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Abstract

We introduce a new variant of the connected facility loca-
tion problem that allows for modeling mixed deployment strategies
(FTTC/FTTB/FTTH) in the design of local access telecommunication
networks. Several mixed integer programming models and valid inequali-
ties are presented. Computational studies on realistic instances from three
towns in Germany are provided.

Keywords: Connected Facility Location, Branch-and-Cut, FTTx De-
ployment

1 Introduction and Problem Definition

In the design of local access networks three main scenarios (deployment ar-
chitectures) are considered: (i) “fiber-to-the-home” (FTTH), (ii) “fiber-to-the-
building” (FTTB), and (iii) “fiber-to-the-curb” (FTTC). From an optimization
point of view – abstracting from the more technical details and considering
mainly topology decisions – FTTH deployment is modeled using variants of
the Steiner tree problem [2, 5], and FTTB or FTTC deployments are modeled
as connected facility location (ConFL) [1, 3, 4]. In this paper we consider a
new modeling and optimization approach for the mixed deployment which is
motivated by the fact that in urban areas the lowest investment costs and the
best bandwidth rates are achieved with a deployment that mixes FTTH and
FTTC/FTTB. The main drawback of existing approaches is that they do not
allow for the design of such a combined deployment. To overcome this, we pro-
pose to model the mixed deployment as ConFL with two architectures, which
will be denoted by 2-ArchConFL. We consider two different architectures 1 and
2 (these could be FTTB and FTTC, or two FTTC quality-of-service levels)
with associated minimum coverage rates, p1 and p2. The presented model can
be easily generalized to more than two architectures, thus incorporating more
deployment strategies, such as “fiber-to-the-air” (FTTA), if necessary.
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More precisely, we are given a bipartite assignment graph between potential
facilities, representing locations where equipment can be installed, and cus-
tomers. Two types of facilities – one for each architecture – exist and give rise
to two types of assignment arcs directed from facilities to customers. Each cus-
tomer can be supplied by at most one facility and each supplying facility has
to be opened in order to serve customers. In addition, each open facility must
be connected to one of the central offices, via a path in the core graph. The
(undirected) core graph consists of facilities, central offices and potential Steiner
nodes, and its edges correspond to segments along which fibers can be laid out.
See Figure 1(a) for an example.

The goal is to serve certain fractions of customers (determined according to
minimum coverage rates) by each architecture while minimizing total cost.

Formally, the problem is described by a directed graph G = (V,A) where
the node set V is the disjoint union of (i) potential central offices (COs) Q
with opening costs cq ≥ 0,∀q ∈ Q, (ii) customer nodes C with demands dc ∈
N,∀c ∈ C, (iii) potential facility locations F = F 1 ∪ F 2 with opening costs
cli ≥ 0,∀i ∈ F l, l = 1, 2, and (iv) potential Steiner nodes S. Hereby, potential
facilities in F l represent locations where equipment can be installed to connect
customers using architecture l; note that F 1 and F 2 need not be disjoint. The
arc set A consists of (i) the core arcs Ac = {(i, j) ∈ A | i, j /∈ C}, corresponding
to forward and backward arcs for each edge of the core graph, with trenching
costs ca ≥ 0,∀a ∈ Ac, and (ii) assignment arcs Al = {(i, j) ∈ A | i ∈ F l, j ∈ C},
for each architecture l = 1, 2. Each potential assignment (i, j) ∈ Al is associated
with costs clij ≥ 0 for connecting customer j to facility i using architecture l.
Finally, minimum coverage rates p1 and p2 are given with 0 ≤ p1 ≤ p2 ≤ 1,
specifying the minimal fraction of total demand D :=

∑
j∈C dj that must be

satisfied by each architecture. Hereby we assume architecture 1 to be preferable
to architecture 2, so that a coverage rate of p2 means that p2 · 100% of the total
demand needs to be satisfied by either architecture 1 or 2.

The total cost of a solution is the sum of all opening costs of used COs,
trenching costs for used core arcs, assignment costs for the realized customer
assignments, and opening costs of selected facilities. Note that CO nodes and
facility locations can be used as Steiner nodes, in which case no opening costs
are paid for passing through them. Furthermore, due to non-negative edge costs,
there always exists an optimal solution which is a forest, or even – in case only a
single CO is open – a tree. For an example of a feasible solution, see Figure 1(b).

2 Integer Linear Programming Models

For the above stated 2-ArchConFL problem integer linear programs (ILP) can be
formulated; we explicitly present cut formulations here, but note that also other
models, comprising flow or subtour elimination constraints, can be devised, as
for the classical ConFL problem (cf. [3]).

For modeling purposes, we extend the graph G with an artificial root node
r /∈ V connected via artificial arcs Ar = {(r, q) | q ∈ Q} to all central offices
(cf. Figure 1(b)). Their purpose is to select one or more COs to open and to
incorporate their costs into the model: for each artificial arc (r, q), q ∈ Q, we
set crq := cq. Obviously, if |Q| = 1, i.e., there is only one potential CO node,
creation of the root and artificial arcs can be skipped and the CO itself can act
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Figure 1: (a) An exemplary instance with potential central offices q1, q2, type-1
facilities f1, f2, type-2 facilities g1, g2, potential Steiner nodes s1, s2, and cus-
tomers c1, . . . , c5; assignment arcs are dashed. (b) A solution, including the
root node, with selected CO q1 supplying c1, c2, and c3 using technology 1 via
facility f1, and c4 and c5 using technology 2 via facility g2; note that g1 is used
as a Steiner node.

as the root. For abbreviation we use Arc := Ar ∪Ac.
In the following subsections, we present ILP models based on various di-

rected cutset constraints. We denote by F lj = {i ∈ F l | (i, j) ∈ Al} the set
of eligible facilities for a customer j ∈ C for l = 1, 2. Then the set of com-
mon decision variables for all the models is as follows: (i) core arc variables
xij ∈ {0, 1},∀(i, j) ∈ Arc indicate whether or not core/artificial arc (i, j) is
used, (ii) assignment arc variables xlij ∈ {0, 1},∀(i, j) ∈ Al, l = 1, 2 indicate if
customer j is supplied by facility i using architecture l, (iii) facility variables
yli ∈ {0, 1}, ∀i ∈ F l, l = 1, 2 indicate whether or not facility i is open provid-
ing connections using architecture l, and (iv) customer variables zlj ∈ {0, 1},
∀j ∈ C, l = 1, 2 indicate if customer j is connected using architecture l. For a
given node set W ⊂ V , let δ−(W ) = {(i, j) ∈ A∪Ar | i /∈W, j ∈W} be the set
of ingoing arcs in G. For an arc set Â ⊆ A∪Ar we use x(Â) :=

∑
(i,j)∈Â∩Arc

xij ,

as well as xl(Â) :=
∑

(i,j)∈Â∩Al xlij and (x+xl)(Â) := x(Â) +xl(Â) for l = 1, 2.
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Basic model

Using the previously described variables, we can formulate 2-ArchConFL as
model (yC) given by (1)–(7).

min
∑

(i,j)∈Arc

cijxij +

2∑
l=1

∑
(i,j)∈Al

clijx
l
ij +

2∑
l=1

∑
i∈F l

cliy
l
i (1)

s.t.

2∑
l=1

zlj ≤ 1 ∀j ∈ C (2)∑
i∈F l

j

xlij = zlj ∀j ∈ C, l = 1, 2 (3)

xlij ≤ yli ∀j ∈ C, i ∈ F lj , l = 1, 2 (4)

l∑
λ=1

∑
j∈C

djz
λ
j ≥ dplDe l = 1, 2 (5)

x(δ−(W )) ≥ yli ∀W ⊆ V \ C, i ∈ F l ∩W, l = 1, 2 (6)

(~x, ~x1, ~x2, ~y1, ~y2, ~z1, ~z2) ∈ {0, 1}|A|+|A
1|+|A2|+|F 1|+|F 2|+2|C| (7)

Constraints (2) and (3) ensure that each connected customer uses a unique
architecture and assignment arc; if p2 = 1, Inequality (2) can be replaced by
equality. Constraints (4) force a facility to be opened whenever an assignment
arc issuing from it is chosen. Demanded coverage rates are satisfied due to Con-
straints (5). Finally, the connectivity constraints given by (6) (y-cuts) ensure
that each opened facility is connected to the root node via opened core arcs.
Since the root node is adjacent only to the CO nodes, at least one CO is opened
in the solution. Hence (yC) is a valid model for 2-ArchConFL.

Note that the left-hand side matrix M = (aij)1≤i≤2|C|+|A1∪A2|,1≤j≤|A1∪A2|
defined by (3) and (4) has the following structure:

1 1 . . . 1
. . .

1 . . . 1

I


}

2|C|

 |A1 ∪A2|

Here I denotes the unit matrix of size |A1 ∪ A2|. Observe that each column
of this 0/1-matrix contains exactly two nonzero entries; consider the partition
(M1,M2) of its rows where M1 contains the first 2|C| rows. Then for each
column j we have

∑
i∈M1

aij −
∑
i∈M2

aij = 0. Hence M is totally unimodular

and the integrality of the assignment variables can be relaxed to xlij ∈ [0, 1].

zl-cuts

If some customer j is connected using architecture l, any cut between j and the
root node must contain either a core arc or an assignment arc for l. Thus, the
model can be strengthened by replacing the y-cuts (6) by zl-cuts:

(x+ xl)(δ−(W )) ≥ zlj ∀W ⊆ V, j ∈ C ∩W, l = 1, 2 (8)
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Network # Instances |V \ C| |C| |F | |Arc| |A1 ∪A2|
berlin-tu 20 384 39 55–109 1124 84–269
atlantis 20 1001 345 361–447 2062 851–2952
vehlefanz 40 895 238 273–407 2197 544–3749

Table 1: Overview of test instances.

If |W ∩C| = 1, we can reformulate (8) using (3) to obtain the following inequal-
ities, which dominate (8):

x(δ−(W )) ≥
∑

i∈W∩F l
j

xlij ∀W ⊆ V, C ∩W = {j}, l = 1, 2 (9)

z-cuts

Similarly, if customer j is connected with any architecture then some core or
assignment arc must be selected, which gives the z-cuts:

(x+ x1 + x2)(δ−(W )) ≥ z1j + z2j ∀W ⊆ V, j ∈ C ∩W (10)

As for the zl-cuts, if |W ∩ C| = 1, we obtain the dominating inequalities

x(δ−(W )) ≥
2∑
l=1

∑
i∈W∩F l

j

xlij ∀W ⊆ V, C ∩W = {j} (11)

In the following, we refer by (zlC) and (zC), to model (yC) with (6) replaced
by (9) and (11), respectively. We denote by vLP(X) the optimum objective value
of the LP relaxation of MIP model (X). Then the following can be shown (in a
similar way as in [3]):

Proposition 1 vLP(zC) ≥ vLP(zlC) ≥ vLP(yC), and there exist instances for
which strict inequality holds for both inequalities. Furthermore, the integrality
gap of (yC) is in Ω(|V |).

3 Computational Results

To assess our models, branch-and-cut approaches have been implemented in
C++ using IBM CPLEX 12.4 and tested on instances based on realistic
networks representing deployment areas of three German towns. Table 1
gives further details on the instances. For each of the three given network
topologies, 20 and 40 different instances are generated by varying the al-
lowed sets of facilities and assignment arcs. We applied an absolute time
limit of 7 200 CPU-seconds to all experiments which have been performed
on a single core of an Intel Xeon processor with 2.53 GHz using at most
3GB RAM. We compared the computational performance of (yC), (zlC), and
(zC) models, and also considered variant (yzC) where z-cuts are separated if
no further violated y-cuts exist. The underlying branch-and-cut implemen-
tations follow the main ideas given in [3]. For each instance and cut strat-
egy, nine combinations of (percentage) coverage rates are considered: (p1, p2) ∈
{(20, 60), (40, 60), (20, 80), (40, 80), (60, 80), (20, 100), (40, 100), (60, 100), (80, 100)}.
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Figure 2 shows box plots of the runtimes of all computations for each net-
work w.r.t. the different cut strategies. Each column corresponds to 9 coverage
settings for each instance, i.e., we have 180 (for berlin-tu and atlantis) and
360 computations for vehlefanz. The numbers on top of each column indicate
in how many computations the time limit was hit. In general, the y-cuts appear
to be preferable over z- and zl-cuts. For the smaller network the z-cuts show a
slightly better performance – this might be due to the fact that these instances
significantly differ from the others with respect to the ratio of the number of
customer nodes to the total number of nodes.

Figure 3 shows the influence of different coverage rates on the computational
performance. Each column contains results of 20+20+40 computations over all
instances, for a fixed coverage pair. Here the (yzC) cut strategy is considered,
since this seems to be the best compromise between (yC) and (zC), considering
all instance types. As can be seen from the three sections of the plot, increasing
p1 while keeping the values of p2 fixed, yields a significant reduction in CPU-
time. The picture is not that clear if p1 is kept fixed and p2 is increased (different
greyscale levels): While for p1 = 20% CPU-time decreases with higher p2, no
clear trend can be derived for p1 = 40% and p1 = 60%.
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Figure 2: CPU-time per instance for different cut strategies.
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Figure 3: CPU-time for different coverage rates.
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4 Conclusions and Outlook

A new variant of the connected facility location problem has been introduced
and a MIP model with cut inequalities has been presented and computationally
tested on a set of realistic instances. For future studies, other valid inequalities
and formulations for the problem are conceivable, such as variants of cover cuts,
and Miller-Tucker-Zemlin or common flow formulations.
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