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Abstract. We consider a nonlinear nonconvex network flow problem that arises, for example, in
natural gas or water transmission networks. Given is such network with active and passive compo-
nents, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired
amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation
constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the
arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. The problem
is how to numerically compute this flow and pressures. We review an existing approach of Maugis
(1977) and extend it to the case of networks with active elements (for example, compressors). We
further examine different ways of relaxations for the nonlinear network flow model. We compare
different approaches based on nonlinear optimization numerically on a set of test instances.

Keywords: Nonlinear Network Flow; Mixed-Integer Nonlinear Programming; Relaxations.

1 Introduction

We consider a nonlinear nonconvex network flow problem that arises, for example, in natural gas or water
transmission networks; for a survey of other application areas we refer to Dembo et al. [13]. Given is such
network with active and passive components, that is, valves, compressors, pressure regulators (active) and
pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network.
Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss
constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc.
The problem is how to numerically compute this flow and pressures. One possible way that leads to a
global optimal solution (or a proof of infeasibility) is to use a mixed-integer nonlinear formulation, and
linear programming based branched-and-bound techniques, where branching occurs on integer decisions
as well as on nonlinear structures (spatial branching). The main obstacle of this approach is that it does
not perform well on very large networks. Using current computer hardware and recent MINLP solvers,
networks with up to 1,000 nodes can routinely be solved with this approach [25]. For networks larger
than this, it turned out to be too slow. Hence alternative solution techniques are sought.

For the special case of purely passive networks (without active elements) and a uniform height level,
Maugis [21] (gas networks) and, independently, Collins et al. [5] (water networks) presented an approach,
that we will present below. The algorithmic approach of Maugis and Collins et al. is based on a relaxation
of the bounds on the flow and on the pressure variables by introducing slack variables. The sum of these
slacks is then minimized via the objective function. This results in a convex optimization problem, hence
any local optimal solution (found by a local NLP solver) is already a global solution. The values of the
pressure variables can then by moved without altering the values of the flow variables. If it is possible
to move the pressure values inside the (previously relaxed) bounds, then a feasible solution for the flow
problem is found. If not, then this is a certificate for the infeasibility of the problem. This approach
was used as starting point for more refined computations in further studies of gas and water network
problems, see for instance, Sherali and Smith [26], De Wolf et al. [7–11], or Bobonneau et al. [2].



In the following we will present a new pivot strategy for the existing combinatorial algorithm of Osi-
adacz [24] to solve Maugis’ optimization problem. Using this strategy, we are able to prove a convergence
rate result for the algorithms. One of them is based on an iterative change of the flow values, the other
on an iterative alteration of the pressure values. Since our work applies also to other types of nonlinear
network flow problem, such as water networks or electricity networks, we do no speak of a node pressure,
but more generically, of a node potential (level).

The nonlinear flow model – to be presented in detail below – consists of three types of constraints:
first, trivial bounds on the flow and potential variables, second, linear flow conservation constraints, and
third, nonlinear potential-flow coupling constraints that define a relationship between the flow value on
an arc and the potential levels at the two end nodes. The approach of Maugis is a relaxation of the first
constraint type. It is natural to ask whether it is possible to algorithmically exploit a relaxation based on
the second or the third type of constraints. This analysis is content of the remaining part of this article.

We relax the linear flow conservation constraints. To this end, we introduce also slack variables that
inherit the residual value that the incoming and outgoing flows in a node deviate from equality. These
slack variables are coupled to the potential differences by complementarity constraints. We extend the
nonlinear optimization problem of Maugis to this case. Also this problem turns out to be convex, so
that a local optimal solution is already a global one. Instead of general purpose NLP solvers we present
a combinatorial algorithm for its solution. We demonstrate that the value of the slack variables yield a
certificate of infeasibility.

Finally, we relax the potential-flow coupling constraints. This also gives a certificate for an instance
being infeasible. However, the solution is not as unique as in the other two cases.

Using larger networks we derive computational results to compare the running times. Starting with
the full MINLP formulation and spatial branching, we continue with NLP solvers for all three relaxations.
Our strategy of using an NLP solver as subproblem solver in an MINLP problem is similar to a solution
process described by Gentilini et al. [18], which they apply for the solution of a nonlinear variant of the
traveling salesman problem.

Finally, we will extend Maugis’ work, so that also active elements and inhomogeneous height levels
can be treated. Here we give a certificate of infeasibility using the solution to the dual of the flow problem.
The dual variables can also be seen as flow variables. Their values in an optimal solution indicate where
the potential loss is too big. With their help it is possible to identify a pair of nodes that are the source
of infeasibility. This result can be seen as an equivalent to the classical max-flow min-cut theorem of
Ford and Fulkerson [14] for linear flows (in particular, flows without potentials), where the cut indicates
the bottleneck of the network that limits a further growth of the flow.

2 Mathematical Background

In order to obtain proven global optimal solutions we apply linear and nonlinear mixed-integer program-
ming techniques, which we briefly introduce here.

2.1 Global Mixed-Integer Nonlinear Programming

We formulate the nonlinear network flow problem in an active (i.e., controllable) network as mixed-integer
nonlinear program (MINLP). Solving optimization problems from this class is theoretically intractable
and also known to be computationally difficult in general. By “solving” we mean to compute a feasible
solution for a given instance of the problem together with a computational proof of its optimality. Therefor
we apply the general framework of a branch-and-bound approach, where the bounds are obtained from
relaxations of the original model. To this end, we relax the MINLP first to a mixed-integer linear program
(MILP) and then further to a linear program (LP), which is solved efficiently using the simplex algorithm.
The so obtained solution value defines a (lower) bound on the optimal value of the original MINLP
problem. In case this solution is MINLP feasible, it would be a proven global optimal MINLP solution.
However, this rarely happens in practice. Hence we either add cutting planes to strengthen the relaxation,
or we decide to branch on a variable. As an example, consider the nonlinear potential loss constraint
(3.1), c.f. Fügenschuh et al. [15]. In the LP relaxation this function is replaced by a polyhedral (linear)
outer approximation, which is iteratively refined during the branch-and-bound process by branching on
variables (spatial branching), see Figure 2.1. For more details on cutting planes and branch-and-bound
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for MILP we refer to Nemhauser and Wolsey [22], and for an application of this framework to global
mixed-integer nonlinear programming to Smith and Pantelides [27], and Tawarmalani and Sahinidis [28,
29]. Information on the framework MINLP framework SCIP which we apply is given by Achterberg [1],
and in particular on nonlinear aspects of SCIP in Berthold, Heinz, and Vigerske [3].
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Fig. 2.1. a) Polyhedral outer approximation of qe 7→ αeqe |qe|, b) initial spatial branching on zero, c) further
spatial branching.

2.2 Nonlinear Programming

In addition to the simplex algorithm for linear programs we use nonlinear solvers on nodes of the branch-
and-bound tree. As soon as all binary decisions and the flow directions are fixed, the remaining problem
at this node is (equivalent to) a convex nonlinear problem (see Collins et al. [5]). To compute optimal
solutions for these subproblems we apply the solver IPOPT from Wächter and Biegler [30]. It applies a
primal-dual interior point (or barrier) method with a filter line-search method. One of the central un-
derlying method in nonlinear programming, which is part of in IPOPT and which we also apply directly
in our solution approach, are the Karush-Kuhn-Tucker (KKT) conditions. Under certain additional as-
sumptions they provide necessary conditions for a (local) optimum. For a nonlinear optimization problem
of the form min{f(x) : gi(x) ≤ 0, hj(x) = 0, x ∈ Rn}, where f is the objective function, gi(i = 1, . . . ,m)
are continuously differentiable inequality constraint functions and hj(j = 1, . . . , `) are continuously dif-
ferentiable equality constraint functions, the KKT system reads as follows

∇f(x∗) +
m∑

i=1

λi∇gi(x∗) +
∑̀

j=1

µj∇hj(x∗) = 0, (2.1)

gi(x∗) ≤ 0,∀ i = 1, . . . ,m, (2.2)
hj(x∗) = 0,∀ j = 1, . . . , `, (2.3)

λi ≥ 0,∀ i = 1, . . . ,m, (2.4)
λigi(x∗) = 0,∀ i = 1, . . . ,m, (2.5)

where x∗ is a local minimum, and λi(i = 1, . . . ,m), µj(j = 1, . . . , `) are constants (called KKT multi-
pliers). In the special case of m = 0, i.e., no inequality constraints exist, the KKT multipliers are also
called Lagrange multipliers. For more details we refer to Conn, Gould, and Toint [6].

3 Physical and Technical Background of Transmission Networks

We give mathematical descriptions for active and passive elements that are the basic building blocks of
the transmission networks we study (see also [16]).

3.1 Pipes

The majority of the edges in a transmission network are passive pipes. In a network with node potentials
the amount of flow over an edge is determined by the actual node potential values at both ends. Depending
on the physical properties of the flow different functional relationships are described in the literature to
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approximatively determine the flow value. The fundamental equation we assume for an edge e = (v, w)
is

αeqe|qe|ke = πv − γeπw. (3.1)

Here αe, ke, γe are constants that subsume all physical properties of the edge, the flow, and the interactions
of the flow with the edge (c.f. Weymouth [31] for gas and Hazen-Williams [19] for water). The constant
γe in particular represents the height difference between nodes v and w. If some pipelines e1, . . . , en form
a cycle, it is assumed that γe1 · . . . · γen

= 1. If e = (v, w) is an edge and e′ = (w, v) is its anti-parallel
counterpart, then we assume that the constants γe are such that γe = γ−1

e′ . A generalized Weymouth
equation with this properties can be found in [25]. Although each edge e in principle might have a
different value for ke it is natural to assume that all edges have the same constant. The variable qe ∈ R
represents the flow, where a positive value is a flow from v to w, and a negative value is a flow in the
opposite direction from w to v. The variables πv, πw are the node potential values.

3.2 Valves

A valve is installed in the network to separate or join two independent pipes. They allow for a discrete
decision, either being open or close. The spatial dimension of a valve is assumed to be small in comparison
to the pipes. Hence in our model the node potential values are identified when the valve is open. If the
valve is closed then they are decoupled. Mathematically a valve is an edge e = (v, w) with the following
description:

xe = 1 ⇒ πv − πw = 0, (3.2a)
xe = 0 ⇒ qe = 0, (3.2b)

where xe ∈ {0, 1} is a binary decision variable.

3.3 Increasing the Node Potential

In transmission networks it is necessary at certain locations to increase the node potential value. For
example, in gas networks the potential is too low after a transport distance of 100-150km. Here gas
turbines are used as compressors. For the mathematical description of such active network elements,
various models exist in the literature. We follow the approach of De Wolf and Smeers [12], and make use
of the following formulation for a pipe e = (v, w) with a compressor:

αeqe|qe|ke ≥ πv − πw, (3.3)

which allows a flow larger than the one corresponding to the potential decrease in the pipe. We rewrite
this inequality as equality by introducing a weighted slack variable ye:

αeqe|qe|ke + βeye = πv − πw. (3.4)

Note that the flow can only go in positive direction through a compressor, hence the lower bound needs
to be set accordingly, i.e., qe ≥ 0.

3.4 Reducing the Node Potential

It can be necessary to reduce the node potential along an edge e = (v, w) in the network, for example,
to protect parts of the network from high potentials. In gas networks, for instance, these are potential
regulation stations that reduce the gas pressure. A pipe with a pressure regulator e = (v, w) is inverse
to a pipe with a compressor. Hence we need to turn the sense of the inequality (3.3) around:

αeqe|qe|ke ≤ πv − πw, (3.5)

in order to decrease the potential in w more than the flow and the input potential (pressure) would
actually require. After introducing weighting slack variables ye equation (3.5) appears similar to equation
(3.4). (The only difference between a compressor and a regulator is either the sign of β or the bounds on
ye.) Note that the flow direction through a pressure regulator is also fixed by setting the lower bound to
zero, i.e., qe ≥ 0.
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4 Flow Optimization of Transmission Networks

In the following we describe a mixed-integer nonlinear model for the nonlinear flow problem in a trans-
mission network. In [16] we presented an extension of this model that includes also pipeline extension
decisions, in case that the given network has not enough capacity for a given amount of flow at the entry
and exit nodes.

4.1 The Model

We use the following notation for sets. A transmission network is modeled by a directed graph G = (V,E)
where V denotes the set of nodes and E ⊂ V ×V the set of arcs. Each active or passive network element
that connects nodes v and w is represented by an arc (v, w). The set E = Ea ∪ Ep is the disjoint union
of the set of active elements Ea and the set of passive elements Ep. For a given subset of nodes S ⊆ V
we denote by δG(S) the set of all arcs in G that have exactly one node v ∈ S either as start or end
node, i.e., δG(S) := {e = (v, w) ∈ E : v ∈ S,w /∈ S} ∪ {e = (v, w) ∈ E : v /∈ S,w ∈ S}. We denote by
ΓG(S) the set of all nodes in V \S that are neighbors of nodes in S, i.e., ΓG(S) := {w ∈ V \S : ∃v ∈
S, (v, w) ∈ E} ∪ {w ∈ V \S : ∃v ∈ S, (w, v) ∈ E}. Since we usually operate on one single graph at a
time, we skip the index and simply write δ(S) and Γ (S). For a set S = {v} we also write δ(v) and Γ (v).
We also use the abbreviations δ+G(v) := {e ∈ E | ∃w ∈ V, e = (v, w)} for the set of outgoing arcs and
δ−G(v) := {e ∈ E | ∃w ∈ V, e = (w, v)} for the set of ingoing arcs w.r.t. node v, and generally omit the
subscript G.

We assume the following data to be given as parameters. For each node v ∈ V we have lower and
upper bounds on the node potential, πv, πv ∈ R with πv ≤ πv. For each node v ∈ V the value s ∈ R
denotes the amount of flow that is either led into the network (for sv > 0), or taken out of the network (for
sv < 0). A node with sv > 0 is also called source or entry node, and nodes with sv < 0 are sinks or exit
nodes. All other nodes with sv = 0 are inner or transmission nodes. Vector v is also called nomination.
In order not to pose a problem that is trivially infeasible, only those nominations are allowed that have
equal entry and exit flows, that is, ∑

v∈V
sv = 0. (4.1)

Such nominations are said to be balanced. For each arc e = (v, w) ∈ E we have a transmission coefficient
αe ∈ R+\{0}, bounds on the range coefficient y

e
, ye ∈ R with y

e
≤ ye, and a scaling factor βe for the

range coefficient.
Let us introduce the following variables. The flow on arc e ∈ E is denoted by qe ∈ R, where a positive

value means the flow is heading in the same direction as the arc, and a negative value indicates the
opposite direction. The potential value of a vertex v ∈ V is given by πv ∈ R. For example, in a gas
transmission network this variable refers to the potential in this node. The variable ye ∈ Z is a multiplier
for the additive component of the potential loss term. For passive pipelines this variable is fixed to zero,
whereas for active elements it defines the operating range.

The question of the existence of a feasible solution vector (xe, ye, qe, πv)e∈E,v∈V for the following
non-linear non-convex mixed-integer model is called nonlinear transmission flow feasibility problem (or
flow problem, for short):

xe = 1⇒ αeqe|qe|ke + βeye − (πv − γeπw) = 0 ∀ e = (v, w) ∈ Ea, (4.2a)

αeqe|qe|ke − (πv − γeπw) = 0 ∀ e = (v, w) ∈ Ep, (4.2b)

xe = 1⇒ ye ≤ ye ∀ e ∈ Ea, (4.2c)

xe = 1⇒ ye ≥ ye ∀ e ∈ Ea, (4.2d)

xe = 0⇒ qe = 0 ∀ e ∈ Ea, (4.2e)

xe = 0⇒ ye = 0 ∀ e ∈ Ea, (4.2f)
∑

e∈δ+(v)

qe −
∑

e∈δ−(v)

qe = sv ∀ v ∈ V, (4.2g)
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πv ≤ πv ∀ v ∈ V, (4.2h)

πv ≥ πv ∀ v ∈ V, (4.2i)

qe ≤ qe ∀ e ∈ E, (4.2j)

qe ≥ qe ∀ e ∈ E, (4.2k)

xe ≤ 1 ∀ e ∈ Ea, (4.2l)

xe ≥ 0 ∀ e ∈ Ea, (4.2m)

qe ∈ R ∀ e ∈ E, (4.2n)

πv ∈ R ∀ v ∈ V, (4.2o)

ye ∈ Z ∀ e ∈ Ea, (4.2p)

xe ∈ Z ∀ e ∈ Ea. (4.2q)

The indicator constraints (4.2a) are switching on only those potential-flow coupling constraints for active
arcs that are actually open. For passive arcs we have the pressur-flow coupling constraints (4.2b). The
indicator constraints (4.2c) and (4.2d) enable the selection of an operating mode if an active element
is open. The indicator constraints (4.2e) forbid flow on those active arcs that are actually closed, that
is, they are switched off by a closed valve. The indicator constraints (4.2f) switch off the control valve
or compressor, when this active element is closed. The node flow conservation constraints (also called
Kirchhoff’s constraints) are defined in (4.2g). Constraints (4.2h) – (4.2m) define the trivial bounds on
the variables, and constraints (4.2n) – (4.2q) specify the continuous or discrete range of the variables.

For a given nomination s, the flow problem (4.2) is to find a setting of the active elements and flow
and potential values for the transmission of the specific flow s in the transmission network G. Otherwise,
if this transport is not possible for any setting of the active elements, the nomination is infeasible.

After branching on x and y we obtain the leaf problem as a nonlinear subproblem within the branching
tree: We define E′a := {e ∈ Ea : xe = 1} and E′ := E′a ∪ Ep and β̃e := βeye. We assume β̃e = 0 for
e ∈ Ep.

αeqe|qe|ke + β̃e − (πv − γeπw) = 0 ∀ e = (v, w) ∈ E′, (4.3a)
∑

e∈δ+(v)

qe −
∑

e∈δ−(v)

qe = sv ∀ v ∈ V, (4.3b)

πv ≤ πv ∀ v ∈ V, (4.3c)

πv ≥ πv ∀ v ∈ V, (4.3d)

qe ≤ qe ∀ e ∈ E′, (4.3e)

qe ≥ qe ∀ e ∈ E′, (4.3f)

πv ∈ R ∀ v ∈ V, (4.3g)

qe ∈ R ∀ e ∈ E′. (4.3h)

5 Domain Relaxations

Let us consider the following domain relaxation of a leaf problem. We introduce a slack variable ∆v ∈ R+

for the potential of node v ∈ V and another slack variable ∆e ∈ R+ for the flow of arc e ∈ E′, and obtain
the following nonlinear optimization problem:

min
∑

v∈V
∆v +

∑

e∈E′
∆e s. t.
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αeqe|qe|ke + β̃e − (πv − γeπw) = 0 ∀ e = (v, w) ∈ E′, (5.1a)
∑

e∈δ+(v)

qe −
∑

e∈δ−(v)

qe = sv ∀ v ∈ V, (5.1b)

πv −∆v ≤ πv ∀ v ∈ V, (5.1c)

πv +∆v ≥ πv ∀ v ∈ V, (5.1d)

qe −∆e ≤ qe ∀ e ∈ E′, (5.1e)

qe +∆e ≥ qe ∀ e ∈ E′, (5.1f)

πv ∈ R ∀ v ∈ V, (5.1g)

qe ∈ R ∀ e ∈ E′, (5.1h)

∆v ∈ R+ ∀ v ∈ V. (5.1i)

∆e ∈ R+ ∀ e ∈ E′, (5.1j)

Note that the optimal objective value of (5.1) equals zero if and only if the leaf problem (4.3) has a
solution. In this case its solution is feasible to the leaf problem. In the following we show how to solve
this relaxed leaf problem (5.1) to global optimality.

5.1 Computing Solutions based on Convex NLPs

The existence of a primal solution to (5.1) is shown by Collins et al. [5]. In the following, we review their
method. Note that it only works for constant heights, i.e., γe = 1 for all e ∈ E′. In the next section we
will show how the case of inhomogeneous heights can be treated as an aftermath.

Collins et al. considered the convex non-linear optimization problem

min
∑

e∈E′

∫ qe

q0e

Φe(t) dt s.t.

∑

e∈δ−(v)

qe −
∑

e∈δ+(v)

qe = −sv ∀ v ∈ V,

qe ∈ R ∀ e ∈ E′,

(5.2)

where Φ(·) is a continuous strictly monotone function and q0e is a root of Φe(·) which implies that the
objective is convex. In the context of our study we set Φe(qe) := αeqe|qe|ke +β̃e. From the KKT conditions
we obtain primal (local) optimal values q∗ and dual values µ∗ such that

µ∗v − µ∗w = Φe(q∗e).

Hence with the setting π∗ := µ∗ we obtain (together with q∗) a primal feasible solution of (5.1) with
γe = 1 (for all e ∈ E′).

An alternative proof given by Collins et al. to construct a solution for (5.1) (with γe = 1) is to
consider the following non-linear convex program:

min
∑

e=(v,w)∈E′

∫ πv−πw

∆0
e

Φ−1
e (t)dt−

∑

v∈V

∫ πv

0

svdt s.t.

π ∈ RV .

(5.3)

Here ∆0
e is a root of Φ−1

e . For an optimal solution π∗ we define q∗ by

q∗e := Φ−1
e (π∗v − π∗w) ⇔ Φe(q∗e) = π∗v − π∗w.

By the KKT conditions we obtain that the following flow conservation constraints are fulfilled
∑

e∈δ+(v)

q∗e −
∑

e∈δ−(v)

q∗e − sv = 0 ∀ v ∈ V.
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5.2 Characterizing the Feasible Region

Theorem 1. There exists a vector q̃ ∈ RE′ , a vector π̃ ∈ RV and a vector θ ∈ RV \{0}, such that for
any feasible solution (q∗, π∗) of problem (5.1) there exists a t ∈ R with π∗ = π̃ + tθ and q∗ = q̃.

By this theorem, the feasible region of problem (5.1) is a convex space: The feasible flow q is unique,
while the feasible potential values π are on a straight line.
Proof: First we prove that the primal solution flow of (5.1) is unique. We assume the existence of two
different solutions (π′, q′) and (π′′, q′′) of (5.1) with q′ 6= q′′. The difference q′ − q′′ is a network flow in
(V,E′) consisting of circulations only. Let us consider a circuit C such that w.l.o.g. q′e − q′′e > 0 for all
arcs e ∈ E′(C) (we might have to change the orientation of an arc in case the difference is negative). As
abbreviation we set Φe(q) := αeq|q|ke + β̃e. We use the strong monotonicity of Φe and equation (5.1a) to
obtain for all e = (v, w) ∈ E′(C):

q′e > q′′e ⇔ Φe(q′e) > Φe(q′′e )⇔ π′v − γeπ′w > π′′v − γeπ′′w.
Let the nodes of the circuit C be ordered such that V (C) = {v1, . . . , v`} and (as abbreviation) v`+1 := v1,
and the arcs be ordered such that ei = (vi, vi+1) holds. By a telescope sum argument we derive the
contradiction

∑̀

i=1



i−1∏

j=1

γej



(
π′vi
− γei

π′vi+1

)
>
∑̀

i=1



i−1∏

j=1

γej



(
π′′vi
− γei

π′′vi+1

)

⇔ π′v1


1−

∏

e∈E′(C)

γe


 > π′′v1


1−

∏

e∈E′(C)

γe


 .

Note that
∏
e∈E′(C) γe = 1 (cf. Section 3.1), hence we have π′v1 · 0 > π′′v1 · 0, which is a contradiction.

Hence the assumption, that the flow is not unique, was wrong. So the solution flow q∗ = q̃ = q′ = q′′ of
(5.1) is unique.

Now we prove that the feasible solution potentials of (5.1) form a straight line. Therefor let (π′, q)
and (π′′, q) be two different feasible solutions of (5.1). We select any node r ∈ V as root node. Let w ∈ V
be any other node in V . Consider a r-w-path P with nodes {r = v1, . . . , vk = w} and arcs {e1, . . . , ek−1}.
We obtain the equality

π′r − π′w
k−1∏

j=1

γej
=
k−1∑

j=1

(
j−1∏

i=1

γei

)
Φej

(qej
) = π′′r − π′′w

k−1∏

j=1

γej
.

This is equivalent to
π′r − π′′r = (π′w − π′′w)

∏

e∈E′(P )

γe.

We define θw := (
∏
e∈E′(P ) γe)

−1 6= 0. This setting is well-defined, i.e., independent from the actual
path P from r to w: Let P ′ be a different r-w-path. Consider the cycle C from r to w on path P ,
and back from w to r on path P ′ in reverse order. Denote the reverse path of P ′ by Q′. For this cycle
we have that 1 =

∏
e∈E′(C) γe =

∏
e∈E′(P ) γe ·

∏
e∈E′(Q′) γe =

∏
e∈E′(P ) γe · (

∏
e∈E′(P ′) γe)

−1, hence∏
e∈E′(P ) γe =

∏
e∈E′(P ′) γe.

We set t := π′′r − πr. Then the solution π′′ can be expressed as π′′w = π′w + tθw for all w ∈ V . This
proves the theorem. 2

5.3 Height and Optimality

Given a feasible solution (q∗, π∗) for (5.1) with γe = 1 (for all e ∈ E′), we show how to obtain first a
feasible solution for (5.1) with arbitrary values of γ, and then an optimal solution for (5.1).

We select any node r ∈ V as root node. Let w be any other node in V . Let P be a r-w-path with
nodes r = v1, . . . , v` = w and arcs e1, . . . , e`−1. We set π′w by

π′w :=
`−1∏

i=1

γ−1
ei


π∗r −



`−1∑

j=1

Φej (q
∗
ej

)
j−1∏

i=1

γei






8



for each node w ∈ V . Then (q∗, π′) is a feasible solution for the relaxed leaf problem (5.1), but not
necessarily an optimal one.

In order to obtain an optimal solution for (5.1) we simply fix the variables q to q∗ in (5.1), and solve
the remaining LP problem in π,∆e, ∆v.

Figure 5.1 shows the potential values for a test network having 34 nodes. The node potential bounds
are shown as straight lines (lower bound of 500 and upper bound of 6000). Solutions for four different leafs
in the branch-and-bound tree are shown with four different colors: Each dot represents the node potential
value at the respective node. For three of the four problems it was not possible to move all potential
values inside the bounds, hence these solutions are infeasible. Only for the solution corresponding to the
green colored dots, all values are inside the bounds, and this solution is feasible.

0 10 20 30
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2;000

4;000

6;000

Node index
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Fig. 5.1. Node potential values for four different leaf problems. The node potential values are feasible within the
marked bounds, other values are infeasible.

5.4 The Potential Adjustment Algorithm

We give a combinatorial algorithm to compute a feasible solution for (4.3) or detect infeasibility. Indeed
the algorithm computes a feasible solution (q∗, π∗) to the relaxed leaf problem (5.1) with γe = 1 for all
e ∈ E′, which might not be optimal. As shown in Section 5.3 we can modify the feasible potential π in
an aftermath, such that the solution (q∗, π∗) is either feasible to the leaf problem (4.3) (for arbitrary
values of γe) or we detect the infeasibility of the leaf problem.

The outline of the algorithm is as follows. We set γe := 1 for all e ∈ E′. We start with πv = 0 for all
v ∈ V (or any other potential values). This uniquely determines the value qe for all e ∈ E′ using equation
(5.1a). In each subsequent iteration of the algorithm, the node potential values π are either increased or
decreased. To this end, the potential value πv for node v is updated by computing the unique solution
to the nonlinear equation system

∑

e∈δ+(v)

qe −
∑

e∈δ−(v)

qe = sv, (5.4a)

Φe(qe) = πv − π̃w, ∀e = (v, w) ∈ E′ (5.4b)
Φe(qe) = π̃w − πv, ∀e = (w, v) ∈ E′. (5.4c)

In this system, the values for π̃w are fixed, and the unknown variables are πv and qe for all arcs e that are
incident to v. Hence the system has deg(v)+1 many variables and constraints. To see that the solution is
unique, we transform (5.4b) and (5.4c) by the inverse Φ−1

e (remember that Φ is bijective), and obtain the
equations qe = Φ−1(πv−π̃w) and qe = Φ−1(π̃w−πv). Note that Φ is a strictly monotone growing function,
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hence Φ−1 is also strictly monotone growing. Hence πv 7→ Φ−1(πv − π̃w) and πv 7→ −Φ−1(π̃w − πv) are
also strictly monotone growing functions. Hence their sum is also a strictly monotone growing function,
and therefore equation (5.4a) offers a unique solution for πv:

∑

(w,v)∈δ+(v)

Φ−1(π̃w − πv)−
∑

(v,w)∈δ−(v)

Φ−1(πv − π̃w) = sv. (5.5)

With this so-computed value for πv we can uniquely compute values for each qe using (5.4b) and (5.4c),
respectively.

Hence the potential-flow coupling equation (5.1a) is fulfilled throughout the algorithm, whereas the
flow conservation equation (5.1b) might not hold during the execution of the algorithm. We define the
following error ε(v) that measures the deviation of the left-hand and right-hand side of this equation:

ε(v) := sv +
∑

e∈δ−(v)

qe −
∑

e∈δ+(v)

qe.

Note that
∑
v∈V ε(v) = 0, because

∑

v∈V
ε(v) =

∑

v∈V


sv +

∑

e∈δ−(v)

qe −
∑

e∈δ+(v)

qe




=
∑

v∈V
sv +

∑

v∈V


 ∑

e∈δ−(v)

qe −
∑

e∈δ+(v)

qe


 = 0 + 0 = 0.

From this it follows, that it is only necessary to consider the error of nodes with positive error. If all
errors are ε(v) ≤ 0 it follows that ε(v) = 0.

The total error E is defined as the sum of the absolute values for all node errors, i.e., E :=
∑
v∈V |ε(v)| ≥

0. The goal is to decrease the total error in each iteration, until it reaches zero, see Algorithm 1 for the
details. Finally, a feasible flow is found. In a final step the node potential values are determined as
described in Section 5.3, and it is then decided, whether (4.3) has a feasible solution or not.

Algorithm 1: PressureAdjustment(G′, π)

1 while E > 0 do
i← 1
Let v1 ∈ arg max{ε(v) > 0 : v ∈ V }.
Set S := {v1}.
Update πv1 by solving equation system (5.4).

2 while S 6= V do
i← i+ 1
Let vi ∈ Γ (S).
if ε(vi) > 0 then

Update πvi by solving equation system (5.4).
S ← S ∪ {vi}.

By 〈j, i〉 we denote an iteration counter for Algorithm 1, indicating that the algorithm is in the j-th
outer loop 1 and in the i-th inner loop 2 (for i ≤ n), when the node potentials for the nodes v1, . . . , vi−1

were already updated, and the node potential of node vi is not yet updated. By εj,i(v) we denote the
error ε(v) and by Ej,i we denote the total error E in iteration 〈j, i〉. Let Ej denote the error E after j
iterations of the outer loop 1, an let Ej,i denote the error E in iteration 〈j, i〉.

Lemma 1. The error in Algorithm 1 is non-increasing, i.e., Ej,i+1 ≤ Ej,i. Hence Ej+1 ≤ Ej.

Proof: Let vi ∈ V be the vertex which is processed in iteration 〈j, i〉. We assume w.l.o.g. that every edge
incident to vi is directed away from vi. Let π, q belong to iteration 〈j, i〉 and π′, q′ belong to iteration
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〈j, i + 1〉. As abbreviation we identify iteration 〈j, n + 1〉 with iteration 〈j + 1, 1〉. By definition of the
update of the potential at vi we have that a) π′w = πw at every node except vi, b) π′vi

6= πvi
, c) q′e 6= qe

for all edges e incident with vi, and d) q′e = qe for every other edge (i.e., all edges e not incident to vi).
Moreover, εj,i(vi) =

∑
e∈δ(vi)

(q′e − qe) 6= 0 while εj,i+1(vi) = 0. The new error at some neighbor w of vi
is (as we only have outgoing edges)

εj,i+1(w) = sw +
∑

e∈δ−(w)

q′e −
∑

e∈δ+(w)

q′e

= sw +
∑

e∈δ−(w)

qe −
∑

e∈δ+(w)

qe − (q′vi,w − qvi,w)

= εj,i(w)− (q′vi,w − qvi,w)
︸ ︷︷ ︸

≥0

.

Thus

Ej,i+1 =
∑

w∈V
|εj,i+1(w)|

=
∑

w∈V−vi−Γ (vi)

|εj,i(w)|+
∑

w∈Γ (vi)

|εj,i+1(w)|+ εj,i+1(vi)︸ ︷︷ ︸
=0

≤
∑

w∈V−vi−Γ (vi)

|εj,i(w)|+
∑

w∈Γ (vi)

(|εj,i(w)|+ q′vi,w − qvi,w)

≤
∑

w∈V−vi

|εj,i(w)|+
∑

w∈Γ (vi)

(q′vi,w − qvi,w)

≤
∑

w∈V−vi

|εj,i(w)|+
∑

e∈δ(vi)

(q′e − qe)
︸ ︷︷ ︸

=εj,i(vi)

=
∑

w∈V
|εj,i(w)| = Ej,i.

So the total error cannot increase. 2

Lemma 2. Let b, c ∈ R and k ∈ R+ with k ≥ 1. Let f : R → R be a function defined by f(x) :=
c · sign(x− b)|x − b| 1k . Let `, u ∈ R with ` < u. Let g : R → R be a function defined by g(x) :=
f(u+ x)− f(`+ x). Then g has a global maximum in x0 = b− `+u

2 .

Proof: If k = 1, then g(x) = c · sign(u+ x− b)|u+ x− b| − c · sign(`+ x− b)|`+ x− b| = c(u− `), hence
g is a constant function.

If k > 1, then the first derivate of g is given by g′(x) = c
k (|u+x−b| 1k−1−|`+x−b| 1k−1). Hence its unique

critical point is in x0 = b− `+u
2 . Its value is g(b− `+u

2 ) = 2c·sign(u− l)|u−l2 |
1
k . To see that it is a maximum

we check two points, one left and one right of x0: g(b−`) = f(u+b−`)−f(b) = c·sign(u− `)|u−`| 1k < g(x0)
and g(b− u) = f(b)− f(`+ b− u) = −c · sign(`− u)|`− u| 1k = c · sign(u− `)|u− `| 1k < g(x0). 2

Lemma 3. For a node vi the error εj,i(vi) in iteration 〈j, i〉 is bounded from above by a function in
π′vi
− πvi

. In detail, we have that

εj,i(vi) ≤
(∑

e∈E′
2α
− 1

ke+1
e

)
· |π′vi

− πvi
| 1

k+1 . (5.6)

Proof: Let Ej,i denote the total error E in iteration 〈j, i〉. Let πvi
be the potential value before the update

process at iteration 〈j, i〉 and π′vi
the potential value at iteration 〈j, i + 1〉, that is, after the update in

iteration 〈j, i〉 has been processed. For e ∈ δ(vi) consider

q′e−qe = α
− 1

ke+1
e sign(π′vi

− πw − β̃e)|π′vi
−πw− β̃e|

1
ke+1 −α−

1
ke+1

e sign(πvi
− πw − β̃e)|πvi

−πw− β̃e|
1

ke+1 .
(5.7)
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We apply Lemma 2. For this, let c := α
− 1

ke+1
e , b := β̃e, k := ke + 1, u := π′vi

− πw and ` := πvi
− πw.

Hence the right-hand side of (5.7) equals the function g in Lemma 2 for x = 0:

q′e − qe = g(0). (5.8)

Let x0 := β̃e −
(πvi
−πw)+(π′vi

−πw)

2 = β̃e −
πvi

+π′vi
−2πw

2 . Using first the result of this lemma, and then
2

ke
ke+1 ≤ 2, we obtain the estimation

q′e − qe ≤ g(x0) ≤ 2α
− 1

ke+1
e sign(π′vi

− πvi
)|π′vi

− πvi
| 1

ke+1 . (5.9)

Note that the algorithm only considers those nodes vi with a positive error, ε(vi) > 0. In order to reduce
this error, the node potential has to be increased, that is, π′vi

> πvi
. Hence sign(π′vi

− πvi
) > 0. From

this it follows that

εj,i(vi) =
∑

e∈δ(vi)

(q′e − qe) (5.10a)

≤
∑

e∈δ(vi)

2α
− 1

ke+1
e |π′vi

− πvi
| 1

ke+1 (5.10b)

≤
(∑

e∈E′
2α
− 1

ke+1
e

)
· |π′vi

− πvi
| 1

k+1 . (5.10c)

Here we set k such that |π′vi
− πvi

| 1
k+1 = min{|π′vi

− πvi
| 1

ke+1 : e ∈ E} 2

Lemma 4. There exists an upper bound M ∈ R+ on the maximum potential difference |πv − πw| that
occurs on any arc e = (v, w) ∈ E′ during the execution of the algorithm.

Proof: Let e = (v, w) ∈ E′. LetMe be an upper bound for the potential value difference between πv and πw
during the execution of the algorithm, that is,Me := sup{|π〈j,i〉v −π〈j,i〉w | : j = 0, 1, 2, . . . i = 1, 2, . . . , |V |},
where π〈j,i〉v , π

〈j,i〉
w is the value of πv, πw in step 〈j, i〉, respectively. We show that Me is finite.

First we assume β̃e = 0 for all e ∈ E′. Then an upper bound Me on the maximum node potential
difference can be derived by considering an artificial arc e = (v, w) with αe ∈ arg max{αe : e ∈ E′}
and ke ∈ arg max{ke : e ∈ E′}, where the entire network flow

∑
v∈V |sv/2| =: qe is flowing over this

particular arc. Then πv − πw = αeqe|qe|ke =: Me is the desired upper bound.
In the general case (when β̃e 6= 0 for some or all e ∈ E′). Then an upper bound on the maximum node

potential difference can be derived by considering an artificial arc e = (v, w) as before, and its artificial
anti-parallel counterpart arc e′ = (w, v), with β̂e := β̂e′ :=

∑
e∈E′ |β̃e| and αe′ := 0. Consider the equation

system for e and e′, i.e., αeqe|qe| − β̂e = β̂e′ , where qe :=
∑
v∈V |sv/2|+ qe′ . From this equation we can

determine qe′ , and thus qe, which again gives an upper bound πv − πw = αeqe|qe|ke =: Me.
Taking the maximum over all Me we define M := max{Me | e ∈ E′}. 2

Theorem 2. Let n := |V |. Let Ej denote the error E after j iterations of the outer loop 1. Then the
total error in Algorithm 1 is strictly monotone decreasing, and there exist constants k,C ≥ 0 such that

Ej+1 ≤ Ej − Cn
( Ej

2n

)k
.

Proof: We consider an arbitrary outer iteration j of the algorithm. Then the algorithm selects a node v1
with maximal positive error.

We show that εj,1(v1) ≥ Ej,1/(2n) = Ej/(2n). Assume that εj,1(v1) < Ej,1/(2n). Since v1 was chosen
as arg max, we have that εj,1(v) < Ej,1/(2n) for all other nodes v ∈ V with εj,1(v) > 0. Then we sum
over all these nodes and obtain

∑

v∈V,
εj,1(v)>0

εj,1(v) <
∑

v∈V,
εj,1(v)>0

Ej,1
2n
≤
∑

v∈V

Ej,1
2n

=
Ej,1
2
. (5.11)
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Note that Ej,1 =
∑
v∈V |εj,1(v)| and

∑
v∈V εj,1(v) = 0, hence Ej,1/2 =

∑
v∈V,εj,1(v)>0 εj,1(v), which is a

contradiction to the estimation in (5.11).

Consider an arc e = (v1, w). Let f(x) be defined as in Lemma 2 with c := α
− 1

ke+1
e , b := β̃e, k := ke+1.

Then f ′(x) = c
k |x−b|1/k−1 for x ∈ R\{b}. f ′ is a monotone decreasing on ]b,∞[ and monotone increasing

on ] − ∞, b[. Denote by qe, πv1 the flow and potential value in step 〈j, 0〉, and by q′e, π′v1 the flow and
potential value in step 〈j, 1〉 (i.e., after the update). Since εj,0(v1) > 0 we increase the potential: πv1 < π′v1
and consequently qe < q′e. The flow difference q′e−qe can be expressed by the mean value theorem: There
exists a ξ ∈]πv1 − πw, π′v1 − πw[ such that q′e − qe = f(π′v1 − πw) − f(πv1 − πw) = f ′(ξ)(π′v1 − πv1). Let
M be defined as in the proof of Lemma 4. Since |ξ| ≤M we can estimate q′e − qe from below as

q′e − qe ≥ f ′(M)(π′v1 − πv1). (5.12)

From the estimation in Lemma 3 we deduce that
(∑

ẽ∈E′
2α
− 1

kẽ+1

ẽ

)−k−1

εj,1(v1)k+1 ≤ π′v1 − πv1 . (5.13)

Putting (5.12) and (5.13) together, we get

f ′(M)

(∑

ẽ∈E′
2α
− 1

kẽ+1

ẽ

)−k−1

εj,1(v1)k+1 ≤ q′e − qe. (5.14)

Since f ′ is strictly monotone decreasing on ]b,∞[, we can chose M ′ ≥M such that

Ce := f ′(M ′)

(∑

ẽ∈E′
2α
− 1

kẽ+1

ẽ

)−k−1

≤ 1. (5.15)

Note that we can repeat the arguments above for any arc e ∈ E′ in the network. In order to define a
constant independent of arc e, we set

C := min{Ce | e ∈ E′} ≤ 1. (5.16)

The inner loop 2 of the algorithm orders the nodes in such way that the potential for those nodes
with a positive error is only increased once during the execution of this loop. In each inner iteration a
node is selected which is a neighbor of already updated nodes. If this node vi has a positive error, then
the same reasoning carried out for v1 hold also for this node. We can estimate the amount of flow that
is pushed through the network, until a node with a negative error is reached. Here the additional flow
(coming from a node with a positive error) and the negative error partially cancels out. By Lemma 1 the
total error cannot increase in the following inner iterations. Hence in the end of the inner loop, the total
error strictly decreases. The amount of decrease is estimated in the following.

In equation (5.14) the amount of flow that was pushed from node v1 to some neighbor vm was
estimated to be at least C · εj,1(v1)ke+1. If εj,1(v1) ≤ 1, let k := max{ke : e ∈ E′} + 1, otherwise
k := min{ke : e ∈ E′}+ 1. Then the amount of flow from node v1 to vm is at least C · εj,1(v1)k. Assume
that vm also has a positive error. Then the algorithm can select vm as v2, and by repeating the same
arguments from above, we can estimate that the amount of flow that is pushed from v2 to one of its
neighbors vm′ (not v1) is at least C ·

(
C · εj,1(v1)k

)
= C2 · εj,1(v1)k. In the worst case, every node has

a positive error, so the initial error in v1 is pushed through the whole network. From one node to the
neighbor, the initial amount of flow decreases to Cn · εj,1(v1)k, where n := |V |. The very last node,
however, has a negative error of at most −εj,1(v1) (or less). Hence during this whole inner iteration, an
error of at least Cn · εj,1(v1)k cancels. Note that Cn · εj,1(v1)k ≥ Cn · (Ej/(2n))k. Hence the total error
is guaranteed to decrease by at least Cn · (Ej/(2n))k in one outer iteration. 2

5.5 Solving KKT Systems

We use the definition of Boyd and Vandenberghe [4] to characterize the relaxed leaf problem (5.1). They
distinguish convex optimization problems from abstract convex optimization problems. The first type of
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problem is defined by a convex objective function and convex constraints, whereas the second type also
uses a convex objective, but a convex feasible region. So the constraints are not required to be convex
in an abstract convex optimization problem. Clearly, a convex optimization problem is also an abstract
convex optimization problem. In this sense, problem (5.1) is an abstract convex problem: The convexity
of the feasible solution space for (q, π) follows from Collins et al. [5] (c.f. Section 5.1) and Theorem 1,
which states that the solution space is a non-empty affine subspace. The flow is unique, while the feasible
vectors π form a straight line. The additional constraints (5.1c)-(5.1f) are linear and do not disturb
the feasibility (i.e., rendering the problem infeasible). So in total, problem (5.1) is an abstract convex
optimization problem over a non-empty set of feasible solutions. Hence we can use an NLP solver that
guarantees only local optimality (such as IPOPT, for instance) to solve the relaxed leaf problem (5.1)
already to global optimality.

Interpretation of Lagrange dual variables In order to understand the infeasibility of a leaf prob-
lem we are going to analyze the Lagrange dual parameters of the Lagrange dual of the relaxed leaf
problem (5.1) at a KKT point. Similar to a dual vector in linear programming, this yields a cer-
tificate for infeasibility. Denote by (µ, λ) = (µv, µe, λ+

v , λ
−
v , λ

+
e , λ

−
e , λv, λe), such that µv, µe ∈ R and

λ+
v , λ

−
v , λv, λe, λ

+
e , λ

−
e ∈ R+ the Lagrange multipliers. Then the Lagrangian of problem (5.1) has the

form
L(q, π,∆, µ, λ) =

∑

v∈V
∆v +

∑

e∈E′
∆e

+
∑

e∈E′
µe (Φe(qe)− (πv − γeπw))

+
∑

v∈V
µv


sv −

∑

e∈δ+(v)

qe +
∑

e∈δ−(v)

qe




+
∑

v∈V

(
λ+
v (πv −∆v − πv) + λ−v (πv − πv −∆v)

)

+
∑

e∈E′

(
λ+
e (qe −∆e − qe) + λ−e (q

e
− qe −∆e)

)

−
∑

v∈V
λv∆v −

∑

e∈E′
λe∆e.

(5.17)

For a local optimum of a nonlinear problem it is shown by Boyd and Vandenberghe [4] that there exist
values for these dual variables fulfilling the KKT conditions. From these KKT conditions we derive the
following constraints, c.f. equation system (2.1):

∂L

∂qe
: µe (∇qe

Φe(qe)) + λ+
e − λ−e = µv − µw ∀ e ∈ E′, (5.18a)

∂L

∂πv
:

∑

e∈δ+(v)

µe −
∑

e∈δ−(v)

µeγe = λ+
v − λ−v ∀ v ∈ V, (5.18b)

∂L

∂∆v
: λ+

v + λ−v + λv = 1 ∀ v ∈ V, (5.18c)

∂L

∂∆e
: λ+

e + λ−e + λe = 1 ∀ e ∈ E′. (5.18d)

From this we conclude:

πv < πv ⇒ λ+
v = 0, πv = πv ⇒ 0 ≤ λ+

v ≤ 1, πv > πv ⇒ λ+
v = 1 ∀ v ∈ V, (5.19a)

πv > πv ⇒ λ−v = 0, πv = πv ⇒ 0 ≤ λ−v ≤ 1, πv < πv ⇒ λ−v = 1 ∀ v ∈ V, (5.19b)

qe < qe ⇒ λ+
e = 0, qe = qe ⇒ 0 ≤ λ+

e ≤ 1, qe > qe ⇒ λ+
e = 1 ∀ e ∈ E′, (5.19c)

qe > q
e
⇒ λ−e = 0, qe = q

e
⇒ 0 ≤ λ−e ≤ 1, qe < q

e
⇒ λ−e = 1 ∀ e ∈ E′. (5.19d)
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The interpretation of this constraint system is as follows. The second equality (5.18b) indicates, that µe
represent a network flow in G′ where each edge e ∈ E′ has µe as its flow variable. The in- and out-flows at
sources and sinks are given by λ+

v −λ−v , and the relation of these values with the arc flows is given by the
weighted flow conservation (5.18b) (also called generalized flow conservation, see [23] and the references
therein). Thus the node flow must not necessarily be balanced, i.e.,

∑
v∈V (λ+

v −λ−v ) 6= 0. The implications
(5.19a) and (5.19b) ensure that a non-zero entry flow is only allowed, if πv ≥ πv. Furthermore, a non-zero
exit flow can only occur at a node fulfilling πv ≤ πv. Looking at equation (5.18a), the dual value µv can
be interpreted as a dual potential at node v. The values λ+

e , λ
−
e enforce a dual decrease or increase of

the potential values and so react like a dual active element (compressor or control valve), c.f. (5.19c) and
(5.19d).

The KKT system (5.18) plays a role similar to the Max-Flow-Min-Cut theorem in classical linear
network flow theorem of Ford and Fulkerson [14]. Let us recall that a network flow without node potentials
is bounded by any cut in the network, and that the flow value of a maximum flow equals the capacity of
a minimum cut. Consider a flow that is locally infeasible, i.e., violates upper capacity bounds on some
arc e = (v, w). Then we can try to make it feasible by identifying a cycle in the graph that contains
this arc e, and has some residual capacities. We can reduce the flow on arc e and increase it on the
remaining part of the cycle. Such cycle exists, if and only if the flow value is less-or-equal that minimum
cut value (by the Ford-Fulkerson theorem). Now coming back to our network flow problem with node
potentials. Assume we have a given flow and corresponding node potential values which violate the upper
bounds at some node v. (W.l.o.g. there a no lower bounds violated, because we can raise all potential
values simultaneously according to Theorem 1.) Then there exists a path P from v to some node w with∑
e∈P Φe(qe) > πv − πw. We can also try to make it feasible by identifying a path P ′ in the graph from

v to some other node w with
∑
e∈P ′ Φe(qe) < πv − πw. This path also has a remaining capacity (similar

to the cycle in the Ford-Fulkerson case), so that we increase the flow on P ′ and decrease it on P . After
this decrease on P the node potential value in v can also be reduced. Such path exists, if and only if
there is no path from v to w in the dual flow defined by system (5.18). The relation of primal and dual
flow values for the case of remaining node potentials is shown in Figure 5.2 on the left, and the case of
violated node potential bounds is shown on the right.

Figure 5.3 shows a visualization of a dual flow in a test network of practical dimension (net1a).
There are four dual entries (marked as large diamonds), and four dual exits marked as large squares.
All other internal nodes are marked as small diamonds. The color of a node corresponds to the dual
node potential. The arc width represents the dual flow value (the thicker the more dual flow), while its
colors depicts the difference of the dual node potential at both end nodes. The figure shows an infeasible
(primal) flow, where the entries node potentials are above their respective upper limit, and the exit node
potentials are below their respective lower limit. (Note that there are more primal entries and exits; only
the four exceeding the bounds became dual entries and exits.) One can try to shift the potentials towards
feasibility by considering a dual path between a single dual entry and a single dual exit. Trying to reduce
the potential excess on this path means to increase it in other parts of the network, so that one can find
a new path with the same potential excess, which is again a certificate for infeasibility. Hence no feasible
primal solution exists.

6 Relaxation of Flow Conservation Constraints

In this section we consider a modification of a leaf problem. Basically it is a relaxation of the flow
conservation constraint by slack variables.

min
∑

v∈V

(
∆+
v +∆−v

)
+
∑

e∈E′

(
∆+
e +∆−e

)
s. t. (6.1a)

αeqe|qe|ke + β̃e − (πv − γeπw) = 0 ∀ e = (v, w) ∈ E′, (6.1b)
∑

e∈δ+(v)

(qe − (∆+
e −∆−e ))−

∑

e∈δ−(v)

(qe − (∆+
e −∆−e ))− (∆+

v −∆−v ) = sv ∀ v ∈ V, (6.1c)

πv ≤ πv ∀ v ∈ V, (6.1d)

πv ≥ πv ∀ v ∈ V, (6.1e)
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Fig. 5.2. Relation of primal and dual flows. The left picture shows arc flows which are not optimal. In the right
picture the arc flows form a KKT solution. The dashed lines indicate the flow along the marked paths.
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max min

Fig. 5.3. The Lagrange dual variables of a KKT point for test network net1a.

qe ≤ qe ∀ e ∈ E′, (6.1f)

qe ≥ qe ∀ e ∈ E′, (6.1g)

∆−v (πv − πv) = 0 ∀ v ∈ V, (6.1h)

∆+
v (πv − πv) = 0 ∀ v ∈ V, (6.1i)

∆−e (qe − qe) = 0 ∀ e ∈ E′, (6.1j)

∆+
e (qe − qe) = 0 ∀ e ∈ E′, (6.1k)

πv ∈ R ∀ v ∈ V, (6.1l)

qe ∈ R ∀ e ∈ E′, (6.1m)

∆±v ∈ R+ ∀ v ∈ V, (6.1n)

∆±e ∈ R+ ∀ e ∈ E′. (6.1o)

On an arc e ∈ E′ a positive slack value ∆+
e > 0 or ∆−e > 0 is feasible only if the flow variable qe reaches

its bounds q
e
or qe, respectively. Accordingly, a positive slack value ∆+

v > 0 or ∆−v > 0 at a node v ∈ V
is feasible only if the potential value πv attains a boundary value πv or πv, respectively.

Problem (6.1) can be infeasible. This happens, if the flow bounds (6.1f) and (6.1g) enforce such a high
amount of flow on an arc, that the potential loss (as deduced by equation (6.1b) is in conflict with the
pressure bounds on both end nodes of the arc. This situation can easily be detected in a preprocessing
step by checking one arc after the other separately. If the problem turns out to be infeasible, we stop,
because the leaf problem is infeasible. Otherwise, we can proceed with its solution.
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6.1 Existence of a solution

To compute a solution to (6.1) we extend the convex optimization problem (5.2) proposed by Collins et
al. [5]. We introduce slack variables and add further terms to the objective function. Then this extension
is of the following form:

min
q,∆

(∑

e∈E′

∫ qe

q0e

Φe(t) dt+
∑

v∈V

(
πv∆

−
v − πv∆+

v

)
+
∑

e∈E′

(
Φe(qe)∆

−
e − Φe(qe)∆

+
e

))
s.t. (6.2a)

sv −
∑

e∈δ+(v)

(
qe − (∆+

e −∆−e )
)

+
∑

e∈δ−(v)

(
qe − (∆+

e −∆−e )
)

+ (∆+
v −∆−v ) = 0 ∀ v ∈ V,

(6.2b)

∆±v ≥ 0 ∀ v ∈ V, (6.2c)

∆±e ≥ 0 ∀ e ∈ E′.
(6.2d)

As before, q0e is the root of Φe(·). In the next theorem we characterize this nonlinear optimization problem
by analyzing the KKT conditions of this constraint system.

Theorem 3. The nonlinear program (6.2) is convex. Every optimal solution to (6.2) can be transformed
to a feasible solution for (6.1), if γe = 1 for all arcs e ∈ E′.

Later, in Theorem 5, we will show that this feasible solution is in fact an optimal one.
Proof: Problem (6.2) is a convex problem, as Φe is a monotone increasing function and the constraints
are of linear type. To analyse the optimal points, we analyze its KKT points. Its Lagrange formulation
with the dual variables µv ∈ R and λ±v , λ±e ∈ R+ for v ∈ V and e ∈ E′ is as follows:

L(q,∆, µ, λ) =
∑

e∈E′

∫ qe

q0e

Φe(t) dt+
∑

v∈V

(
πv∆

−
v − πv∆+

v

)
+
∑

e∈E′

(
Φe(qe)∆

−
e − Φe(qe)∆

+
e

)

+
∑

v∈V
µv


sv −

∑

e∈δ+(v)

(
qe − (∆+

e −∆−e )
)

+
∑

e∈δ−(v)

(
qe − (∆+

e −∆−e )
)

+ (∆+
v −∆−v )




−
∑

v∈V

(
λ+
v ∆

+
v + λ−v ∆

−
v

)

−
∑

e∈E′

(
λ+
e ∆

+
e + λ−e ∆

−
e

)
.

We define πv := µv for v ∈ V . The KKT condition ∇(q,∆)L = 0 results in the following constraints:

∂L

∂qe
: Φe(qe) = πv − πw ∀ e = (v, w) ∈ E′, (6.3a)

∂L

∂∆−v
: πv − λ−v = πv ∀ v ∈ V, (6.3b)

∂L

∂∆+
v

: πv + λ+
v = πv ∀ v ∈ V, (6.3c)

∂L

∂∆−e
: Φe(qe)− λ−e = πv − πw ∀ e = (v, w) ∈ E′, (6.3d)

∂L

∂∆+
e

: Φe(qe) + λ+
e = πv − πw ∀ e = (v, w) ∈ E′. (6.3e)

From (6.3a) it follows directly that the solution (q, π,∆) satisfies constraint (6.1b). Using (6.3a)–(6.3e)
together with the complementarity slackness conditions

λ+
v ∆

+
v = 0 and λ−v ∆

−
v = 0,
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and
λ+
e ∆

+
e = 0 and λ−e ∆

−
e = 0,

we observe that the following constraints are fulfilled for a primal solution:

∆−v (πv − πv) = 0,

∆+
v (πv − πv) = 0,

and, using the strict monotonicity of Φe,

∆−e (Φe(qe)− Φe(qe)) = 0 ⇒ ∆−e (qe − qe) = 0,

∆+
e (Φe(qe)− Φe(qe)) = 0 ⇒ ∆+

e (qe − qe) = 0.

Hence constraints (6.1h)–(6.1k) are fulfilled. Remember that λ ≥ 0. Therefore, (6.1d)–(6.1g) are also
fulfilled. Note that the flow conservation constraints (6.1c) are automatically fulfilled due to constraints
(6.2a). Altogether, (q, π,∆) is a feasible solution for (6.1). 2

In order to give an alternative procedure for computing a feasible solution to (6.1), we consider an
extension of (5.3). We consider an arbitrary node r of our graph as a root node and denote a path from
r to node v ∈ V by Pr(v). We set γr,v defined as γr,v :=

∏
e∈Pr(v) γe. Then the extension is as follows:

min
π

∑

e=(v,w)∈E′
γr,v

∫ πv−γeπw

∆0
e

Φ−1
e (t)dt−

∑

v∈V
γr,v

∫ πv

0

svdt s.t. (6.4a)

γr,vπv ≤ γr,vπv ≤ γr,vπv ∀ v ∈ V, (6.4b)
γr,vΦe(qe) ≤ γr,v(πv − γeπw) ≤ γr,vΦe(qe) ∀ e = (v, w) ∈ E′. (6.4c)

Here ∆0
e is the root of the function Φ−1

e (·), the inverse of Φe(·). We note that the value γr,v =
∏
e∈Pr(v) γe

does not depend on the choice of the path connecting the nodes r and v.

Theorem 4. The nonlinear optimization problem (6.4) is convex. Its optimum solution yields a feasible
solution for (6.1).

Proof: We note that the constraints of (6.4) are of linear type. The objective function is convex, because
of the definition of ∆0

e. Hence (6.4) is convex.
Now we analyze the solution of (6.4). The Lagrange formulation with the dual variables ∆±v ∈ R+

for each node v ∈ V and ∆±e ∈ R+ for each arc e ∈ E′ is as follows:

L(π,∆) =
∑

e=(v,w)∈E′
γr,v

∫ πv−γeπw

∆0
e

Φ−1
e (t)dt−

∑

v∈V
γr,v

∫ πv

0

svdt

+
∑

v∈V
∆−v γr,v(πv − πv) +∆+

v γr,v(πv − πv)

+
∑

e=(v,w)∈E′
∆−e γr,v(πv − γeπw − Φe(qe))

+
∑

e=(v,w)∈E′
∆+
e γr,v(Φe(qe)− (πv − γeπw)).

For an optimal solution π we define q by

qe := Φ−1
e (πv − γeπw) ⇔ Φe(qe) = πv − γeπw ∀ e = (v, w) ∈ E′. (6.5)

We consider the vector (q, π,∆), and show that it is a solution of (6.1). By the definition of q in (6.5)
constraints (6.1b) are fulfilled. The Karush-Kuhn-Tucker Theorem ensures that

∂L

∂πv
:

∑

e∈δ+(v)

γr,v(qe−(∆+
e −∆−e ))−

∑

e∈δ−(v)

γeγr,w(qe−(∆+
e −∆−e ))−γr,v(∆+

v −∆−v ) = γr,vsv ∀ v ∈ V.
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As γeγr,w = γr,v for all arcs e = (w, v) ∈ E′, we obtain that the flow conservation constraints (6.1c)
are satisfied. Constraints (6.1d) and (6.1e) are fulfilled, because of constraints (6.4b). Constraints (6.1f)
and (6.1g) are fulfilled, because of constraints (6.4c) and the strictly monotonicity (hence bijectivity)
of Φe and Φ−1

e (remember γr,v 6= 0). We observe from the complementary slackness conditions that the
following constraints are fulfilled:

∆−v (πv − πv) = 0, ∆+
v (πv − πv) = 0 ∀ v ∈ V,

∆−e (qe − qe) = 0, ∆+
e (qe − qe) = 0 ∀ e ∈ E′,

which gives (6.1h)–(6.1k). 2

6.2 Feasible Region

The next two lemmas characterize the primal part of a KKT solution of (6.1). They state that the primal
parts of all optimal solutions differ only in the π values, which together lie on a straight line segment.

Lemma 5. Let (q, π,∆) be the primal part of a KKT solution of (6.1). Then the following statements
are true.

1. ∆±v is unique for all nodes v ∈ V .
2. q is unique.
3. Problem (6.1) is convex.

Proof: Assume that there exist two solutions (q, π,∆) and (q′, π′, ∆′) of problem (6.1). We define q̂e for
all edges e ∈ E’ by q̂e := (q′e − (∆′e

+ −∆′e−))− (qe − (∆+
e −∆−e )).

Assume there exists a node v∗ ∈ V such that w.l.o.g. ∆+
v∗ 6= ∆′v∗

+ (the case of ∆−v∗ 6= ∆′v∗
− is similar).

W.l.o.g. we can assume that ∆+
v∗ −∆−v∗ < ∆′v∗

+ −∆′v∗− (otherwise, exchange the two solutions). Thus
we also have that ∆+

w∗ −∆−w∗ > ∆′w∗
+−∆′w∗−. We split the flow q̂ into a set of path flows {P1, . . . , Pm}

and a set of cycle flows {C1, . . . , Cn}. Let P` be the path flow that starts at source node v∗ and ends at
some other sink node w∗. We analyze the node potential differences in the two end nodes of the path P`,
that is, π′v∗ − π′w∗ versus πv∗ − πw∗ , and distinguish three cases.

Case 1, ∆+
v∗ −∆−v∗ > 0. Let ε be the amount of flow on path P`. From constraint (6.1i) for v∗ it follows

that πv∗ = πv∗ and π′v∗ = πv∗ . We distinguish three subcases.
Case 1.1, ∆+

w∗ −∆−w∗ > 0. Then again it follows that πw∗ = πw∗ . As πw∗ ≤ π′w∗ ≤ πw∗ = πw∗
holds after the augmentation, we obtain π′w∗ = πw∗ . Hence π′v∗ − π′w∗ = πv∗ − πw∗ . Note that q̂
represents the difference between flows q and q′. Since the potential differences along path P` are
equal in both cases, the difference in q̂ can only affect ∆e-variables, and not q-variables, because
the latter would lead to different node potentials.

Case 1.2, ∆+
w∗ −∆−w∗ = 0. Then it follows that ∆+

w∗ = ∆−w∗ = 0. After augmenting the flow q along
P` we have that ∆′w∗

+ − ∆′w∗− < 0. According to constraint (6.1h) we have that π′w∗ = πw∗ .
Now the node potentials are at the lower boundary on the source and at the upper boundary on
the sink side. If the augmentation has taken place in q-variables, it would mean that either the
node potential at the source is below the lower boundary, or at the sink is above the upper limit,
hence infeasible in both cases. Hence again the difference in q̂ can only effect ∆e-variables, and
leaves all q-variables unchanged. By the same argument, we have that πv∗ = π′v∗ and πw∗ = π′w∗ .

Case 1.3, ∆+
w∗ −∆−w∗ < 0. Then from constraint (6.1h) we have that π′w∗ = πw∗ , and we are in the

same situation as in Case 1.2.
Case 2, ∆+

v∗ −∆−v∗ = 0. Then it follows that∆+
v∗ = ∆−v∗ = 0. From (6.1i) together with 0 = ∆+

v∗−∆−v∗ <
∆′v∗

+ −∆′v∗− we get that π′v∗ = πv∗ .
Case 2.1, ∆+

w∗ −∆−w∗ > 0. We are in the same situation as in Case 1.1, hence the same conclusion
follows.

Case 2.2, ∆+
w∗ −∆−w∗ = 0. See Case 1.2.

Case 2.3, ∆+
w∗ −∆−w∗ < 0. See Case 1.3.

Case 3, ∆+
v∗ −∆−v∗ < 0. Then it follows from (6.1h) that πv∗ = πv∗ .
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Case 3.1, ∆+
w∗ −∆−w∗ > 0. Then it follows from (6.1i) that πw∗ = πw∗ . The argumentation is similar

to Case 1.2: If a further augmentation takes place in the q-variables, then either the node potential
in v∗ would increase, or the node potential in w∗ would decrease, what is not possible, since at
both ends the node potentials are already at their respective bounds. Hence the augmentation
only takes place in ∆e-variables, and the node potential variables remain unchanged, i.e., πv∗ =
π′v∗ and πw∗ = π′w∗ .

Case 3.2, ∆+
w∗ −∆−w∗ = 0. Then it follows that ∆+

w∗ = ∆−w∗ = 0. From (6.1i) together with 0 =
∆+
w∗ − ∆−w∗ > ∆′w∗

+ − ∆′w∗
− we get that π′w∗ = πw∗ . So we are at the upper bound in πv∗

(before augmenting) and also at the upper bound in π′w∗ (after augmenting along P`). Assume
that the augmentation has affected q-variables. Then the node potential in v∗ would be either
above the upper limit before augmenting, or the node potential in w∗ would be above the upper
limit after augmenting along P`. Hence the augmentation only affected ∆e-variables, and also
the node potentials remain unchanged.

Case 3.3, ∆+
w∗ −∆−w∗ < 0. Then we get from (6.1i) that π′w∗ = πw∗ . Hence we are in the same

situation as in Case 3.2, hence the same conclusions remain valid.

Summing up these 3× 3 cases, we have that ∆±v = ∆′v
± because any difference leads to a change in the

∆e variables while the flow variables qe remain unchanged. This means to increase the objective function
value. Thus q̂ consists of circulations only. But a circulation can only take place in the ∆e variables
because it would lead to inconsistent potential values otherwise (we note that either qe changes or ∆±e
but not both at the same time). Thus q = q′. Now that all q-variables do not change, we distinguish
two cases. If ∆+

v > 0 or ∆−v > 0 for some node v ∈ V , then πv is fixed which implies that π is fixed.
The remaining problem of (6.1) is only a linear program in the variables ∆ = (∆e, ∆v). In the second
case ∆+

v = 0 = ∆−v for all nodes v ∈ V . Again, the remaining problem of (6.1) is only a linear program.
This LP is to minimize the objective (6.1a), subject to the flow conservation constraints (6.1c), and some
of the ∆e, ∆v-variables are fixed to zero by constraints (6.1h)–(6.1k). So it remains a flow on arcs in
∆e-variables to sources and sinks in ∆v-variables. This proves, that (6.1) is convex.

2

Lemma 6. Let (q, π,∆) be the primal part of a KKT solution of (6.1). Then there exist a, b ∈ R, a ≤ b,
and a vector θ ∈ RV \{0}, such that (q, π̂,∆) is also primal part of some KKT solution of (6.1), for
π̂ := π + tθ and all t ∈ [a, b]. That is, all possible π vectors lie on a segment of a straight line.

Proof: We know from the previous Lemma 5 that q and ∆±v are unique. Hence problem (6.1a) reduces
to constraint (6.1b) and the bound constraints (6.1d), (6.1e), and (6.1h), (6.1i) for those v ∈ V with
∆+
v > 0 or ∆−v > 0 when ignoring ∆±e . If we relax these four bound constraints, we are in the same

situation as in Theorem 1. Thus, there exists a θ ∈ RV \{0}, such that (q, π̂) is a feasible solution for
constraint (6.1b), for all t ∈ R and π̂ := π + tθ. Now taking the bound constraints (6.1d), (6.1e), (6.1h),
and (6.1i) into account, the range t ∈ R is restricted to an interval by these bounds. Hence t can only
vary in such way that πv ≤ π̂ = π + tθ ≤ πv remains valid. This restricts t to the interval [a, b], where

a := max
{
πv − πv
θv

| v ∈ V, θv 6= 0
}
, b := max

{
πv − πv
θv

| v ∈ V, θv 6= 0
}
.

2

From Lemma 5 and Lemma 6 the following result follows.

Theorem 5. A local optimal KKT solution to problem (6.1) is already a global optimal one.

Because of Theorem 5 we can use a local NLP solver (IPOPT, for instance) to solve the relaxed leaf
problem (6.1) to global optimality.

We note that we can solve problem (6.1) without any bounds on the flow variables as the solution is
unique by Lemma 5. If it is feasible we get the solution and verify the bounds afterwards. If we do not
obtain a feasible solution, or if we obtain a feasible solution that lies outside the bounds, then problem
(4.3) is infeasible.
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6.3 Interpretation of Lagrange Dual Variables

For some Lagrange parameters (µ, λ) = (µv, µe, µ+
v , µ

−
v , µ

+
e , µ

−
e , λ

+
v , λ

−
v , λ

+
e , λ

−
e , λ̃

+
v , λ̃

−
v , λ̃

+
e , λ̃

−
e ), such

that µv, µe, µ+
v , µ

−
v , µ

+
e , µ

−
e ∈ R and λ+

v , λ
−
v , λ

+
e , λ

−
e , λ̃

+
v , λ̃

−
v , λ̃

+
e , λ̃

−
e ∈ R≥0, the Lagrangian of problem

(6.1) has the form

L(q, π,∆, µ, λ) =
∑

v∈V

(
∆+
v +∆−v

)
+
∑

e∈E′

(
∆+
e +∆−e

)

+
∑

e=(v,w)∈E′
µe (Φ(qe)− (πv − γeπw))

+
∑

v∈V
µv


sv −

∑

e∈δ+(v)

(qe −∆+
e +∆−e ) +

∑

e∈δ−(v)

(qe −∆+
e +∆−e ) + (∆+

v −∆−v )




+
∑

v∈V

(
λ+
v (πv − πv) + λ−v (πv − πv)

)

+
∑

e∈E′

(
λ+
e (qe − qe) + λ−e (q

e
− qe)

)

+
∑

v∈V

(
µ+
v (πv − πv)∆−v + µ−v (πv − πv)∆+

v

)

+
∑

e∈E′

(
µ+
e (qe − qe)∆−e + µ−e (qe − qe)∆

+
e

)

−
∑

v∈V

(
λ̃+
v ∆

+
v + λ̃−v ∆

−
v

)

−
∑

e∈E′

(
λ̃+
e ∆

+
e + λ̃−e ∆

−
e

)
.

(6.6)

For a local optimum of a nonlinear problem it is shown by Boyd and Vandenberghe [4] that there exist
values for these dual variables fulfilling the KKT conditions. From these KKT conditions we derive the
following constraints:

∂L

∂qe
: µe (∇qe

Φe(qe)) + λ+
e − λ−e = µv − µw ∀e = (v, w) ∈ E′, (6.7a)

∂L

∂πv
:

∑

e∈δ+(v)

µe −
∑

e∈δ−(v)

γeµe = λ+
v + µ+

v ∆
−
v − (λ−v + µ−v ∆

+
v ) ∀v ∈ V, (6.7b)

∂L

∂∆+
v

: µv + µ−v (πv − πv)− λ̃+
v = −1 ∀v ∈ V, (6.7c)

∂L

∂∆−v
: −µv + µ+

v (πv − πv)− λ̃−v = −1 ∀v ∈ V, (6.7d)

∂L

∂∆+
e

: µv − µw + µ−e (qe − qe)− λ̃
+
e = −1 ∀e ∈ E′, (6.7e)

∂L

∂∆−e
: µw − µv + µ+

e (qe − qe)− λ̃−e = −1 ∀e ∈ E′. (6.7f)

From this set of constraints we can derive the following conditions:

∆−v > 0⇒ µv = 1, ∆+
v > 0⇒ µv = −1, ∀ v ∈ V, (6.8a)

∆−e > 0⇒ µv − µw = 1, ∆+
e > 0⇒ µv − µw = −1, ∀ e = (v, w) ∈ E′, (6.8b)

πv < πv ⇒ λ+
v + µ+

v ∆
−
v = 0, πv > πv ⇒ λ−v + µ−v ∆

+
v = 0, ∀ v ∈ V, (6.8c)

qe < qe ⇒ λ+
e = 0, qe > q

e
⇒ λ−e = 0 ∀ e ∈ E′. (6.8d)
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We compare (6.7) with (5.18). Most of the interpretation after (5.18) remain valid also for (6.7). In the
following, we focus on the differences. Constraints (6.7a) correspond to (5.18a), and constraints (6.7b)
correspond to (5.18b). The derived conditions (5.19a) and (5.19b) state that under certain cases for the
node potential values we have to fix the dual node flows. Complementary, the derived conditions (6.8a)
state that under certain cases for the node flow slack values we have to fix the dual node potentials.
Similar, the derived conditions (5.19c) and (5.19d) state that under certain cases for the arc flow values
we have to fix the dual variables λ+

e and λ−e . Complementary, the derived conditions (6.8b) state that
under certain cases for the arc flow slack values we have to fix the dual node potential difference.

If we consider problem (6.1) without bounds on the arc flows, that is, without constraints (6.1f) and
(6.1g) (thus, also without constraints (6.1j) and (6.1k)), and compute a KKT solution, then the dual
flow µ in this solution does not have a cycle flow. (A cycle flow would contradict (6.7a).) Consider an
augmenting path from some v ∈ V with ∆−v > 0 to some other w ∈ V, v 6= w with ∆+

w > 0. Then µv = 1
and µw = −1, hence there must be an arc e′ = (v′, w′) in the path with µv′ − µw′ > 0. Then from
(6.7a) it follows that µe′ > 0 (because λ±e′ = 0 and the gradient is nonnegative). Since we do not have
a cycle flow, this arc belongs to another path from v0 to w0, where πv0 = πv0 and πw0 = πw0

. Hence
we cannot send more flow over arc e′. Since these arguments hold for any potentially augmenting path,
the respective arcs e′ form (a kind of) a cut that prevents from sending more flow between sources and
sinks.

7 Relaxation of Potential-Flow-Coupling Constraints

As third possibility we consider the following relaxation to compute a solution to the leaf problem (4.3):

min
∑

e∈E′
∆+
e +∆−e s. t. (7.1a)

Φe(qe)− (πv − γeπw)− (∆+
e −∆−e ) = 0 ∀e ∈ E′, (7.1b)

∑

e∈δ+(v)

qe −
∑

e∈δ−(v)

qe = sv ∀v ∈ V, (7.1c)

πv − πv ≤ 0 ∀v ∈ V, (7.1d)

πv − πv ≤ 0 ∀v ∈ V, (7.1e)

qe − qe ≤ 0 ∀e ∈ E′, (7.1f)

q
e
− qe ≤ 0 ∀e ∈ E′, (7.1g)

πv ∈ R ∀ v ∈ V, (7.1h)

qe ∈ R ∀ e ∈ E′, (7.1i)

∆±e ∈ R+ ∀ e ∈ E′. (7.1j)

Basically, this is a relaxation of the potential-flow-coupling constraints (4.3a). If the nonlinear optimiza-
tion problem (7.1) is feasible and (q∗, π∗, ∆∗) denotes its optimal solution, then (q∗, π∗) is feasible for the
leaf problem (4.3), if and only if the optimal objective value equals zero, i.e., (∆±e )∗ = 0 for all e ∈ E′.

In the following we will show, that this problem is a non-convex optimization problem having dif-
ferent local optimal solutions. Hence our techniques developed above cannot be adopted to this type of
relaxation.

7.1 Solving KKT Systems

For some Lagrange parameters (µ, λ) = (µv, µe, λ+
v , λ

−
v , λ

+
e , λ

−
e , λ̃

+
e , λ̃

−
e ), such that µv, µe ∈ R and

λ+
v , λ

−
v , λ

+
e , λ

−
e , λ̃

+
e , λ̃

−
e ∈ R+, the Lagrangian of problem (7.1) has the form

L(q, π,∆, µ, λ) =
∑

e∈E′

(
∆+
e +∆−e

)
(7.2)
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+
∑

e∈E′
µe
(
Φe(qe)− (πv − γeπw)− (∆+

e −∆−e )
)

(7.3)

+
∑

v∈V
µv


sv −

∑

e∈δ+(v)

qe +
∑

e∈δ−(v)

qe


 (7.4)

+
∑

v∈V

(
λ+
v (πv − πv) + λ−v (πv − πv)

)
(7.5)

+
∑

e∈E′

(
λ+
e (qe − qe) + λ−e (q

e
− qe)

)
(7.6)

−
∑

e∈E′
λ̃+
e ∆

+
e + λ̃−e ∆

−
e . (7.7)

For a local optimum of a nonlinear problem it is shown by Boyd and Vandenberghe [4] that there exist
values for these dual variables fulfilling the KKT conditions. From these KKT conditions we derive the
following constraints:

∂L

∂qe
: µe (∇qeΦe(qe)) + λ+

e − λ−e = µv − µw ∀e = (v, w) ∈ E′, (7.8a)

∂L

∂πv
:

∑

e∈δ+(v)

µe −
∑

e∈δ−(v)

γeµe = λ+
v − λ−v ∀v ∈ V, (7.8b)

∂L

∂∆+
e

: µe + λ̃+
e = 1 ∀e ∈ E′, (7.8c)

∂L

∂∆−e
: µe − λ̃−e = −1 ∀e ∈ E′. (7.8d)

We derive from the complementarity constraints:

qe < qe ⇒ λ+
e = 0, qe > q

e
⇒ λ−e = 0 ∀ e ∈ E′, (7.9a)

πv < πv ⇒ λ+
v = 0, πv = πv ⇒ λ+

v ≥ 0 ∀v ∈ V, (7.9b)

πv > πv ⇒ λ−v = 0, πv = πv ⇒ λ−v ≤ 0 ∀v ∈ V, (7.9c)

∆+
e > 0⇒ µe = 1, ∆−e > 0⇒ µe = −1 ∀e ∈ E′. (7.9d)

We compare (7.8) with (6.7) and (5.18). Remember that in the first relaxation, (5.18), we had an
enforcement of the variables λ±v , λ±e . In the second relaxation, (6.7), we derived an enforcement of the
variables µv. Now in the third relaxation, (7.8), only an enforcement of the variables µe to nonzero values
remains.

7.2 Feasible Region

The following example shows that the feasible domain of (7.1) is non-convex in general.

Example 1. Consider the network of two nodes v, w and two parallel arcs e1, e2 from v to w. We set
Φe(qe) := αe qe|qe| and assume arc constants α1 = 1.0 and α2 = 1.5, and node potential bounds πv =
−10, πv = 0, πw = 10, πw = 20. Node v is an entry with flow +1, node w is an exit with flow −1. Then
the following two solutions both fulfill the KKT system (7.8):

– Let q1 = 3, q2 = −2, πv = 0, πw = 10, ∆+
1 = 19, ∆+

2 = 4 (and zero otherwise). The objective function
value is 23. The dual values are µ1 = 1, µ2 = 1, µv = 6.

– Let q1 = 0.6, q2 = 0.4, πv = 0, πw = 10, ∆+
1 = 10.36, ∆+

2 = 10.24 (and zero otherwise). The objective
function value is 20.6. The dual values are µ1 = 1, µ2 = 1, µv = 1.2.

Thus we found two different solutions, both fulfilling the KKT conditions. Hence they are local optimal,
which shows that the feasible domain is non-convex.
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8 Computational Results

Osiadacz et al. [24] give an iterative procedure to compute a solution to the leaf problem. They consider
the following problem:

Φ(qe)− (πv − πw) = 0 (e = (v, w) ∈ E′)
∑

e∈δ+(v)

qe −
∑

e∈δ−(v)

qe − sv = 0 (v ∈ V ). (8.1)

Writing the second constraints as Aq = s, where A denotes the graph adjacency matrix, we seek a vector
π, such that

AΦ−1(ATπ)− s = 0.

They propose to solve this nonlinear equation system by the Newton method and give computational
results. Furthermore they note, that solving this system by the Newton method is equivalent to adapting
the potential values π iteratively (this would correspond to a special newton step). We did not re-
implement their combinatorial algorithm, because it only means that special Newton steps are applied
to the system (8.1). Instead, we use a general-purpose solver code that also uses Newton steps, but based
on more elaborate selection criteria. Moreover, the use of a modern NLP solver (such as IPOPT) allows
to include a presolving before actually applying the Newton steps. This combination is necessary when
dealing with large-scale instances. Our approach is to do presolving, then solve the LP relaxation, and
finally solve the remaining NLP.

As test instances we use five different networks. The first network of practical dimension (net1a) is
shown in Figure 5.3. This network contains active elements (compressors and control valves) that we
do not discretize (i.e., ye is a continuous variable). The implication of this is that we cannot decide on
infeasibility with our relaxation strategies – only the spatial branching approach can determine infeasi-
bility. However, this case does not come up in our test instances. Network net1a is publicly available at
URL http://gaslib.zib.de under the name gaslib-582. We further used two variants of this network,
called net1b and net1c, which have slightly different pipes and active elements. These networks are in
industrial use, but to large extend they are similar to the public network net1a. The final two networks
(net2, net3) are smaller test networks, see Figure 8.1 and Figure 8.2. These two networks do not carry
active elements for pressure regulation (compressors and control valves), but valves for opening or closing
(new) pipelines. The dimensions of the underlying graphs are summarized in Table 1.

instance nodes pipes active elements
net1a 582 451 62
net1b 661 498 75
net1c 592 452 72
net2 135 140 103
net3 367 402 261

Table 1. The sizes of the five test instances.

We implemented the algorithms described above in C on a cluster of 64bit Intel Xeon X5672 CPUs
at 3.20 GHz with 12 MByte cache and 48 GB main memory, running an OpenSuse 12.1 Linux with
a gcc 4.6.2 compiler. We used the following software packages: SCIP 3.0.1 as mixed-integer nonlinear
branch-and-cut framework (for details on SCIP we refer to [1]), CPLEX 12.1 [20] as linear programming
solver, Ipopt 3.10 [30] as nonlinear solver, and Lamatto++ [17] as framework for handling the input
data. Hyperthreading and Turboboost were disabled. In all experiments, we ran only one job per node
to avoid random noise in the measured running time that might be caused by cache-misses if multiple
processes share common resources.

We compare four strategies for solving the subproblems (leaf problems) (4.3). Heuristics of SCIP were
disabled in order to get a more accurate comparison of the different strategies. The first strategy is to use
plain SCIP. All branching decisions are up to the solver, and the nonlinear subproblems are only solved
by cutting planes, spacial branching, and the linear solver CPLEX. The second strategy is to enforce a
certain branching priority rule, so that SCIP first branches on binary decision variables (xe), and only
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Fig. 8.1. The test network net2. Coloured arcs form the original network, while gray arcs are extension pipes.

Fig. 8.2. The test network net3. All coloured arcs form the original network, while extension pipes are colored
in gray.
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after all binaries are fixed, it is allowed to perform spatial branching on continuous variables. In the
third and forth strategy we replace the linear solver CPLEX by the nonlinear solver IPOPT. The third
strategy implements the domain relaxation from Section 5, and the forth strategy uses the relaxation
of the flow conservation constraints from Section 6. We did not implement the method described in
Section 7, because the resulting subproblems are nonconvex, and thus a local solver cannot guarantee to
find a global optimum of the leaf problem, which is necessary to prune the node in the branch-and-bound
process.

We start with network net2 and net3. Here we solve a topology optimization problem. That is, we
add an objective function of the form

∑

e∈Ea

cexe → min (8.2)

to problem (4.2). This objective function models the cost for constructing new pipelines or other active
elements (compressors or control valves) to the network, and the whole optimization problem aims for
identifying a minimum cost extension to the network, such that an otherwise infeasible flow becomes
feasible. For further details on topology optimization using the here presented model, and related algo-
rithmic aspects, we refer to [16]. Figure 8.3 summarizes the runtime results for the three strategies on
the test instances net2 and net3. We solved 8 instances altogether, where 5 different nominations were
solved for net2 and 3 for net3. The three graphs show the share of instances (in percent) that could
be solved within a certain time limit. The graph for spatial branching is below the graph for the flow
conservation relaxation, which is below the graph for the domain relaxation. Here we see a clear ordering
of these three strategies. The detailed results that are underlying these plots can be found in Table 2. In
each of the 5 runs of net2, altogether 1556 leaf problems were solved with one of the two relaxations.
For net3, altogether 53080 leaf problems were solved. Here we do not count those instances that were
detected as infeasible during presolve, only those that are really solved by an NLP solver. This number
corresponds to the number of crosses in Figure 8.4. This figure shows a scatter plot of the runtime for
the NLP solver (without presolving time). One can see that the runtime for the domain relaxation is one
order of magnitude lower than for the flow conservation relaxation.
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Fig. 8.3. Runtime for instances net2 and net3 (aggregated).

For network net1a we omit an objective function and solve for feasibility. Among them are 30 nom-
inations from our industrial partner, and additionally 170 randomly generated nominations. Figure 8.5
shows the percentage of instances that could be solved within a given time limit. In general, the do-
main relaxation outperforms the flow conservation relaxation and the spatial branching strategy. The
spatial branching strategy is better than the flow conservation relaxation for a tight time limit (less than
2 seconds), but for larger time limits (more than 2 seconds) the flow conservation relaxation becomes
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spatial branching plain spatial branching prio domain relaxation flow cons. relaxation
instance gap primal time nodes gap primal time nodes gap primal time nodes gap primal time nodes
net2.1 n/a n/a limit 3644521 0.0 0.00 2.68 1276 0.0 0.00 0.77 104 0.0 0.00 0.82 104
net2.2 n/a n/a limit 5984307 0.0 95.00 3206.86 2236848 0.0 95.00 6.08 105 0.0 95.00 6.42 105
net2.3 330.71 2263.19 limit 4856305 n/a n/a 24403.18 15292006 0.0 525.46 19.88 1735 0.0 525.46 93.94 1735
net2.4 n/a n/a limit 4983712 n/a n/a limit 8503282 0.0 997.54 52.88 2428 0.0 997.54 113.11 2428
net2.5 n/a n/a limit 3799508 n/a n/a limit 7463623 0.0 1545.78 271.26 39778 0.0 1545.78 657.68 39126
net3.1 n/a n/a limit 636165 n/a n/a 33916.44 6664665 0.0 555.74 156.36 1700 0.0 555.74 201.74 1700
net3.2 n/a n/a limit 1545581 n/a n/a limit 3958916 93.24 2578.95 limit 375249 99.9 2578.95 limit 219920
net3.3 n/a n/a limit 899928 n/a n/a limit 3808846 204.89 7341.47 limit 2124709 n/a n/a limit 1838273

Table 2. Results for topology optimization for net2 and net3.
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Fig. 8.4. Runtime comparison for the two relaxation strategies on instance net2 and net3.
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better. For very short runtimes (less than 1 second) there is no clear winner among the three strategies.
We compare the two relaxation strategies in detail in the scatter plot in Figure 8.6. Again, the domain
relaxation is faster than the flow conservation relaxation by one order of magnitude.
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Fig. 8.5. Runtime for instances net1a, net1b and net1c.
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Fig. 8.6. Runtime comparison for the two relaxation strategies on instance net1a, net1b and net1c. The index
above the line had numerical troubles and ran into the timelimit.

9 Conclusions

We presented different relaxation strategies for nonlinear network flow problems with node potentials.
We gave iterative solution methods and computationally demonstrated that the use of local nonlinear
solvers outperforms spatial branching methods. We determined that the domain relaxation method is
about a factor of 10 faster than the flow conservation relaxation method. In our practical applications,
we therefore use the domain relaxation method as a subroutine.
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Still, the flow conservation relaxation method has its practical merits: In a certain practical application
case of the method one does not specify a single nomination vector (sv)v∈V , but interval data [sv, sv]
for each node v ∈ V . Such “interval nomination” is considered as feasible, as soon as there exists one
sv ∈ [sv, sv] for each v ∈ V , such that the nomination with these values is feasible. In the model, one
replaced the equality constraint (4.2g) by two inequality constraints with the interval as lower and upper
bounds. This question can be addressed with the spatial branching approach and also with the flow
conservation relaxation (and we showed that the latter is the faster of these two), but not with the
domain relaxation method. One can easily adapt the constraints (4.3b) and (6.1c) to handle interval
data, but there exists a counterexample for the domain relaxation model (5.1), i.e., a KKT solution that
violates the pressure bounds.
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