostermann: Runge–Kutta Methods for Parabolic Equa-
tions and Convolution Quadrature. ETH Zürich, Seminar für Ange-
wandte Mathematik, Research Report No. 91–06 (1991)

15

[14] K. Miller, R.N. Miller: Moving Finite Elements I. SIAM J. Numer. Anal.
18 1019–1032 (1981)

[15] U. Nowak: Adaptive Linienmethoden für nichtlineare parabolische Sys-
teme in einer Raumdimension. Technical Report TR 93–14, Konrad–
Zuse–Zentrum Berlin (1993)

[16] L.R. Petzold: An adaptive Moving Grid Method for One–Dimensional
Systems of Partial Differential Equations and its Numerical Solution.
Proc. Workshop on Adaptive Methods for Partial Differential Equations,
Renselaer Polytechnic Institute (1988)

[17] R.K. de Rivas: On the Use of Nonuniform Grids in Finite Difference
Equations. J. Comput. Phys. 10 202–210 (1972)

[18] R.F. Sincovec, N.K. Madsen: Software for Nonlinear Partial Differential
Equations. ACM Trans. Math. Software 1 232–260 (1975)

16

