
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Heilbronner Str. 10, D-10711 Berlin - Wilmersdorf
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1 Introduction

This paper extends the analysis of [18] where strengthened convexity properties of the expected

recourse function in a linear stochastic program with complete recourse were established. In

contrast to [18], the present paper is directed to models where only parts of the second-stage

right-hand side vector are random, a much more realistic assumption in practical applications.

Our model reads

min{g(x) + Q(x) : x ∈ C} (1.1)

where

Q(x) =
∫
Ω
Φ(z(ω)− Ax) P (dω) (1.2)

and

Φ(t) = min{qTy : Wy = t, y ∈ IRm̄
+}. (1.3)

Here, g : IRm −→ IR denotes a convex function and C ⊂ IRm is a nonempty closed convex set.

The random vector z acts from a probability space (Ω,A, P ) to IRs and A, q,W are fixed data

with proper dimensions.

It is well known that, under mild assumptions, Q is a convex function on IRm ([6], [26]). Here,

we are aiming at verifiable sufficient conditions for improved convexity properties of Q. We will

extend the following statement on the function

Q̃(χ) =

∫
Ω
Φ(z(ω)− χ) P (dω) (1.4)

that was established in [18].

Theorem 1.1 Let W (IRm̄
+ ) = IRs and {u ∈ IRs : WTu ≤ q} have nonempty interior. Suppose

further that
∫
Ω ‖z(ω)‖ P (dω) < ∞ and that there exist a convex open set V ⊂ IRs, constants

r > 0, ρ > 0 as well as a density θ of P ◦ z−1 such that θ(t′) ≥ r for all t′ ∈ IRs with

dist (t′, V ) ≤ ρ. Then Q̃ is strongly convex on V , i.e., there exists some κ > 0 such that

for all χ, χ′ ∈ V and all λ ∈ [0, 1]

Q̃(λχ+ (1− λ)χ′) ≤ λQ̃(χ) + (1− λ)Q̃(χ′)− κλ(1− λ)‖χ− χ′‖2.

Geometrically, this theorem says that Q̃ is locally supported by positive definite quadratic forms

instead of merely linear forms (hyperplanes) as would follow from the convexity of Q̃. Since

assumptions are in terms of model data, the theorem actually permits verification of this rather

implicit property for the quite involved functional Q̃.

A simple but often quite powerful conclusion from the quadratic support property is that strong

convexity implies quadratic growth of the objective on neighbourhoods of global minimizers.

Conversely, bounds on differences of function values yield bounds on distances of arguments by

taking the square root. From the perspective adopted in [1], strong convexity yields a quadratic

conditioning of minimizers.

Since Q is constant on translates of the null space of A, strong convexity of Q is possible only for

the exceptional case where the null space is {0}. Therefore, we are heading for strong convexity

of the function Q̃ which depends on the tender variable χ = Ax. Stability results in [4], [8], [17],
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[20], [21] and convergence rates for simulation based algorithms [22] are based on assumptions

that can be verified via the strong convexity of Q̃. This motivates the search for comprehensive

classes of recourse models for which strong convexity of Q̃ can be verified. Due to the density

assumption, Theorem 1.1 excludes models where components of z(ω) are deterministic. The

latter, however, is met in many applications. The aim of the present paper is to extend our

earlier work in [18] to cover that case.

In Section 2, we elaborate consequences of meeting a partially random right-hand side vector z

in (1.1) - (1.3). In particular, we study properties of the polyhedral complex of lineality regions

of Φ. In Section 3, we adapt the assumptions of Theorem 1.1 to the more general framework

and prove our main result, a sufficient condition for strong convexity. In Section 4, we present

conclusions and applications of the main result. We show that certain statements now become

available for an extended class of recourse problems. These statements concern the structure

of the expected recourse function, quantitative stability of optimal solutions and asymptotic

properties in the context of estimation via empirical measures. Section 5 contains some final

remarks.

2 Recourse Models with Partially Random Right-Hand Side

The two-stage stochastic program (1.1) - (1.3) originates from a random optimization problem

min{g(x) + qT y : Ax+Wy = z(ω), x ∈ C, y ∈ IRm̄
+} (2.1)

where decisions x and y have to be taken before and after the realization of z(ω), respectively.

The idea behind the two-stage (or recourse) approach in stochastic programming is to find an

x ∈ C such that the sum of the direct cost g(x) and the expected recourse cost

Q(x) = Eω(min{qTy : Wy = z(ω)− Ax, y ∈ IRm̄
+}) =

∫
Ω
Φ(z(ω)− Ax) P (dω)

is minimal. For further reading on modeling in stochastic programming we refer to [7] and the

references therein.

Now assume that z(ω) admits a representation z(ω) = (z1(ω), z2) with z1(ω) ∈ IRs1 ,

z2 ∈ IRs2 , s1 + s2 = s. Accordingly, we rewrite the random optimization problem (2.1)

min{g(x) + qTy : A1x+W1y = z1(ω), A2x+W2y = z2, x ∈ C, y ∈ IRm̄
+}

from where we derive the expected recourse function

Q(x) =

∫
Ω
Φ(z1(ω)− A1x, z2 − A2x) P (dω) (2.2)

with

Φ(t1, t2) = min{qTy : W1y = t1, W2y = t2, y ∈ IRm̄
+}.

In practical applications, the simple constraint y ∈ IRm̄+ in (1.3) often has to be replaced by a

general polyhedral constraint on y. Note that this corresponds to setting A2 = 0 in (2.2). The

system

W2 = z2, y ∈ IRm̄
+ (2.3)
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then reflects the polyhedral constraint on y.

We find it convenient to denote the image measure P ◦ z−1
1 on IRs1 by μ. From (2.2) we derive

the function

Q̄(χ1, χ2) =
∫
IRs1

Φ(z1 − χ1, z2 − χ2) μ(dz1)

where χ1 ∈ IRs1 , χ2 ∈ IRs2 . The strong-convexity analysis in the present paper concerns Q̄ as a

function of χ1. We fix some χ̄2 ∈ IRs2 and denote t̄2 = z2 − χ̄2. The function

Q̃(χ1) =

∫
IRs1

Φ(z1 − χ1, t̄2) μ(dz1) (2.4)

is our central object of study. For the special case mentioned in (2.3), Q̄ does not depend on

χ2, and our investigations concern the full function Q̄.

The following basic assumptions are imposed throughout the paper.

(A1) The matrix W =
(W1
W2

) ∈ L(IRm̄, IRs) has full rank, and for each t1 ∈ IRs1 there exists a

y ∈ IRm̄
+ such that W1y = t1 and W2y = t̄2.

(A2) There exists a u = (u1, u2) ∈ IRs1 × IRs2 such that WT
1 u1 +WT

2 u2 ≤ q.

(A3) It holds
∫
IRs1 ‖z1‖ μ(dz1) < ∞.

(A4) The probability measure μ has a density.

(For notational convenience, column vectors often will be written rowwise as done with u in

(A2).)

The second part of assumption (A1), often referred to as complete recourse, ensures that the

second-stage linear program

min{qTy : W1y = t1, W2y = t̄2, y ∈ IRm̄
+}

has a feasible point for each t1 ∈ IRs1 . Assumption (A2) states the existence of feasible points

to

max{tT1 u1 + t̄T2 u2 : WT
1 u1 +WT

2 u2 ≤ q}
which is the dual to the aforementioned linear program. Hence, (A1) and (A2) imply that

Φ(t1) ∈ IR for each t1 ∈ IRs1 . Moreover, it is well known from parametric linear programming

that Φ is piecewise linear and convex on IRs1 . Since, later on, the polyhedral complex of lineality

regions of Φ will be important, we look a bit closer at Φ.

Since W has full rank, there exist vertices of the (nonempty) feasible set

MD = {(u1, u2) ∈ IRs1+s2 : WT
1 u1 +WT

2 u2 ≤ q}.

By d̃1, . . . , d̃N we denote the vertices of MD that arise as optimal ones when maximizing over

MD with respect to the objective functions

tT1 u1 + t̄T2 u2, t1 ∈ IRs1 .
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Denoting by d̃i1, d̃i2 (i = 1, . . . , N ) the projections of d̃i on IR
s1 and IRs2 , respectively, we obtain

(cf. [11], [25])

Φ(t1) = tT1 d̃i1 + t̄T2 d̃i2

for all t1 ∈ IRs1 such that

(t1, t̄2) ∈ Ki = {v ∈ IRs : vT (u− d̃i) ≤ 0 for all u ∈MD}.

The set Ki is called the outer normal cone to MD at the vertex d̃i. Now, the lineality regions

K∗
i of Φ are given by

K∗
i = π1(Ki ∩ {IRs1 × {t̄2}}), i ∈ {1, . . . , N} (2.5)

where π1 denotes the projection from IRs to IRs1 .

Since Φ(t1) ∈ IR for any t1 ∈ IRs1 , it holds ∪N
i=1K∗

i = IRs1 . Moreover, the sets K∗
i are the full-

dimensional elements of a polyhedral complex ([11], [25]) which, in particular, says that together

with a polyhedron all its faces are in the complex and that the intersection of two polyhedra is

a face of both. If all components of z are random, i.e., Φ(t) = min{qTy : Wy = t, y ∈ IRm̄
+},

and if Φ(t) ∈ IR for all t ∈ IRs, then the polyhedral complex of lineality regions of Φ is especially

simple. It is the fan of outer normal cones to the dual polyhedron {u ∈ IRs : WTu ≤ q}. Hence
it solely consists of polyhedral cones with vertex zero. Difficulties in moving from completely

random to partially random right-hand sides in linear two-stage stochastic programs have their

roots in the more complicated lineality complex of Φ.

Assumptions (A1) - (A3) imply that Q̃(χ1) ∈ IR for any χ1 ∈ IRs1 . Of course, Q̃ is also convex

on IRs1 . Well known statements in stochastic programming ([2], [6], [26]) guarantee that Q̃ is

continuously differentiable at χ1 ∈ IRs1 provided that none of the sets χ1 + bd K∗
i has positive

μ−measure. (Here,”+” denotes Minkowski addition and ”bd” the boundary.) Therefore, (A1) -

(A4) imply that Q̃ is continuously differentiable on IRs1 . Denoting di = −d̃i (i = 1, . . . , N ), the

gradient reads

Q̃′(χ1) =
N∑
i=1

di1μ(χ1 + K∗
i ). (2.6)

Later on, this representation will be used to verify strong convexity via strong monotonicity of

the gradient. Recall that the recession cone 0+K∗
i of K∗

i is defined as the cone of unbounded

directions of K∗
i , [14]. The following lemmas provide some useful identities.

Lemma 2.1 For each i = 1, . . . , N , 0+K∗
i coincides with K∗

io = π1(Ki ∩ {IRs1 × {0}}).

Proof: With a suitable matrix Bi = (Bi1, Bi2), the normal cone Ki to MD at d̃i can be written

as

Ki = {t ∈ IRs : Bit ≤ 0} = {(t1, t2) ∈ IRs1+s2 : Bi1t1 + Bi2t2 ≤ 0}.
Hence, by definition

K∗
io = {t1 ∈ IRs1 : Bi1t1 ≤ 0}.
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On the other hand,

K∗
i = {t1 ∈ IRs1 : Bi1t1 ≤ −Bi2 t̄2}

implying (cf. [14])

0+K∗
i = {t1 ∈ IRs1 : Bi1t1 ≤ 0} = K∗

io.

Lemma 2.2 For each i = 1, . . . , N , K∗
io coincides with the outer normal cone to π1MD at

d̃i1 = π1d̃i.

Proof: The following are equivalent

t1 ∈ K∗
io

and

(t1, 0) ∈ Ki

and

tT1 d̃i1 + 0T d̃i2 ≥ tT1 u1 + 0Tu2 for all (u1, u2) ∈MD

and

tT1 d̃i1 ≥ tT1 u1 for all u1 ∈ π1MD.

Remark 2.3 Of course, under the projection of a polyhedron, vertices (if any) are not neces-

sarily sent to vertices. Therefore, the following cases can arise in the above lemmas.

(i) d̃i1 ∈ int π1MD. Then K∗
io = {0}, and K∗

i is bounded.

(ii) d̃i1 ∈ bd π1MD, but d̃i1 is not a vertex of π1MD. Then the linear span of K∗
io has dimension

greater than zero and less than s1, and K∗
i is unbounded with a recession cone of dimension

less than s1.

(iii) d̃i1 is a vertex of π1MD. Then K∗
io has full dimension s1 and so does the recession cone of

the (unbounded) set K∗
i .

At the following example, we will illustrate the above considerations.

In

min{qTy : W1y = t1, W2y = z2, y ∈ IRm̄
+}

we put

qT = (21, 21, 21, 21, 7, 7, 3, 3, 1, 0) ∈ IR10,

W1 =

(
−3 −3 −3 3 −1 1 0 0 0 0

−5 1 2 −2 −2 2 −1 1 0 0

)
∈ L(IR10, IR2),

W2 =
(
12 12 9 9 3 3 0 0 1 −1

)
∈ L(IR10, IR1),

z2 = 1.
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Using the code PORTA (Polyhedron Representation Transformation Algorithm), cf. [3], we

compute the vertices of the dual polyhedron MD together with a vertex-inequality incidence

table that displays the binding inequalities for each vertex. The gradients of the binding (linear)

inequalities, of course, generate the respective outer normal cone. We obtain the following

vertices together with their outer normal cones

d̃1 = (−7, 0, 0), K1 = cone {(0, 0,−1), (−1,−2, 3), (−3, 2, 9), (−3, 1, 12), (−3,−5, 12)},
d̃2 = (−1,−3, 0), K2 = cone {(0, 0,−1), (0,−1, 0), (−1,−2, 3)},
d̃3 = (5,−3, 0), K3 = cone {(0, 0,−1), (0,−1, 0), (3,−2, 9)},
d̃4 = (7, 0, 0), K4 = cone {(0, 0,−1), (1, 2, 3), (3,−2, 9)},
d̃5 = (1, 3, 0), K5 = cone {(0, 0,−1), (1, 2, 3), (0, 1, 0)},
d̃6 = (−5, 3, 0), K6 = cone {(0, 0,−1), (0, 1, 0), (−3, 2, 9)},
d̃7 = (−3, 0, 1), K7 = cone {(0, 0, 1), (−3, 1, 12), (−3,−5, 12)},
d̃8 = (2,−3, 1), K8 = cone {(0, 0, 1), (0,−1, 0), (−1,−2, 3), (3,−2, 9), (−3,−5, 12)},
d̃9 = (4, 0, 1), K9 = cone {(0, 0, 1), (1, 2, 3), (3,−2, 9)},
d̃10 = (−2, 3, 1), K10 = cone {(0, 0, 1), (1, 2, 3), (0, 1, 0), (−3, 2, 9), (−3, 1, 12)}.

The following picture shows a top view at MD along the third coordinate. In the picture, the

number i ∈ {1, . . . , 10} corresponds to the vertex d̃i. The marked vertices d̃7, . . . , d̃10 belong to

the affine hyperplane with third coordinate equal to 1. For the remaining vertices d̃1, . . . , d̃6,

the third coordinate equals 0. Note that, beside conv {d̃1, . . . , d̃6}, there are two further facets

of MD hidden in the picture: conv {d̃2, d̃3, d̃8} and conv {d̃5, d̃6, d̃10}.

8 32

1

106 5

497

Figure 2.1: Top view at MD
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Computing the cones K∗
io yields

K∗
1o = cone {(−3, 2), (−1,−2)}, K∗

2o = cone {(−1,−2), (0,−1)},
K∗

3o = cone {(0,−1), (3,−2)}, K∗
4o = cone {(3,−2), (1, 2)},

K∗
5o = cone {(1, 2), (0, 1)}, K∗

6o = cone {(0, 1), (−3, 2)},
K∗

7o = {0}, K∗
8o = cone {(0,−1)},

K∗
9o = {0}, K∗

10o = cone {(0, 1)}.

The next picture shows the projection π1MD and its fan of outer normal cones. Numbers

correspond to the projections d̃i1 and the normal cones K∗
io (i = 1, . . . , 6), respectively. We

only marked projections d̃i1 leading to vertices of π1MD. The projections d̃81, d̃101 are contained

in the relative interior of the edges conv {d̃21, d̃31} and conv {d̃51, d̃61}, respectively. In terms

of normal cones, this means that K∗
8o,K∗

10o are the common facets of K∗
2o,K∗

3o and K∗
5o,K∗

6o,

respectively. The points d̃71, d̃91 belong to the interior of π1MD. Therefore, K∗
7o = K∗

9o = {0}.

21 31

41

5161

11

2o 3o

6o 5o

1o
4o

Figure 2.2: Projection π1MD and normal fan of π1MD
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Finally, the lineality complex of Φ looks as follows. It arises by intersecting the normal fan of

MD with the affine hyperplane of all points in IR3 whose third coordinate equals 1 (recall that

z2 = 1 and see (2.5)). Numbers i ∈ {1, . . . , 10} correspond to lineality regions K∗
i . Note that

the normal cones K∗
io reappear as recession cones in the various members of the complex.

In Section 3, the unbounded facets of the full-dimensional members of the complex will be

essential for adapting the density assumption from Theorem 1.1. In the example, these are the

facets of K∗
2,K∗

3,K∗
5 and K∗

6.

5

2

7

9

3

4

10

6

8

1

Figure 2.3: Lineality complex of Φ
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3 Strong Convexity

Now we turn our attention to the announced sufficient conditions for the strong convexity of the

function Q̃ defined in (2.4). We begin with introducing strengthened versions of the assumptions

(A2) and (A4) that will be needed for the main result.

Recall that there are finitely many lineality regions K∗
i whose union makes up the whole of IRs1 .

Therefore, the recession cones fulfil ∪N
i=10

+K∗
i = IRs1 , and Lemmas 2.1 and 2.2 imply that π1MD

is compact. Note that, under (A1), (A2), MD itself is not necessarily compact. We strengthen

(A2) to

(A2)∗ The interior int π1MD of π1MD is nonempty.

Compared with the corresponding assumption in Theorem 1.1, we no longer need a nonempty

interior for the whole of MD but only for a projection related to the multipliers belonging to

the rows with random entries in the right-hand side.

As to strengthening (A4), we consider the unbounded facets (i.e., (s1 − 1)−dimensional faces)

F∗
ij = K∗

i ∩K∗
j

of the full-dimensional members of the lineality complex of Φ. Given ρ > 0 and some convex

open set V ⊂ IRs
1 we denote Vρ = {τ ∈ IRs1 : dist (τ, V ) ≤ ρ} where ”dist” denotes the usual

point-to-set distance. Then, (A4) is strengthened to

(A4)∗ There exist a convex open set V ⊂ IRs1 , constants r > 0, ρ > 0, points e∗ij ∈ F∗
ij and a

density θ of μ such that θ(t′) ≥ r for all t′ ∈ ∪(i,j){e∗ij + Vρ}.
To relate (A4)∗ to the corresponding assumption in Theorem 1.1, confirm that there it was

claimed θ(t′) ≥ r for all t′ ∈ 0 + Vρ. Moreover, in that situation, the lineality complex of Φ is

a fan of polyhedral cones all with vertex in 0. Hence, the point 0 belongs to all the unbounded

facets of the full-dimensional members of the lineality complex of Φ, and the choice e∗ij = 0 is

possible for all pairs (i, j) in question.

The following two lemmas will be needed in the proof of our main result. Recall that K∗
io

(i = 1, . . . , N ) are outer normal cones to π1MD (Lemma 2.2) and let Io ⊂ {i = 1, . . . , N} denote

the set of all i such that K∗
io has (full) dimension s1. By Remark 2.3, d̃i1 with i ∈ Io are the

vertices of π1MD .

Lemma 3.1 Assume (A1) and (A2)∗. Then it holds

α∗ := min
j∈Io

inf
ṽ∈K∗

jo
‖ṽ‖=1

max
i∈Io

di1,dj1 adjacent

(di1 − dj1)
T ṽ > 0.

Proof: Since K∗
jo is the outer normal cone to π1MD at d̃j1 = −dj1 and ṽ ∈ K∗

jo, it holds

dTi1ṽ ≥ dTj1ṽ for all i ∈ Io.

Hence, α∗ ≥ 0. Assume that α∗ = 0. Then, for some j ∈ Io

inf
ṽ∈K∗

jo
‖ṽ‖=1

max
i∈Io

di1,dj1 adjacent

(di1 − dj1)
T ṽ = 0.
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Then, for any n ∈ IN \ {0}, there exists a vn ∈ K∗
jo, ‖vn‖ = 1 such that (di1− dj1)

T vn ≤ 1/n for

all i ∈ Io such that di1 and dj1 are adjacent. Passing to the limit yields an accumulation point

v̄ ∈ K∗
jo, ‖v̄‖ = 1 of {vn} such that (di1 − dj1)

T v̄ = 0 for all i ∈ Io such that di1 and dj1 are

adjacent. Since v̄ �= 0, this implies int π1MD = ∅ contradicting (A2)∗.

Lemma 3.2 If there is no vertex d̃l of MD such that π1d̃l = d̃l1 belongs to the relative interior

of the edge [d̃i1, d̃j1] connecting the vertices d̃i1 and d̃j1 (i, j ∈ Io) in π1MD, then there exists a

joint unbounded facet F∗
ij of K∗

i and K∗
j .

Proof: Since there is an edge connecting d̃i1 and d̃j1 in π1MD, the set F o
ij = K∗

io ∩ K∗
jo is a

joint facet of K∗
io and K∗

jo. If there is no joint unbounded facet of K∗
i and K∗

j then F o
ij arises as

recession cone of an (s1− 1)−dimensional face in a further element of the lineality complex, say

K∗
k. Since K∗

io and K∗
jo are the only s1−dimensional outer normal cones to π1MD with facet Fo

ij,

the set K∗
ko must have exactly dimension s1 − 1. Then, π1d̃k = d̃k1 must belong to the relative

interior of the edge [d̃i1, d̃j1], a contradiction.

Theorem 3.3 Suppose (A1), (A2)∗, (A3) and (A4)∗. Then Q̃ is strongly convex on V .

Proof: The proof will be given via strong monotonicity of the gradient based on the equivalence:

Q̃ is strongly convex (with constant κ > 0) on some convex subset V ⊂ IRs1 if and only if

(Q̃′(χ1)− Q̃′(χ′
1))

T (χ1 − χ′
1) ≥ 2κ‖χ1 − χ′

1‖2

for all χ1, χ
′
1 ∈ V (cf. e.g. [12]).

Let χ1 ∈ V and v ∈ IRs1 such that χ1 + v ∈ V . By (2.6),

(Q̃′(χ1 + v)− Q̃′(χ1))
Tv =

N∑
i=1

fi(χ1 + v)dTi1v −
N∑
i=1

fi(χ1)d
T
i1v (3.1)

with fi(ξ) = μ(ξ + K∗
i ) for all i = 1, . . . , N, ξ ∈ IRs1 .

Assumption (A4) and ∪N
i=1K∗

i = IRs1 imply

N∑
i=1

fi(χ1 + v) =
N∑
i=1

fi(χ1) = 1.

Therefore, the sums in (3.1) can be understood as expectations of two discrete probability

measures on IR with mass points in dTi1v and probabilities fi(χ1 + v) and fi(χ1), i = 1, . . . , N ,

respectively. Denoting the accompanying distribution functions by Fv and Fo,v , respectively, we

obtain

(Q̃′(χ1 + v)− Q̃′(χ1))
Tv =

∫
IR
τdFv(τ)−

∫
IR
τdFo,v(τ) =

∫
IR
(Fo,v(τ)− Fv(τ))dτ

where we have used integration by parts of Riemann-Stieltjes integrals.

Next, we show that

Fo,v(τ)− Fv(τ) ≥ 0 for all τ ∈ IR. (3.2)
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Let Iv(τ) = {i ∈ {1, . . . , N} : dTi1v ≤ τ}. By (A4),

Fo,v(τ) = μ
( ⋃
i∈Iv(τ)

{χ1 + K∗
i }
)

and Fv(τ) = μ
( ⋃
i∈Iv(τ)

{χ1 + v + K∗
i }
)
.

Therefore, (3.2) is shown when having verified

⋃
i∈Iv(τ)

{χ1 + v + K∗
i } ⊂

⋃
i∈Iv(τ)

{χ1 + K∗
i }.

Assume on the contrary that there exist io ∈ Iv(τ) and wio ∈ χ1 + v + K∗
io such that

wio �∈
⋃

i∈Iv(τ)
{χ1 + K∗

i }

Since ∪{1,...,N}{χ1 + K∗
i } = IRs1 , there exists i1 ∈ {1, . . . , N} \ Iv(τ) with

wio ∈ {χ1 + K∗
i1}. (3.3)

From wio ∈ χ1 + v + K∗
io it follows wio − χ1 − v ∈ K∗

io implying (cf. (2.5))

(wio − χ1 − v, t̄2) ∈ Kio.

Now recall that Kio is the outer normal cone to MD at d̃io = −dio . Therefore, d̃io is an optimal

vertex when maximizing over MD the linear function whose gradient is (wio −χ1− v, t̄2). Thus,

we obtain

(wio − χ1 − v)Tdio1 + t̄T2 dio2 ≤ (wi1 − χ1 − v)Tdi11 + t̄T2 di12. (3.4)

By i1 �∈ Iv(τ) and io ∈ Iv(τ),

dTi11v > τ ≥ dTio1v,

and (3.4) implies

(wio − χ1)
Tdio1 + t̄T2 dio2 ≤ (wio − χ1)

Tdi11 + t̄T2 di12 + dTio1v − dTi11v

< (wio − χ1)
Tdi11 + t̄T2 di12.

On the other hand, we have by (3.3)

(wio − χ1)
Tdi11 + t̄T2 di12 ≤ (wio − χ1)

Tdio1 + t̄T2 dio2

yielding a contradiction. Thus, (3.2) is shown.

The further strategy for the proof is deriving a lower bound for

(Q̃′(χ1 + v)− Q̃′(χ1))
Tv =

∫
IR
(Fo,v(τ)− Fv(τ))dτ (3.5)

by properly restricting the domain of integration and minorizing the integrand on the right.

Recall the sets K∗
io ⊂ IRs1 arising in Lemmas 2.1, 2.2 and that Io is the set of all i ∈ {1, . . . , N}

such that K∗
io has (full) dimension s1. Since ∪i∈IoK∗

io = IRs1, there exists a j = j(v) ∈ Io such

that v ∈ K∗
jo.
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By Lemma 3.1, there exists i∗ = i∗(v) ∈ Io such that dj1 and di∗1 are adjacent in −π1MD and

dTj1v + α∗‖v‖ < dTi∗1v. (3.6)

Now let l = l(v) ∈ {1, . . . , N} be such that π1dl = dl1 belongs to the half-open line segment

[dj1(v), di∗1(v)) and is nearest to di∗1(v) of all vertices with this property. Then, there exists β(v)

with 0 ≤ β(v) < 1 such that

dl1(v) = dj1(v)+ β(v)(di∗1(v) − dj1(v)).

Since for arbitrary v′ ∈ IRs1 there are only finitely many possible edges [dj1(v′), di∗1(v′)] we have

β = max
v′∈IRs1

β(v′) < 1.

Now, the following holds

dTi∗1(v)v − dTl1(v)v = (1− β(v))(dTi∗1(v)v − dTj1(v)v) > (1− β)α∗‖v‖. (3.7)

Fix some α > 0 such that α < (1 − β)α∗. With j(v), i∗(v) and l(v) as above, we estimate in

(3.5)

(Q̃′(χ1 + v)− Q̃′(χ1))
Tv ≥

dT
l1
v+α‖v‖∫
dTl1v

(Fo,v(τ)− Fv(τ))dτ. (3.8)

Consider Fo
i∗j = K∗

i∗o ∩ K∗
jo which is a joint facet of K∗

i∗o and K∗
jo. Since K∗

i∗o = 0+K∗
i∗

(Lemma 2.2), there exists a point e∗i∗j arising in assumption (A4)∗ such that e∗i∗j + Fo
i∗j is

contained in a facet of K∗
i∗.

Let τ ∈ IR be such that

dTl1v ≤ τ ≤ dTl1v + α‖v‖. (3.9)

Then, it holds

⋃
0<λ<1

{χ1 + λv + e∗i∗j + Fo
i∗j} ⊂

⋃
i∈Iv(τ)

{χ1 + K∗
i } \

⋃
i∈Iv(τ)

{χ1 + v + K∗
i }. (3.10)

To establish this inclusion we first show that

⋃
0<λ<1

{χ1 + λv + e∗i∗j + Fo
i∗j} ∩

⋃
i∈Iv(τ)

{χ1 + v + K∗
i } = ∅. (3.11)

Assume on the contrary that there exist λ ∈ (0, 1), τ ∈ IR fulfilling (3.9), i ∈ Iv(τ), ui ∈ K∗
i and

wi∗j ∈ F o
i∗j such that

χ1 + λv + e∗i∗j + wi∗j = χ1 + v + ui.

Then

ui = −(1− λ)v + e∗i∗j + wi∗j ∈ K∗
i

implying

(−(1− λ)v + e∗i∗j + wi∗j, t̄2) ∈ Ki.
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Therefore,

(−(1− λ)v + e∗i∗j + wi∗j)
Tdi1 + t̄T2 di2 ≤ (−(1− λ)v + e∗i∗j + wi∗j)

Tdi∗1 + t̄T2 di∗2.

This implies

(e∗i∗j + wi∗j)
T di1 + t̄T2 di2 − (e∗i∗j + wi∗j)

Tdi∗1 − t̄T2 di∗2 ≤ (1− λ)(dTi1v − dTi∗1v) < 0 (3.12)

where the last inequality follows from i ∈ Iv(τ) and d
T
i∗1v > τ (cf. (3.7) and (3.9)).

On the other hand,

e∗i∗j + wi∗j ∈ e∗i∗j + Fo
i∗j ⊂ K∗

i∗

and, hence,

(e∗i∗j + wi∗j, t̄2) ∈ Ki∗

implying

(e∗i∗j + wi∗j)
Tdi∗1 + t̄T2 di∗2 ≤ (e∗i∗j + wi∗j)

Tdi1 + t̄T2 di2

in contradiction to (3.12). This verifies (3.11).

Let us now show that

⋃
0<λ<1

{χ1 + λv + e∗i∗j + Fo
i∗j} ⊂

⋃
i∈Iv(τ)

{χ1 + K∗
i }. (3.13)

Assume on the contrary that there exist λ ∈ (0, 1), τ ∈ IR fulfilling (3.9), wi∗j ∈ F o
i∗j ,

k ∈ {1, . . . , N} \ Iv(τ) such that

χ1 + λv + e∗i∗j + wi∗j ∈ χ1 + K∗
k.

Since e∗i∗j + Fo
i∗j is contained in a facet of K∗

i∗, there exists a full-dimensional polyhedron K∗
l∗

such that e∗i∗j + Fo
i∗j is contained in a joint facet of K∗

l∗ and K∗
i∗.

Now, it holds

(λv + e∗i∗j + wi∗j)
T dk1 + t̄T2 dk2 ≤ (λv + e∗i∗j + wi∗j)

T dl∗1 + t̄T2 dl∗2

from where it follows

(e∗i∗j + wi∗j)
T dk1 + t̄T2 dk2 − (e∗i∗j + wi∗j)

T dl∗1 − t̄T2 dl∗2 ≤ λ(dTl∗1v − dTk1v). (3.14)

Two cases may arise: Either l∗ = j or l∗ �= j.

If l∗ = j then

dTl∗1v − dTk1v = dTj1v − dTk1v < 0,

since j ∈ Iv(τ) and k �∈ Iv(τ) which yields dTj1v ≤ τ < dTk1v.

If l∗ �= j, then there exists no joint unbounded facet of K∗
i∗ and K∗

j , and Lemma 3.2 applies.

Hence, dl∗1 belongs to the interior of the edge [dj1, di∗1] in −π1MD. By construction of l(v) it

follows

dTl∗1v ≤ dTl1v ≤ τ < dTk1v
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and again

dTl∗1v − dTk1v < 0.

Now, (3.14) yields

(e∗i∗j + wi∗j)
Tdk1 + t̄T2 dk2 < (e∗i∗j + wi∗j)

Tdl∗1 + t̄T2 dl∗2. (3.15)

On the other hand,

e∗i∗j + wi∗j ∈ K∗
l∗

implying

(e∗i∗j + wi∗j, t̄2) ∈ Kl∗

and, therefore,

(e∗i∗j + wi∗j)
Tdl∗1 + t̄T2 dl∗2 ≤ (e∗i∗j + wi∗j)

Tdk1 + t̄T2 dk2.

This contradicts (3.15) and finally verifies (3.10).

By (A4) and (3.10) we obtain for all τ ∈ IR with dTl1v ≤ τ ≤ dTl1v + α‖v‖

Fo,v(τ)− Fv(τ) = μ
( ⋃
i∈Iv(τ)

{χ1 + K∗
i } \

⋃
i∈Iv(τ)

{χ1 + v + K∗
i }
)

≥ μ
( ⋃
0≤λ≤1

{χ1 + λv + e∗i∗j + Fo
i∗j}

)
.

The last expression does not depend on τ . Hence, we can continue the estimate in (3.8) as

follows

(Q̃′(χ1 + v)− Q̃′(χ1))
Tv ≥ α · ‖v‖ · μ

( ⋃
0≤λ≤1

{χ1 + λv + e∗i∗j + Fo
i∗j}

)
. (3.16)

The cylindric set ⋃
0≤λ≤1

{χ1 + λv + e∗i∗j + Fo
i∗j}

is located between the affine hyperplanes

χ1 + e∗i∗j + span Fo
i∗j and χ1 + v + e∗i∗j + span Fo

i∗j (3.17)

whose distance can be minorized as follows:

Since Fo
i∗j = K∗

i∗o ∩ K∗
jo and K∗

i∗o,K∗
jo are outer normal cones to π1MD at −di∗1 and −dj1,

respectively, it holds

wT
i∗jdi∗1 = wT

i∗jdj1 for all wi∗j ∈ F o
i∗j

implying

(span F o
i∗j)

⊥ = span (di∗1 − dj1)

where the superscript ”⊥” denotes the orthogonal complement.

The Hausdorff distance of the hyperplanes in (3.17) thus computes as

(di∗1 − dj1)
Tv

‖di∗1 − dj1‖ .
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With the positive constant

δ = max{‖di11 − di21‖ : i1, i2 ∈ Io, di11, di21 adjacent}

we obtain (cf. also Lemma 3.1)

(di∗1 − dj1)
Tv

‖di∗1 − dj1‖ ≥ α∗‖v‖
δ

>
α‖v‖
δ

.

This minorizes the ”height of the cylinder”

⋃
0≤λ≤1

{χ1 + λv + e∗i∗j + Fo
i∗j}.

Now consider

F o,ρ
i∗j = {w̃ ∈ Fo

i∗j : ‖w̃‖ ≤ ρ}.
Assumption (A4)∗ guarantees that there is a density θ of μ which, on the set

⋃
0≤λ≤1

{χ1 + λv + e∗i∗j + Fo,ρ
i∗j },

is greater than or equal to some r > 0.

Therefore,

μ
( ⋃
0≤λ≤1

{χ1+λv+e∗i∗j+Fo
i∗j}

)
≥ μ

( ⋃
0≤λ≤1

{χ1+λv+e∗i∗j+Fo,ρ
i∗j }

)
≥ r ·δ−1 ·α ·‖v‖·�s1−1(F o,ρ

i∗j )

where �s1−1 denotes the (s1 − 1)− dimensional Lebesgue measure.

Since there are only finitely many facets Fo
i1i2

, (i1, i2 ∈ Io), the constant

�min = min{�s1−1(F o,ρ
i1i2

) : i1, i2 ∈ Io, di11, di21 adjacent}

is positive.

Together with (3.16), we finally obtain

(Q̃′(χ1 + v)− Q̃′(χ1))
Tv ≥ r · �min · δ−1 · α2 · ‖v‖2

for all χ1 ∈ V and v ∈ IRs1 such that χ1 + v ∈ V . The constants �min, δ and α are independent

on χ1 and v. Hence, Q̃ is strongly convex on V with constant κ = 1
2r · �min · δ−1 · α2.

Remark 3.4 Note that the representation we obtained for κ, in a certain sense, confirms the

empirical observation in stochastic programming that expected recourse functions are usually

”quite flat” in a region surrounding the optimal solution. Indeed α, �min, δ
−1 are the bigger the

”rounder” π1MD and r is the bigger the more concentrated the measure μ.

Compared with the density assumption in Theorem 1.1, the verification of (A4)∗ is a much more

difficult task. Of course, (A4)∗ holds for distributions like the multivariate normal who have

densities that are strictly positive on arbitrary compact sets.
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A possible choice for the points e∗ij in (A4)∗ are vertices of unbounded facets in the lineality

complex of Φ. (For the example in Section 2, for instance, it is sufficient to take as e∗ij the vertices

of K∗
2,K∗

3,K∗
5 and K∗

6.) Of course, in general such vertices are not known explicitly. Then, it

is sufficient to guarantee strict positivity of θ at some set B + Vρ where B is a compact set

containing all the vertices in the lineality complex of Φ. In what follows, we sketch a respective

estimation procedure.

The outer normal cone Ki to MD at d̃i admits a representation

Ki = {u ∈ IRs : u = W (i)v, v ≥ 0}

where W (i) ∈ L(IRmi , IRs) is formed by the columns of W leading to constraints of

MD = {u ∈ IRs :WTu ≤ q} that are active in d̃i. Then it holds

K∗
i = {u1 ∈ IRs1 : u1 = W (i)1v, t̄2 = W (i)2v, v ≥ 0}

= W (i)1({v ∈ IRmi : W (i)2v = t̄2, v ≥ 0}).

hence, the vertices of K∗
i are among the W (i)1−images of the vertices v(i)j (j = 1, . . . , Ji) of

{v ∈ IRmi : W (i)2v = t̄2, v ≥ 0}. With some basis submatrix W (i, j)2 of W (i)2, the vertex

v(i)j can be written as

v(i)j = (W (i, j)−1
2 t̄2, 0),

and we obtain

W (i)1v(i)j = W (i, j)1W (i, j)−1
2 t̄2

where W (i, j)1 is given by the columns in W (i)1 corresponding to the basis variables in v(i)j.

An upper bound for the vertices in the lineality complex of Φ is then given by

max
i=1,...,N

max
j=1,...,Ji

‖W (i, j)1‖ · ‖W (i, j)−1
2 ‖ · ‖t̄2‖. (3.18)

Of course, W (i, j)2 is a non-singular square submatrix of W2 and W (i, j)1 is formed by the

corresponding columns in W1. The above bound, hence, is relaxed by

max
k=1,...,K

‖W (k)1‖ · ‖W (k)−1
2 ‖ · ‖t̄2‖ (3.19)

where W (1)2, . . . ,W (K)2 are all the invertible submatrices of W2 and W (1)1, . . . ,W (K)1 the

corresponding submatrices of W1.

Both (3.18) and (3.19), of course, are practicable for problems of moderate size only. The code

PORTA ([3]), used for the computations in the example at the end of Section 2, can be employed

to calculate the matrices W (i) and the vertices v(i)j.

For the example in the previous section, the bound (3.19) is easily computed by considering the

non-zero elements inW2 together with the corresponding columns ofW1. Using the ‖·‖∞−norm,

the bound computes as 2/3. It is attained by the vertices of K∗
2,K∗

5.
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4 Conclusions and Applications

In this section, we present some consequences of Theorem 3.3. First, we derive a sufficient

condition for the strict convexity of Q̃. Recall that Q̃ is strictly convex on some convex set

V ⊂ IRs1 if

Q̃(λχ1 + (1− λ)χ′
1) < λQ̃(χ1) + (1− λ)Q̃(χ′

1)

for all χ1, χ
′
1 ∈ V, χ1 �= χ′

1 and all λ ∈ IR with 0 < λ < 1.

Corollary 4.1 Assume (A1), (A2)∗, (A3), (A4). Suppose that for each unbounded facet F∗
ij of

each full-dimensional member in the lineality complex of Φ, there exists a point e∗ij ∈ F∗
ij such

that, for some convex open set V ⊂ IRs1 , ∪(i,j){e∗ij+V } ⊂ supp μ, where supp μ is the smallest

closed set in IRs1 with μ−measure 1. Then Q̃ is strictly convex on V .

Proof: Repeat the proof of Theorem 3.3 until (3.16). The above additonal assumption on μ

then implies that

μ
( ⋃
0≤λ≤1

{χ1 + λv + e∗i∗j + Fo
i∗j}

)
> 0

for all χ1 ∈ V and all v ∈ IRs1 with χ1 + v ∈ V .

Therefore,

(Q̃′(χ1 + v)− Q̃′(χ1))
Tv > 0

for the mentioned χ1 and v, and Q̃′ is strictly monotone on V . Hence (e.g. [12]), Q̃ is strictly

convex on V .

Inequality (3.16), in principal, allows verification of further strengthened versions of convexity

arising in the literature. Such notions are characterized by strictly monotone terms that replace

the quadratic form in the definition of strong convexity. In view of (3.16), the key for verifying

strengthened convexity lies in minorizing ‖v‖·μ(⋃0≤λ≤1{χ1+λv+e∗i∗j+Fo
i∗j}) by the mentioned

strictly monotone terms.

Theorem 3.3 turns out an essential prerequisite for verifying strong convexity in recourse models

(1.1) - (1.3) where, beside the vector z(ω) also components of the technology matrix A are

random. Let us assume that the second-stage problem has the form (cf. (2.3))

Φ(t) = min{qTy : W1y = t, W2y = z2, y ∈ IRm̄
+} (4.1)

and that Q is given by

Q(x) =

∫
Ω
Φ(z(ω)− A(ω)x) P (dω) =

∫
IR(m+1)s

Φ(z − Ax) μ(d(z, A)).

We represent A(ω) ∈ L(IRm, IRs) as A(ω) = (Ao, A1(ω)) where Ao ∈ L(IRk, IRs),

A1(ω) ∈ L(IRm−k, IRs), 0 ≤ k ≤ m, and all components in Ao are non-random (constant

P−almost surely).

The following theorem from [18] provides a sufficient condition for the strong convexity of Q in

terms of strong convexity of

Q̃A(χ) =

∫
IRs

Φ(z − χ)μ21(A, dz) (4.2)
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and conditions on Ao and A1(ω). In (4.2), μ21(A, .) denotes the regular conditional distribution

of z given A ([5]). By μ2, we will denote the marginal distribution of μ with respect to A.

Theorem 4.2 Assume (A1), (A2), (A3). Let V ⊂ IRm be convex and suppose

(i) for μ2-almost all A ∈ IRms, Q̃A is strongly convex on Ṽ := A(V ) with some modulus κ(A),

and there exists some κ > 0 such that κ(A) ≥ κ for μ2-almost all A;

(ii)
∫
IRms ‖A‖2 μ2(dA) < ∞;

(iii) k ≤ s, i.e., in A1(ω) there are at least m− s columns;

(iv) Ao has full rank;

(v) the matrix
∫
IRms AT

1A1 μ2(dA)− (
∫
IRms A1 μ2(dA))

T
(
∫
IRms A1 μ2(dA))is positive definite.

Then Q is strongly convex on V .

Theorem 3.3 extends the class of problems for which verification of the crucial assumption (i) is

possible. Further issues related to Theorem 4.2 are discussed in [18].

As mentioned in the introduction, strong convexity is closely related to quadratic growth which,

for instance, arises as a central assumption in quantitative stability results for optimal solution

points of perturbed stochastic programs. By Theorem 3.3, stability results are now available for

larger problem classes. In what follows, we illustrate this at some examples. Again we confine

ourselves to the special case arising in (2.3), i.e., the second stage in (1.1) - (1.3) has the form

Φ(t) = min{qTy : W1y = t, W2y = z2, y ∈ IRm̄
+}.

In [21], Shapiro introduces the following growth condition:

With ϕ,Ψ denoting the optimal value and optimal solution set to (1.1) - (1.3), let there exist

an open convex set U ⊃ Ψ and a constant α > 0 such that

g(x) + Q(x) ≥ ϕ+ α · dist (x,Ψ)2 for all x ∈ C ∩ U. (4.3)

Using similar techniques as in the proof of Theorem 2.7 in [16] it can be shown that this

condition is fulfilled if Ψ is nonempty, bounded, g is convex quadratic, C is a polyhedron and

Q̃(χ) =
∫
IRs Φ(z − χ)μ(dz) is strongly convex on some convex open set V ⊃ A(U). In this

respect, (4.3) is closely related to our Theorem 3.3.

Results based on (4.3) include a stability estimate for perturbed solutions in stochastic pro-

grams with complete recourse ([21], Theorem 2.1), an asymptotic expansion of optimal solu-

tions to recourse models with estimated underlying probability measure ([20], Theorem 2.1) and

asymptotic expansions of the stochastic error in simulation based optimization methods ([22],

Section 4).

In [17], (1.1) - (1.3) is considered as a parametric program with respect to the underlying

probability measure μ that varies in the space P(IRs) of all Borel probability measures on IRs.
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The optimal value ϕ = ϕ(μ) and the optimal solution set Ψ = Ψ(μ) then are (multi)functions of

μ. The central result in [17] asserts Lipschitz continuity of the multifunction Ψ with respect to

a certain distance of probability measures. Strong convexity of Q̃ in the unperturbed problem

is a crucial assumption in this respect. In [17], all components of the second-stage right-hand

side vector z are random. For partially random right-hand side, the following counterpart to

Corollary 2.5 in [17] is valid. (As usual, ”dH” will denote the Hausdorff distance of sets.)

Proposition 4.3 Let Ψ(μ) be nonempty, bounded, g be convex quadratic, C be a polyhedron

and assume that Q̃ is strongly convex on some convex open set V ⊂ IRs such that A(Ψ(μ)) ⊂ V .

Then there exists a constant L > 0 such that

dH(Ψ(μ),Ψ(ν)) ≤ L ·
N∑
i=1

sup
τ∈IRs

|μ(τ + K∗
i )− ν(τ + K∗

i )| (4.4)

whenever ν ∈ P(IRs) is chosen such that
∫
IRs ‖z‖ ν(dz) < ∞ and that the right-hand side is

sufficiently small.

Proof: As in the proof of Corollary 2.5 in [17] we obtain as a consequence of Theorem 2.4 in

[17] that

dH(Ψ(μ),Ψ(ν)) ≤ L · sup{‖(Q̃ν − Q̃μ)
′(Ax)‖ : x ∈ U \ E}

provided that
∫
IRs ‖z‖ ν(dz) < ∞ and that the right-hand side is sufficiently small. Here, L > 0

is some constant, U ⊂ IRm the closure of an open set containing Ψ(μ) for which A(U) ⊂ V and

E the set of those x ∈ IRm such that Q̃ν − Q̃μ is not differentiable at Ax. The dependence of Q̃

on the underlying probabbility measure is indicated by subscripts.

Now apply the gradient formula (2.6). It differs from the gradient formula in [17] by the more

complicated lineality regions of Φ but this has no impact on the validity of the argument in the

proof of Corollary 2.5 in [17]. Therefore, we finally end up with the sets K∗
i instead of lower left

orthants that were relevant in [17].

As an application of the above proposition we consider estimation via empirical measures. Let

ξ1, ξ2, . . . , ξn, . . . be a sequence of independent IRs-valued random variables on the probability

space (Ω,A, P ) with joint distribution μ. The empirical measures μn(ω) (ω ∈ Ω, n ∈ IN ) are

defined by

μn(ω) =
1

n

n∑
i=1

δξi(ω)

where δξi(ω) denotes the measure with unit mass at ξi(ω) (cf. e.g. [5], [13], [23]).

We are interested in aymptotic properties of dH(ψ(μ), ψ(μn(·))) as n tends to infinity. Theo-

rem 2K in [15] implies both A−measurability of the mappings

ω �→ dH(ψ(μ), ψ(μn(ω))), n ∈ IN,

and

ω �→ sup
τ∈IRs

|μ(τ + K∗
i )− μn(ω)(τ + K∗

i )|, n ∈ IN, i = 1, . . . , N,

see also the discussion in [19], Section 5.
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Let B denote the family of polyhedra in IRs whose facets are parallel to facets arising among

K∗
1, . . . ,K∗

N . Up to location in parallel hyperplanes, then only finitely many different facets

occur in B. Therefore, B is a Vapnik-Červonenkis class of Borel sets in IRs (e.g. [13], [23]). To

be a Vapnik-Červonenkis class means, for some family Bo of Borel sets in IRs, that, for some

cardinality k ∈ IN and for any finite set E ⊂ IRs with exactly k elements, there exists a subset of

E which is not representable as E ∩ B with B ∈ Bo. For details on Vapnik-Červonenkis classes

we refer to the literature ([13], [23]). As prerequisite for the subsequent statement we need the

following law of iterated logarithm (log log law) for B.

Lemma 4.4 For P−almost all ω ∈ Ω it holds

lim sup
n→∞

( n

2 log log n

)1/2 · sup{|μ(B)− μn(ω)(B)| : B ∈ B} ≤ 1

2
. (4.5)

Proof: Since ω �→ sup{|μ(B)−μn(ω)(B)| : B ∈ B} is measurable (Theorem 2K in [15]) and B is

a Vapnik-Červonenkis class, the assertion turns out a special case of the log log law established

in [10].

Proposition 4.5 Adopt the setting of Proposition 4.3 and let μ be estimated via empirical

measures μn(ω) (ω ∈ Ω, n ∈ IN ). Then it holds

lim sup
n→∞

( 2n

log logn

) 1
2 · dH(ψ(μ), ψ(μn(ω))) ≤ L ·N P − almost surely.

Proof: By (4.5), the estimate in (4.4) is valid with ν = μn(ω) provided that n = n(ω) ∈ IN is

sufficiently large. Therefore,

lim sup
n→∞

( 2n

log logn

)1/2 · sup{|μn(ω)(B)− μ(B)| : B ∈ B}

≤ 2 · lim sup
n→∞

( n

2 log logn

)1/2 · L ·
N∑
i=1

sup{|μn(ω)(B)− μ(B)| : B ∈ B}

≤ 2 · L ·N · 1
2
= L ·N for P − almost all ω ∈ Ω.

In [17] Proposition 3.1, the same law of iterated logarithm was obtained for recourse models

with fully-random right-hand side. There, a more specific log log law for the uniform distance

of distribution functions was applicable. In the end, this rests on the simpler lineality complex

of Φ which leads to an estimate like (4.4) with lower left orthants instead of polyhedra K∗
i , cf.

[17], Corollary 2.5.

Further possible conclusions from Proposition 4.3 concern large-deviation estimates as, for in-

stance, estimates for

P ({ω : dH(ψ(μ), ψ(μn(ω))) ≥ ε}) with ε > 0.
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Here, estimates for P ({ω : sup{|μ(B) − μn(ω)(B)| : B ∈ B} ≥ ε}) that are available from

the literature ([23], p. 829) can be employed. This leads to an estimate in the spirit of [17],

Proposition 3.2, for an extended class of problems. Further related work on large deviations

in stochastic programming is contained in [8], [9], [24]. In [8], the authors impose a general

conditioning assumption for the solution set of the unperturbed problem (cf. [1]) of which the

quadratic conditioning implied by strong convexity is a special case.

5 Final Remarks

We have seen that the curvature behaviour of the expected recourse function in a two-stage

stochastic program with linear recourse is essentially determined by an interplay of the proba-

bility density and the polyhedral complex of lineality regions of the second-stage value function.

The latter becomes more involved when passing from models with completely random right-

hand side to those where non-random entries occur among the components of the second-stage

right-hand side vector. Nevertheless, it is possible to verify strong convexity of the expected

recourse as a function of the tender variable for these models too. Beside standard assumptions,

an interior point condition now has to hold for a suitable projection of the second-stage dual

feasible set and uniform positivity of the density must be present at more involved regions deter-

mined by the lineality complex of the second-stage value function. Existing vertex enumeration

codes can be used to support verification of the mentioned properties.

Strong convexity of the expected recourse as function of the tender variable is essential for

quantitative statements on the stability and the asymptotic behaviour of optimal solutions to

linear recourse models. Therefore, our main result widens the class of problems for which these

statements can be shown to hold.
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