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Abstract
We consider the following freight train routing problem (FTRP). Given is a transportation net-
work with fixed routes for passenger trains and a set of freight trains (requests), each defined
by an origin and destination station pair. The objective is to calculate a feasible route for each
freight train such that a sum of all expected delays and all running times is minimal. Previous
research concentrated on microscopic train routings for junctions or inside major stations. Only
recently approaches were developed to tackle larger corridors or even networks. We investigate
the routing problem from a strategic perspective, calculating the routes in a macroscopic trans-
portation network of Deutsche Bahn AG. Here macroscopic refers to an aggregation of complex
real-world structures are into fewer network elements. Moreover, the departure and arrival times
of freight trains are approximated. The problem has a strategic character since it asks only for
a coarse routing through the network without the precise timings. We give a mixed-integer non-
linear programming (MINLP) formulation for FTRP, which is a multi-commodity flow model on
a time-expanded graph with additional routing constraints. The model’s nonlinearities are due
to an algebraic approximation of the delays of the trains on the arcs of the network by capacity
restraint functions. The MINLP is reduced to a mixed-integer linear model (MILP) by piecewise
linear approximation. The latter is solved by a state of the art MILP solver for various real-world
test instances.

1998 ACM Subject Classification F.2.2 G.1.6 G.2.2 G.2.3 J.7 K.6.1

Keywords and phrases freight train routing, capacity restraint functions, multi-commodity flows,
mixed-integer linear and nonlinear programming

1 Introduction

The rail transport volume in Germany increases for years, while corresponding expansion
of the infrastructure is rather small, since the changes of the infrastructure are always
capital-intensive and long term projects. Germany as a transit country in central Europa
faces a great challenge in the next years. In particular, this applies for the rail freight traffic.
Recent estimates assume an increase up to 80 percent by 2025 [IFMO-Studie, 2005]. To
make best use of the infrastructure, Deutsche Bahn has to identify the bottlenecks of the
network. One important part is to find routes that avoid the occurrence of bottlenecks.
Therefore, it is necessary to analyze the existing network to estimate and make best use
of the available capacity. In this context the Deutsche Bahn AG focuses on the rail freight
train routing on a strategic planning level in a simplified (macroscopic) transport network.
The major aim is to determine routes for freight trains by taking into account the available
railway infrastructure and the already planned and invariant passenger traffic.



2 The Freight Train Routing Problem

The routing of freight trains is quite different from passenger trains since departure and
arrival time windows are less strict and routes are not limited by several intended intermediate
stops. Nevertheless, passenger and freight trains in Germany share the same infrastructure,
and therefore we have to consider the railway system as a whole including railway passenger
transport and infrastructure to provide reasonable strategic prospectus.

Almost all national railway systems in Europe consist of three business divisions shown
as columns in Figure 1, i.e., passenger traffic, freight transportation, and infrastructure
department (including service). In the middle the (tool) chain for planning freight trains is
idealized. Railway infrastructure (from network design), predefined passenger transportation
(from line planning or even timetabling) is given as input as well as forecasting results for
future freight traffic demand. Based on that data a reasonable traffic flow for the freight
trains covering the forecasted demand is determined, which is the topic of this paper.

passenger freightinfrastructure

forecasting

single car
routing

network
design

freight train
routing

track
allocation

line planning

timetabling

level

strategic

tactical

Figure 1 Idealize planning process of the concern model with focus on the freight train routing
problem in a segregated railway system, see e.g., [Schülldorf, 2008].

As a result the necessary train paths for the freight trains have to be scheduled in time
through the railway network and integrated into the annual railway timetable. Many recent
contributions from research concentrate on the subsequent step, the timetabling or track
allocation which assumes inter alia freight train routes as an input. Caimi [Caimi, 2009]
presents a top-down approach and uses it to handle the complete Swiss network by a priori
decomposition of the network into different zones. In contrast to that, Borndörfer et al.
[Schlechte et al., 2011] present a bottom-up approach to define a macroscopic railway model
based on microscopic simulations. A similar approach can be found in Kettner, Sewcyk, and
Eickmann [Kettner et al., 2003]. There an automated generation of macroscopic data from
a microscopic basis is described for the Austrian Federal Railways (ÖBB).

Besides the special application context, our problem has similarities to the broader class
of network design problems, see Balakrishnan et al. [Balakrishnan et al., 1997] for a general
survey. A framework for a general class of network design problems is presented in Kim and
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Figure 2 Balanced and unbalanced flows.

Barnhart [Kim and Barnhart, 1997] and applied to the blocking problem in railroad traffic
in the US, see Barnhart, Jin, and Vance [Barnhart et al., 2000]. Integrated service network
design for rail freight transportation in the US is considered in Zhu, Crainic, and Gendreau
[Zhu et al., 2009], and Ahuja et al. [Ahuja et al., 2007, Jha et al., 2008].

Deutsche Bahn, the largest German railway company, primarily offers two products to
industrial customers that want to transport freight via rail. Typically large customers order
block-trains of about 20 to 40 cars. In this case, Deutsche Bahn, i.e., DB Schenker, as the
operator can pull such a complete train by a locomotive from origin to destination. That is
a direct freight transportation offer with a fixed train composition. Small customers on the
other hand order only 1 to 5 cars. In such cases it is too expensive to pull these groups of cars
each by a single locomotive through the network. Instead the cars are only pulled to the next
classification yard. There they are grouped with the cars from other customers, and then as
new trains pulled to the next classification yard. There the trains are disassembled, and the
cars are again re-grouped with others until each car has reached its final destination. This
second freight transportation product of DB gives rise to a natural network design question,
i.e., where are the classification yards located and how to route between them. Fügenschuh
et al. [Fügenschuh et al., 2008, Fügenschuh et al., 2009] discuss the whole system of single
wagon freight transportation, show the positive effect of bundling cars, and compare the
problem to other freight transportation concepts mentioned in the literature, e.g., the railroad
blocking problem in the US or Canada.

The railroad blocking problem can be formulated as a very large-scale, multi-commodity,
flow-network-design and routing problem with billions of decision variables, see [Jha et al., 2008]
and [Barnhart et al., 2000]. [Ahuja et al., 2007] presented an algorithm using an emerging
technique known as very large-scale neighborhood search to support major US railway
companies that transfers millions of cars over its network annually. The authors report that
their heuristic approach is able to solve the problem to near optimality using one to two
hours of computer time on a standard workstation computer.

In the case of road traffic [Köhler et al., 2009] present mathematical theory on flow
depended cost functions. A major difference is that in road traffic the routing is decentralized,
arbitrarily partitionable, and assumed to be selfish. In contrast to that railway systems
are centralized and we are aiming for a system optimum. In addition the train flow can
not be partitioned arbitrarily and thus the routing and timetable is a more rigid system in
comparison to the flow of cars.

We investigate the routing problem from a strategic perspective, calculating the routes in
a macroscopic transportation network. In this terms macroscopic means complex structures
are aggregated into fewer elements and the departure and arrival times of freight trains are
approximated. The problem has a strategic character since it asks only for a rough routing
through the network without the precise timings, i.e., in particular most of the input data
consists only of coarse estimates. In order to achieve a balanced network utilization we
propose a nonlinear optimization approach. Consider the simple situation shown in Figure 2
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with two possible choices to route trains from node u to v. Let us assume that the path via
x is much shorter than the detour via y. In such a case linear models will tend to route all
trains from u to v on the shortest path as long as the capacity is not violated - idealized
illustrated as thick blue flow in the middle. An optimization model utilizing a nonlinear
objective function results in an adequate balanced solution as shown on the right hand of
Figure 2. The main benefit is to identify automatically bottlenecks of the railway network
and support the network design task in a quantified way. The details of this nonlinear delay
function are presented in the following.

The paper is organized as follows: Section 4 will describe an mixed-integer nonlinear
model based on capacity restraint functions for the freight train routing problem (FTRP).
We utilize linearization techniques to solve the mixed-integer nonlinear model by using a
standard MIP solver. Finally, we will present computational results for data from our project
partner Deutsche Bahn AG in Section 6.

2 Capacity Restraint Functions

Modeling railway capacity is technically very complex and hence the prediction of congestion
and waiting times is a major challenge. Nevertheless, the crucial relation is that there
is almost no waiting time as long the mixture of allocated trains can be handled by the
infrastructure capacity. Once the capacity limit is reached congestion starts and smooth
operation is not possible anymore. The closer it gets to the capacity limit, the more delay
occurs for each train. As soon as the number of trains goes further beyond the capacity
limit, the average delay for each train grows even faster. A way to model the functional
relationship between the number of trains passing a certain infrastructure (an arc in the
network model) is to introduce a capacity restraint (CR) function. These functions are
designed to give a reasonable measure of the expected average delay. One of the earliest
appearence of CR-function in the literature is due to Irwin et al. [Irwin and Cube, 1962].
Wohl [Wohl, 1968] uses CR-functions to describe the travel performance or travel time
and delay as a function of the flow using properties of the infrastructure and its capacity
during the tri distribution and assignment phases of a travel forecasting process. Most
applications of CR-functions are tailored to road traffic. Only recently, Lieberherr and
Pritscher [Lieberherr and Pritscher, 2012] use CR-functions in railway passenger transport.
To the best of our knowledge, our work is the first application of CR-functions to railway
freight transport.

Let n be the number of trains on a track, then the congestion or delay is defined as:

τ

(
1 + α

(
n

κγ

)β)
, α, β ∈ [0,∞[, γ ∈]0,∞[, (1)

where the running time τ and the capacity κ depends on the track. This function is an
undamped variant of the CR-function presented in [Lieberherr and Pritscher, 2012]. In this
work a justification for the exponential growth of the CR-function is also given. α, β, γ are
parameters to control the shape of the CR-function. α could be interpreted as the multiple
of the running time that a train gets if the capacity limit is reached. We choose α = 1, which
means we must pay the running time of a train if we reach the capacity. γ could be used to
scale the capacity, i.e., to keep an amount of reserve capacity. Since we do not want to keep
any capacity we choose γ = 1. This simplifies the CR-function to

τ
(

1 + n

κ

)β
. (2)
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Figure 3 CR-Functions with ka = 10, τa = 1 and β ∈ {2, 4, 7, 15}

β controls the rapidness of the penalization. A large value for β means a big slope near
the capacity. A small leads to a moderate slope. Since the running time is already in the
objective function we take only the surplus as waiting time cost

f(n) = τ
(n
κ

)β
. (3)

We use function (3) to estimate the congestion on each track.

3 Input Data and Problem Description

The transportation network is given as a directed graph GI = (VI ,AI). A node v ∈ VI
represents a station, a junction or some other infrastructure element where train routes
can start, branch or end. There is a directed arc between two nodes if the corresponding
infrastructure elements are connected by a track.

We consider a standard day with the assumption that the demand of the previous and
the next days are equal. The day is partitioned into a small number of time slices, four in our
study. They are arranged in a cyclic order such that a train at the end of the day (last time
slice) can go on at the begin of the day (first time slice). The set of time slices is denoted by
S. Let ls be the time span of time slice s. For each track a capability value κa, a ∈ AI is
given that describes the approximated number of trains that could use the track over the
whole day. The trains are classified into a set of standard train types T with specific track
dependent characteristics and running dynamics. For each arc a ∈ AI , la denotes the length
of the arc and τt,a defines the running time of train type t ∈ T .

The freight train demand is given by a set of trains R. A train r ∈ R is associated with
an origin station, an destination station, a starting time slice, and a train type tr. The arrival
time slice is not restricted. It is required that the paths are not far apart form the shortest
and fastest paths. Therefore, the running time and length of a possible routing is restricted
to a multiple of the fastest or shortest path, denoted as ∆r

time and ∆r
dist, respectively. In our

study we use 150 percent. The resource consumption of the passenger traffic is given as the
number of trains per time slice.

A request or train will travers the infrastructure graph and at each node can decide to
which node to drive next. In reality, however, there are further turning restrictions imposed
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Figure 4 Construction of the expanded graph to handle turning restrictions. In this example,
turning from b via v to c (and vice versa) is forbidden. Also a u-turn from a and from b is not
allowed. Hence TF := {(b, v, c), (c, v, b), (a, v, a), (b, v, b)}.

at the nodes of the network. Simply speaking, sharp turning angles are either forbidden or
come with extra cost. Anez et al. [Anez et al., 1996] already discusses this problem for street
networks with turning restrictions and models it via a dual graph representation to save some
arcs and nodes. Since we have further constraints on the flow that would be complicated to
formulate on the dual graph we will stick to the original infrastructure graph and expand it.

We assume that two disjoint sets are given. The first set TF consists of all node triples
(u, v, w) with (u, v), (v, w) ∈ AI such that the node sequence u, v, w is forbidden for all trains.
In general the triple (u, v, u) for (u, v) ∈ AI belongs to this set, since it is not allowed to
leave a station in the direction from which it was entered. The second set TR consists of all
node triples (u, v, w) with (u, v), (v, w) ∈ AI such that a turning from (u, v) to (v, w) in v
comes with extra cost cu,v,w in the objective function. In some cases the triple (u, v, u) for
(u, v) ∈ AI belongs to this set, if it is possible to shunt the locomotive from one end of the
train to the other. In this case the train can revert its direction and leave the station v in
the same direction where it came from.

Denote by deg(v) the degree of node v, i.e., the sum of all arcs entering or leaving node
v. We construct an expansion of graph GI = (VI ,AI) that is capable of handling turning
restrictions. For each node v ∈ GI we introduce 2 deg(v) many copies. We denote these copies
by vv,w and vw,v, for each (v, w), (w, v) ∈ AI . We introduce an arc (vu,v, vv,w) between two
new nodes if and only if (u, v, w) 6∈ TF . This are additional arcs with length zero and running
time cu,v,w if and only if TR contains (u, v, w). Each arc a = (u, v) ∈ AI becomes (uu,v, vu,v)
in the expanded graph and has the same properties as the corresponding arc in GI . An
example is shown in Figure 4. The so-constructed graph is denoted by Gx = (Vx,Ax).

For the strategic planning we have no information about the actual schedule of trains
using a common network element and running in the same time slice. Therefore, we define
for each track the congestion cost function fa : 2R → R+ that depends on the train set using
the corresponding track. This measures the expected delay. The main part of this function
is the in the last section described CR-function. The other parts are the running time and
the lengths.

The task is to find a route for each train in Gx. The determined routes should minimize the
sum of all expected delays and the subordinate criteria running time and length. Capacity
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Figure 5 Example of a time extended graph created out of a infrastructure graph of four nodes
with four time slices. The color depict the different time slices and the thickness of the arcs illustrate
the predefined load of passenger traffic.

limitations of the arcs are implicitly handled by the congestion function, i.e., potential
conflicts of trains using the same infrastructure element result larger congestion values. By
minimizing the sum of delays we increase the chance that timetables with small delays can
be produced.

4 A Mixed-Integer Nonlinear Model for the FTRP

To model the problem we construct a time slice expanded graph G. To the best of our
knowledge the time-expansion of a graph was first introduced by Ford and Fulkerson
[Ford and Fulkerson, 1958] in their analysis of maximal dynamic flows. Since then, many
real-world problems have been formulated as time-space network models, see Kennington
and Nicholson [Kennington and Nicholson, 2010] for a survey.

For each node v ∈ Vx and for each arc a ∈ Ax we have a copy for each time slice s ∈ S
in G. Thus, the time expanded graph G contains |S| copies of the original graph Gx and
additional transition arcs, defined as follows: Let vs1 , vs2 , . . . vsk

be the copies of node v in
the time expanded graph and k = |S|, then arcs (vsi

, vsi+1) for i = 1, . . . , k − 1 and (vsk
, vs1)

represent the transition from one time slice to another in v. We denote the nodes and arcs
of the time slice expanded graph G by V and A. The length and running times of the
non-transition arcs are taken from Gx. Transition arcs have length zero and the running time
is defined by the time span of the time slice the arc start from. We denote the given number
of passenger trains traversing arc a with ρa. The capabilities κa, a ∈ Ax are distributed over
the time slices in dependence of the time slice lengths.

For each request the o(r) ∈ V is the origin node in the time expanded graph. Since the
arrival time slice of a request is not restricted we have a destination node for each time slice.
The set of destination nodes of request r is denoted by Dr.

Based on the time expanded graph we model the FTRP as a multi-commodity arc flow
problem. Therefor, we introduce a binary decision variable xra for each arc a ∈ A and each
r ∈ R. The variable is one if and only if train r uses arc a, otherwise the variable is zero.
Let x ∈ {0, 1}A×R be the vector of these variables.

The objective function contains the total nonlinear congestion cost for each track and the
sum of all running times and lengths. λtime, λrunning, λlength are the cost values for each part.
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τa is the average running time of this arc over all train types.

min λwait
∑

∀a∈A
τa

(∑
r∈R x

r
a + ρa

κa

)β

︸ ︷︷ ︸
congestion cost

+λtime
∑

r∈R

∑

a∈A
xraτt,a

︸ ︷︷ ︸
running time

+λlength
∑

r∈R

∑

a∈A
xrala

︸ ︷︷ ︸
length

The constraints are
∑

a∈δ+(v)

xra −
∑

a∈δ−(v)

xra = 0 ∀r ∈ R ∀v ∈ V \ (o(r) ∪D(r)) (4)

∑

a∈δ+(o(r))

xra = 1 ∀r ∈ R (5)

∑

v∈Dr

∑

a∈δ−(v)

xra = 1 ∀r ∈ R (6)

∑

a∈A(s)

τt,ax
r
a ≤ τ len

s ∀s ∈ S ∀r ∈ R (7)

∑

a∈A
lax

r
a ≤ ∆r

dist ∀r ∈ R (8)

∑

a∈A
τt,ax

r
a ≤ ∆r

time ∀r ∈ R (9)

xra ∈ {0, 1} ∀a ∈ A ∀r ∈ R (10)

We have the common flow constrains for each train: the outflow must be one at the
origin (5); the inflow must be one at exactly one of the destination node copies in the time
expanded graph (6); and at the remaining nodes flow conservation (4) is required. We have
constraints for the length and running time restrictions (8) (9). A train must change to the
succeeding time slice at least if the running time is larger than the time span of the time
slice (7).

5 Solution Approach

The MIP model contains a binary variable for each arc and train. In terms of the considered
instances of Deutsche Bahn AG this are up to 25 Million binary variables. Setting up such a
model consumes an enormous amount of computer memory, and solving such model takes
a daunting amount of time. In the following we describe our efforts to reduce the resource
demand. We focus on presolving, that is, we only generate those parts of the model that
are really necessary because they contain an optimal solution, and remove all the others.
Furthermore we describe the linearisation of the nonlinear objective function that transforms
the MINLP to a MIP.

5.1 Presolving
For the preprocessing we analyse for each train the network and try to find arcs and nodes
that are not a part of a feasible solution.

Obviously, all ingoing arcs of the origin node and all outgoing arcs of destination nodes
can be ignored. The running time restriction is much less than 24 hours for all trains.
Therefore we assume that a train cannot enter its starting time slice again by running over
all four time slices. This means all trainsition arcs into the starting time slice of a train could
be ignored.
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The major part of the preprocessing is to reduce the network for a train to the subset
of arcs and nodes that are element of a path from the origin to one of the destinations and
observe the length and running time restriction. To find the relevant arc and node subsets
we construct a shortest path tree from the origin and one tree from the destination node.
We could stop in the leafs of the tree if the distant from the root to the leaf is bigger than
the length restriction. Then for each node we check if the distant to the origin node plus the
distant to the destination node is less that the length restriction. If the sum is less than the
length restriction the node could be in a feasible solution. Otherwise the node cannot be
an element of an feasible path without violating the length restriction. We do the same for
the running time restriction. Determine for each train its relevant subset of arcs we get a
significant reduction of flow variables.

5.2 Linearization of the Objective Function
In order to solve the FTRP with standard MIP solvers we linearize the nonlinear terms of the
objective function. We apply the linearization technique used in [Fügenschuh et al., 2010].
Since it is not allowed to split trains, the total number of trains traversing an arc a is
always integer. Hence, we need only the function values for feasible integer input values. We
introduce for each arc a an artificial continuous variable ya. Without loss of generality we
assume the total number of trains per arc is bounded by some value N , then the constraints:

Γ1(m)
(∑

r∈R
xra + ρa

)
+ Γ2(m) ≤ ya ∀a ∈ A ∀m ∈ {0, 1, . . . , N}

describe the convex hull of all feasible integer points. Γ1(m) is the slope and Γ2(m) the
y-inersection of the linear function throw the points (m, f(m)) and (m− 1, f(m− 1)). The
slope is defined by

Γ1(m) = fa(m)− fa(m− 1) = ατ

κβ
(
(m+ ρa)β − (m− 1 + ρa)β

)
(11)

and the y-intersection by

Γ2(m) = fa(m)− Γ1(m)m (12)

An example how this linearisation looks like depicts figure 6. The transformed cost function
is:

min λwait
∑

∀a∈A
yala

︸ ︷︷ ︸
congestion cost

+λtime
∑

r∈R

∑

a∈A
xraτt,a

︸ ︷︷ ︸
running time

+λlength
∑

r∈R

∑

a∈A
xrala

︸ ︷︷ ︸
length

(13)

6 Computational Results

We used IBM Cplex 12.4 to evaluate our solution approach. The software was running on a
Linux system with 48 GB main memory and an Intel Xeon CPU with four cores running at
3.2GHz each. Our industrial partner provides us data with the macroscopic railway network
of whole Germany and a corresponding demand forecast. Based on this we consider 15
instances from networks of three geographical areas(figure 7). Table 1 gives the sizes in terms
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Figure 6 Linearisation of a CR-Function where only integer points are interesting.

(a) south (b) east (c) west

Figure 7 Macroscopic infrastructure graphs for three geographical areas.

of number of nodes (VI), of arcs (AI), and of trains (R) for all instances. From a pool of
possible requests we choose different subsets of request for he specific area.

In order to get the instance manageable for the MIP solver the preprocessing reduce the
problem size to 5% of the original problem. Table 2 contains the results of the preprocessing.

The computational results are shown in table 2. For this model the mip solver could find
a solution with a gap less than one percent in less than an our. Only for some of the west
instances the solving of root lp takes over an hour.
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instance |VI | |AI | |R|

1east 365 1118 437
2south 633 1980 474
3south 633 1980 474
4south 633 1980 568
5south 633 1980 568
6south 633 1980 663
7south 633 1980 663
8west 812 2612 398
9west 812 2612 398
10west 812 2612 398
11west 812 2612 398
12west 812 2612 530
13west 812 2612 530
14west 812 2612 530
15west 812 2612 530
Table 1 Magnitude of the considered macroscopic railway networks.

before preprocessing after preprocessing
instance |V| |A| |V| |A|

1east 3908528 9019680 341652(9%) 666570(7%)
2south 7508160 18023376 451480(6%) 938163(5%)
3south 7508160 18023376 442732(6%) 920964(5%)
4south 8997120 21597632 524980(6%) 1088856(5%)
5south 8997120 21597632 503344(6%) 1042745(5%)
6south 10501920 25209912 600484(6%) 1245681(5%)
7south 10501920 25209912 574064(5%) 1188863(5%)
8west 8316608 20049648 449212(5%) 952603(5%)
9west 8316608 20049648 514156(6%) 1091849(5%)
10west 8316608 20049648 484528(6%) 1024462(5%)
11west 8316608 20049648 451944(5%) 957397(5%)
12west 11074880 26699280 519820(5%) 1095987(4%)
13west 11074880 26699280 617744(6%) 1310090(5%)
14west 11074880 26699280 689764(6%) 1463058(5%)
15west 11074880 26699280 613648(6%) 1298374(5%)
Table 2 Compare the dimension of the graph before and after preprocessing. The first and

second column is the theoretical number of nodes and arcs without preprocessing. In the third and
fourth column are the number of nodes and arcs after preprocessing. The percentage within the
brackets are the relative size to the theoretical dimension.
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instance #trains objective length running time wait time gap

CR-function

1east 437 1666019.44 49206.579 1874912.00 1603.68 3606.43 0.12%
2south 474 2508037.38 59190.876 2291466.00 2432.04 3586.23 0.12%
3south 474 2170813.74 56143.089 2163687.00 2099.00 3593.85 0.12%
4south 568 3345086.86 69041.669 2676385.00 3256.34 3564.35 0.39%
5south 568 2496226.82 66976.321 2602786.00 2409.95 3573.69 0.34%
6south 663 3841995.48 78984.324 3063357.00 3740.42 3571.34 0.45%
7south 663 4204800.11 77808.725 3012223.00 4104.90 3575.86 2.60%
8west 398 1128753.73 30041.969 1155864.00 1090.38 3585.65 0.74%
9west 398 1249467.07 35040.147 1350219.00 1204.65 3584.23 0.47%
10west 398 1128187.78 33933.649 1306450.00 1084.82 3583.27 0.28%
11west 398 1140789.54 32096.015 1228716.00 1099.97 3580.18 0.17%
12west 530 1607809.14 39143.028 1505059.00 1557.84 3169.74 0.00%
13west 530 5061067340.87 41671.719 1583327.00 5061014.67 3582.41 -%
14west 530 6925661452.47 44908.767 1724531.00 6925604.18 3580.66 -%
15west 530 1595650.32 43869.209 1686440.00 1539.66 3582.62 0.26%
Table 3 Computations with one hour time limit using the CR-function with β = 3 as congest

cost. The table contains the number of train in the second column. Column 3 to 6 containing the
objective function value and the total length, the total running time and the total waiting time. The
second last column contains the running time of CPLEX and the last the gap after 1 hour.
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